APP下载

旱作条件下氮肥减施对水稻产量及氮肥偏生产力的影响

2024-12-31赵敏华宋秉曦张宇鹏高志红朱勇勇陈晓远

新疆农业科学 2024年8期
关键词:旱作水稻产量

摘 要:【目的】研究旱作条件下减量施用氮肥对水稻营养元素含量以及氮肥偏生产力的影响。

【方法】以美香粘为材料进行大田试验,设置5个处理:常规淹水施氮(216 kg/hm2,CK)、旱作施氮(216 kg/hm2,H0)、旱作减氮10%(194.4 kg/hm2,H10)和旱作减氮20%(172.8 kg/hm2,H20)、旱作减氮40%(129.6 kg/hm2,H40),研究不同水分条件和氮肥减施对稻田土壤基础养分、水稻生物量、含氮量以及产量和氮肥偏生产力的影响。

【结果】与传统淹水栽培相比,水稻旱作显著提高了土壤有机质含量,显著降低了土壤pH值和速效磷含量,其它养分含量均无显著变化。旱作降低了水稻根、茎、叶、穗生物量、总氮含量以及氮肥偏生产力,水稻单位面积株数、千粒重、产量在旱作处理下无明显变化。在旱作条件下减施氮肥,土壤养分状况变化各异,与旱作和传统淹水栽培相比变化较小。水稻根、茎、叶、穗生物量和含氮量随着氮肥减施程度的增加下降,穗生物量和氮含量在H40处理下相比H0处理显著升高。氮肥偏生产力随着氮肥减施程度增加而提高,在H40时达到最高。与H0相比,H10、H20的产量降低幅度不显著,H40降低幅度大于H10和H20,但其产量与H0差异不显著。

【结论】在旱作条件下氮肥减施40%,可在产量不显著降低的同时却显著提高肥料生产力。

关键词:水稻;旱作;氮肥减施;氮素利用率;产量

中图分类号:S511 ""文献标志码:A ""文章编号:1001-4330(2024)08-1907-10

收稿日期(Received):2023-07-03

基金项目:广东省自然科学基金项目(2023A1515011736);韶关学院国家级大学生创新训练计划项目(202110576016);韶关市科技计划项目(220606154533827);广东省教育厅普通高校重点科研平台和项目(2020KCXTD037)

作者简介:赵敏华(1997-),女,山西人,硕士,研究方向为作物水分与养分高效利用,(E-mail)zmhuayk@163.com

通讯作者:陈晓远(1968-),男,广东韶关人,教授,博士,硕士生/博士生导师,研究方向为作物水分与养分高效利用,(E-mail)chenxy2@163.com

0 引 言

【研究意义】全球气候变暖及季节性干旱导致水资源日益紧张,已成为世界水稻生产的主要限制因素[1,2]。我国粤北地区属于亚热带湿润性季风气候,是广东省主要的水稻生产区,农业优势明显,但粤北水稻生产经常受到季节性和区域性干旱的影响[3]。水稻旱作减氮是近年来发展起来的一种绿色高效低碳栽培技术。与传统水淹种植相比,水稻旱作具有明显的生长优势,包括干物质积累量较高,成熟期叶片衰老慢,根系活力强等优点[4-7]。氮素作为水稻生长的重要营养元素,参与碳氮代谢、蛋白质合成等过程,更是植物激素、氨基酸和叶绿体的重要组成部分[8-10]。为了在减少农业用水的同时维持作物产量,农业生产中会增加氮肥的用量[11-13]。输入稻田的氮肥大约有9%~39%以氨气的形式挥发,最高可达60%[14-16]。因此,粤北地区实行水稻旱作对今后农业可持续发展具有重要意义。【前人研究进展】适量的氮肥减施可以有效的调节土壤肥力、光合作用,从而在一定程度上提高氮素利用率,进而维持植株产量[17]。尹彩侠等[18]相较于传统施肥,氮肥减施20%显著提高氮素吸收效率。张小祥等[19]对不同品种水稻进行氮肥减施处理,结果表明减氮处理降低了氮素转运量和穗部氮素积累量,提高了氮素吸收利用率和氮肥偏生产力。彭晓宗等[20]采用区域施肥调查和田间试验相结合的方法,发现适当减氮可以在保证作物产量的同时降低氮素损失率,减少环境风险及人工成本,提高经济效益。【本研究切入点】关于旱作和减施氮肥对水稻产量的影响已有很多报道,但在旱作条件下减施氮肥研究水稻干物质量积累、氮肥利用以及产量的影响还鲜有报道。【拟解决的关键问题】以美香占2号为材料,研究不同水分条件和氮肥减施对稻田土壤基础养分、水稻生物量、含氮量以及产量和氮肥偏生产力的影响,为水稻旱作与氮肥减施技术提供参考。

1 材料与方法

1.1 材 料

试验水稻品种为美香粘(广东省农科院水稻研究所选育),试验地点设在韶关市始兴县美青农业发展有限公司(24°56′0″N,114°3′36″E)。试验地地势平坦,前茬蔬菜作物为茄子和豇豆,土壤质地为红壤性水稻土,土壤结构为重壤土,土壤基础养分:pH值5.83,有机质4.45 g/kg,全氮532.18 mg/kg,硝态氮18.84 mg/kg,铵态氮17.77 mg/kg,碱解氮123.48 mg/kg,速效磷118.95 mg/kg,速效钾210.80 mg/kg。供试化肥为单质肥料,分别为尿素(N 46%)、过磷酸钙(P2O5 12%)和氧化钾(K2O 60%)。

1.2 方 法

1.2.1 试验设计

参照陈晓远等[21]方法,试验设置淹水灌溉(按照当地常规淹水方式)和旱作(整个生育期均不灌溉)2种水分处理,及4种氮肥用量处理:当地常规施用量(216 kg/hm2)、减少 10%施用量(194.4 kg/hm2)、减少 20%施用量(172.8 kg/hm2)、减少40%施用量(129.6 kg/hm2),共计5个处理,即CK(淹水灌溉+当地常规氮肥用量)、H0(旱作+当地常规氮肥用量)、H10(旱作+氮肥减施 10%)、H20(旱作+氮肥减施 20%)、H40(旱作+氮肥减施 40%),每个处理3次重复。表1

试验于2019年5~8月进行,试验地区年均降雨量1 468 mm(主要集中在上半年),年均日照总时数1 500~1 900 h。采用随机区组设计,小区面积为7 m×7 m=49 m2。常规淹水施氮处理采用人工插秧方式种植,旱作处理采用机械直播方式种植,旱作处理播种密度参照插秧密度,苗间距为5 cm。5月10日播种,起垄后用塑料薄膜覆盖以阻隔水分交换,8月10日收获。

氮磷钾肥料分3次施用,施用时期和分配比例为播种后一周施用氮肥总量的36%;播种一个月施用氮肥总量的32%、磷肥总量的63%和钾肥总量的63%;灌浆期施用氮肥总量的32%、磷肥总量的37%和钾肥总量的37%。水稻成熟后测定处理土壤养分含量、产后植株养分含量、植株部位干重、植株部位养分含量并计算氮肥偏生产力。表2

1.2.2 测定指标

土壤养分:农田翻耕后采集土壤样品,测试土壤有机质等养分数据;收获后再次采样测定养分数据;植株不同器官氮含量:水稻成熟后,每处理随机选取1 m×1 m样方3块,采集植株根、茎、叶、穗等器官,测定其氮含量;植株不同器官生物量:

水稻成熟后,采集植株根、茎、叶、穗等器官,测定其生物量;水稻产量及其构成因素:水稻成熟后,每处理随机选取2 m×2 m样方3块进行人工收割测产。

重铬酸钾氧化-油浴加热法测定土壤有机质含量;凯氏定氮仪法测定土壤和植株全氮含量;还原蒸馏法测定土壤硝态氮;KCl溶液浸提-分光光度法测定土壤铵态氮;

碱解扩散法测定土壤碱解氮;NaHCO3浸提钼锑抗比色法测定土壤速效磷;醋酸铵-火焰光度计法测定土壤速效钾;烘干法测定植株生物量。

采集植物样品,清洗根部,分别将根、茎、叶、穗放置在烘箱中,在80℃温度下烘干24 h,测定其干重。

氮肥偏生产力=施肥作物产量/肥料投入量。

1.3 数据处理

试验数据应用软件Graph prism8.0、SPSS 22.0和Microsoft Excel 2019进行整理分析,对各处理间的差异采用LSD法和邓肯法进行0.05水平上的显著性检验。

2 结果与分析

2.1 旱作条件下氮肥减施对土壤养分的影响

研究表明,与CK相比,H0、H10、H20、H40处理下土壤pH值均降低,差异显著。氮肥减施处理中,土壤pH值与氮肥减施的程度呈反比。与CK相比,H0、H10、H20、H40处理下土壤有机质含量均提高,其中H10、H20、H40分别提高30.25%、30.25%、24.39%,土壤有机质含量与氮肥减施的程度呈正比,各处理间差异不显著。与CK相比,氮肥减施处理的土壤硝态氮、铵态氮、碱解氮含量均无显著变化;H20处理的铵态氮和碱解氮显著升高,分别比CK升高87.9%和35.39%。与CK相比,H0处理的土壤速效磷含量降低20.86%,其余处理的土壤速效磷含量无显著变化,氮肥减施处理的速效磷含量与氮肥减施的程度成正比。与CK相比,H10、H20处理的土壤速效钾含量分别升高5.12%和5.53%,其余处理土壤速效钾含量无显著差异。表3

2.2 旱作条件下氮肥减施对水稻植株生物量的影响

研究表明,各处理中,茎部(含叶鞘)生物量均为最高,根部生物量均为最低,与CK相比,H0处理的根、茎的生物量分别降低28.36%、23.78%,差异不显著,穗显著降低了50.44%。氮肥减施处理的根、茎、穗的生物量随着氮肥减施程度的增加先降低后增加,H40处理的生物量在旱作条件下最高,与CK相比均差异不显著,与H0相比仅穗的生物量差异显著;H20的生物量在所有中最低,与CK相比,其根、茎、穗、叶生物量分别降低35%、77%、38%、17.54%。叶片在所有处理中均无显著变化。图1

2.3 旱作条件下氮肥减施对水稻植株各器官氮含量的影响

研究表明,CK的总氮量最高,H10处理的最低,比CK下降44.89%。在旱作处理中,植株总氮量随着氮肥减施程度的加强呈先下降后增加的趋势,H40处理总氮含量最高。在所有处理中,CK的茎、穗、叶、根的氮含量最高,H20处理的穗、叶、根氮含量最低。与CK相比,H20处理的茎、穗、叶、根的氮含量分别降低10.96%、3.73%、26.27%、31.11%。在旱作处理中,植株各部位氮含量随着氮肥减施的程度呈先下降后增加(H40,茎部除外)的趋势,在H40时穗的氮含量相比H0显著升高27.78%。表4

2.4 旱作条件下氮肥减施对水稻产量和氮肥偏生产力的影响

研究表明,水稻产量、单位面积株数、千粒重均在CK处理下最高。在旱作条件下,产量和单位面积株数以及千粒重与氮肥减施的程度呈反比。与CK相比,H0处理的产量、千粒重和单位面积株数分别下降2.38%、0.95%、2.4%,差异不显著;H10和H20分别下降2.72%、2.85%、8.64%和3.4%、5.21%、34.56%,差异不显著;H40分别下降了6.46%、8.36%、39.5%,差异显著。与CK相比,H0处理的氮肥偏生产力下降。在旱作条件下,随着氮肥减施程度的增加氮肥偏生产力增加,H40处理的氮肥偏生产力最高,可达83.76,相比CK和H0处理分别增加了36.72%、37.39%。表5

3 讨 论

3.1

旱作通过减少农业用水,减少水稻生长过程中水分蒸发提高水分利用率,进而保证产量,水稻旱作技术对节约水资源和粮食生产具有重要意义[22]。土壤养分作为水稻生长的基础,对水稻质量和产量有重要作用。然而,关于旱作对土壤肥力的影响还存在一些争议[23,24]。研究发现,旱作条件下减施氮肥与正常灌溉相比土壤的pH值显著下降,但均在水稻适宜生长的范围内。旱作条件对土壤的硝态氮、铵态氮、碱解氮以及速效钾影响较小,而有机质含量显著提高,速效磷含量显著降低。是因为水稻旱作相比传统淹水栽培,限制土壤微生物的活动,降低有机质的分解速度,从而影响到碱解氮的释放[25,26,27]。同时由于土壤酸化,土壤磷的有效性会降低,其溶解度也会减小,造成速效磷含量下降[28]。在旱作条件下减施氮肥后,土壤养分变化各异,但与传统淹水或旱作不减氮条件相比,变化较稳定,但铵态氮和碱解氮含量在H20处理下显著升高,导致这一变化的原因目前尚不清楚,后续会进一步研究。

3.2

通过旱作技术,可以提高水稻的产量,并且与传统水淹技术相比,还能达到较高的节水率。樊红柱等[29]通过旱作技术,使水稻显著节水增产,与传统水淹技术相比节水率达到63%。赵成全等[30]在辽宁省进行的水稻旱直播试验结果表明,水稻早直播比育秧移栽节水25%~50%,产量比插秧提高5.33%。朱伦[31]通过早稻的旱直播栽培试验发现,旱直播比常规裁培增产22%,节约灌溉用水6 000 m3/hm2。在研究中,旱作处理不进行人工灌水,水稻生长所需水分均来自土壤原有水分和天然降水,因此,与传统人工淹水栽培相比,可节约大量灌溉用水,从而降低生产成本。

3.3

水稻旱作可调节土壤水肥能力,影响根系生长,进而导致地上部分生物量和营养物质的积累[32]。研究表明,旱作与传统淹水相比,水稻产量会因为时间、地理条件以及肥水管理产生差异。李金才等[33]研究表明,露地旱作水稻群体干物质量相比水作显著降低,千粒重和产量下降。魏永霞等[34]研究发现,与传统淹水相比,旱作条件下水稻植株各部位干物质累积量较低,产量变化不显著。徐令旗等[35]发现与传统水淹相比,旱作条件下水稻生物量、千粒重以及产量略低,但能降低农民生产成本,增加经济收入,提高生态效益。研究证实,与传统淹水栽培相比,水稻旱作降低了植物根、茎、叶和穗的生物量和氮含量,植株总生物量和总氮含量也处于下降趋势;虽然穗的生物量和氮含量均显著降低,但对水稻的千粒重和产量影响并不大,与上述文献的研究结果差异不大,说明虽然旱作条件下,由于田间水量减少,导致植株对土壤养分的吸收受到影响,使得植株生物量和氮含量减少,但轻度的水分胁迫并不会对水稻生长和代谢造成显著影响。因此,与CK相比,旱作各处理产量并未显著下降。

3.4

氮肥是植物生长发育所必需的主要营养元素之一,对植物的生长具有重要的促进作用。适量的氮肥能够提供植物所需的氮元素,并促进植物光合作用、叶片的形成和生物量的积累[36]。然而,为了实现水稻增产而施用大量氮肥,又会造成氮肥利用率下降和生态环境持续恶化[37-40]。另一方面,氮肥施用过低也会造成产量和品质下降,因此把握好氮肥施用量对农业生态环境以及作物生长具有重要意义。董瑜皎等[41]发现,在覆膜旱作条件下施氮量为120 kg/hm2时水稻地上部分总生物量升高。邓小强等[42]研究表明,施氮120 kg/hm2时,水稻产量最高,单产达到9 532.9 kg/hm2。周江明等[43]研究发现,早稻施N 153.11~69.4 kg/hm2,晚稻施N 161.51~90.1 kg/hm2可实现高产高效节氮。研究结果表明,与淹水栽培相比,旱作减施氮肥会使水稻产量下降,但下降并不显著,这与前人的结果较为一致。

肥料偏生产力指施用某一特定肥料下的作物产量与施肥量的比值,它是反映当地土壤基础养分水平和化肥施用量综合效应的重要指标[44]。陈晓萍[45]等发现,在常规施肥的基础上减施氮肥,水稻籽粒产量并无显著降低,而且氮肥表观利用率、偏生产力和氮肥内部利用率均略微提高本。鲁伟林等[46]发现,氮肥偏生产力随着氮肥的增加呈现下降趋势,与产量存在负相关关系。王道中等[47]发现,氮肥减施提高了氮肥回收率,增加水稻结实率、每穗粒数和千粒重,从而维持产量。王瑜等[48]发现,氮肥减施后千粒重、穗粒数、结实率呈递下降趋势,氮肥偏生产力升高,但产量并无显著变化。

4 结 论

4.1

与传统淹水灌溉相比,水稻旱作和旱作条件下减施氮肥对土壤有机质、硝态氮、铵态氮、碱解氮含量影响较小。与传统淹水栽培相比,水稻旱作显著提高了土壤有机质含量,显著降低了土壤pH值和速效磷含量,其他养分含量均无显著变化。

4.2

水稻旱作及减施氮肥降低了植株生物量和含氮量,但减施40%可使植株的穗生物量和含氮量升高。

4.3

水稻旱作及氮肥减施降低了植株的有效株数、千粒重及产量,降低程度与氮肥减施程度成正相关。

4.4

氮肥偏生产力会随着氮肥减施程度的增加而增加,减施40%的处理,氮肥偏生产力最大,比旱作不减施处理和淹水处理分别提高59.73%和58.04%,但其产量只比前者下降了4,18%和6.46%,差异不显著。因此,在一定范围内,旱作减施可以显著提高肥料生产效率。氮肥偏生产力与氮肥减施程度成正相关,减施40%的处理,氮肥偏生产力最大,但其产量降低不显著。旱作并减施40%氮肥,可以在维持一定产量的同时显著提高肥料生产力。

参考文献(References)

[1]高志红, 陈晓远, 曾越. 局部根系水分胁迫下氮素形态对水稻幼苗生理特性和根系生长的影响[J]. 华北农学报, 2019, 34(2): 154-161.

GAO Zhihong, CHEN Xiaoyuan, ZENG Yue. Effects of N forms on physiological characteristics and root growth of rice seedling in condition of partial root water stress[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(2): 154-161.

[2] Wang W Q, Peng S B, Liu H Y, et al. The possibility of replacing puddled transplanted flooded rice with dry seeded rice in central China: a review[J]. Field Crops Research, 2017, (214): 310-320.

[3] 高志红, 林浴霞, 张宇鹏, 等. 不同水分胁迫和氮素形态对水稻生长及木质部液流离子含量的影响[J]. 华北农学报, 2021, 36(2): 146-153.

GAO Zhihong, LIN Yuxia, ZHANG Yupeng, et al. Growth and ion content in rice seedling xylem sap under different water stresses and nitrogen forms[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(2): 146-153.

[4] Jiang H, Song Z, Su Q W, et al. Transcriptomic and metabolomic reveals silicon enhances adaptation of rice under dry cultivation by improving flavonoid biosynthesis, osmoregulation, and photosynthesis[J]. Frontiers in Plant Science, 2022, (13): 967537.

[5] Jiang H, Thobakgale T, Li Y Z, et al. Construction of dominant rice population under dry cultivation by seeding rate and nitrogen rate interaction[J]. Scientific Reports, 2021, 11(1): 7189.

[6] Zhan J H, Lu X, Liu H Y, et al. Mesocotyl elongation, an essential trait for dry-seeded rice (Oryza sativa L.): a review of physiological and genetic basis[J]. Planta, 2019, 251(1): 27.

[7] Jiang W J, Huang W C, Liang H, et al. Is rice field a nitrogen source or sink for the environment[J]. Environmental Pollution, 2021, (283): 117122.

[8] Liu X W, Wang H Y, Zhou J M, et al. Effect of N fertilization pattern on rice yield, N use efficiency and fertilizer-N fate in the Yangtze River Basin, China[J]. PLoS One, 2016, 11(11): e0166002.

[9] Padukkage D, Geekiyanage S, Reparaz J M, et al. Bradyrhizobium japonicum, B. elkanii and B. diazoefficiens interact with rice (Oryza sativa), promote growth and increase yield[J]. Current Microbiology, 2021, 78(1): 417-428.

[10] 汤国平, 熊强强, 钟蕾, 等. 双季早稻氮素亏缺补偿效应的形成及其生理机制初探[J]. 核农学报, 2017, 31(8): 1585-1593.

TANG Guoping, XIONG Qiangqiang, ZHONG Lei, et al. Primary research on the formation and its physiological mechanism of nitrogen deficiency compensatory effects in double-season early rice[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(8): 1585-1593.

[11] Jacoby R, Peukert M, Succurro A, et al. The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions[J]. Frontiers in Plant Science, 2017, (8): 1617.

[12] Liu Q, Wu K, Song W Z, et al. Improving crop nitrogen use efficiency toward sustainable green revolution[J]. Annual Review of Plant Biology, 2022, (73): 523-551.

[13] 李姗, 黄允智, 刘学英, 等. 作物氮肥利用效率遗传改良研究进展[J]. 遗传, 2021, 43(7): 629-640.

LI Shan, HUANG Yunzhi, LIU Xueying, et al. Genetic improvement of nitrogen use efficiency in crops[J]. Hereditas(Beijing), 2021, 43(7): 629-640.

[14] Huang L N, Cheng S M, Liu H L, et al. Effects of nitrogen reduction combined with organic fertilizer on growth and nitrogen fate in banana at seedling stage[J]. Environmental Research, 2022, (214): 113826.

[15] Li T L, Wang Z G, Wang C X, et al. Ammonia volatilization mitigation in crop farming: a review of fertilizer amendment technologies and mechanisms[J]. Chemosphere, 2022, (303): 134944.

[16] Sun H J, Zhang H L, Xiao H D, et al. Wheat straw biochar application increases ammonia volatilization from an urban compacted soil giving a short-term reduction in fertilizer nitrogen use efficiency[J]. Journal of Soils and Sediments, 2019, 19(4): 1624-1631.

[17] 宫亮, 金丹丹, 牛世伟, 等. 长期定位氮肥减施对水稻产量和氮素吸收利用的影响[J]. 中国稻米, 2022, 28(3): 42-46.

GONG Liang, JIN Dandan, NIU Shiwei, et al. Effects of long-term position nitrogen fertilizer reduction on rice yield and nitrogen absorption and utilizationn[J]. China Rice, 2022, 28(3): 42-46.

[18] 尹彩侠, 刘志全, 孔丽丽, 等. 减氮增密提高寒地水稻产量与氮素吸收利用[J]. 农业资源与环境学报, 2022, 39(6): 1124-1132.

YIN Caixia, LIU Zhiquan, KONG Lili, et al. Reducing nitrogen and increasing rice transplanting density in a cold region of China can improve rice yield, nitrogen absorption, and nitrogen utilization[J]. Journal of Agricultural Resources and Environment, 2022, 39(6): 1124-1132.

[19] 张小祥, 邵士梅, 赵步洪, 等. 氮肥减施模式对不同穗型迟熟中粳水稻产量及氮素吸收利用的影响[J]. 中国水稻科学, 2022, 36(3): 278-294.

ZHANG Xiaoxiang, SHAO Shimei, ZHAO Buhong, et al. Effects of nitrogen reduction model on yield and nitrogen absorption and utilization of late-maturing mid-japonica rice with different panicle types[J]. Chinese Journal of Rice Science, 2022, 36(3): 278-294.

[20] 彭晓宗, 翟丽梅, 王洪媛, 等. 辽河三角洲稻区缓释肥施用下氮肥减施潜力研究[J]. 中国土壤与肥料, 2022,(5): 51-60.

PENG Xiaozong, ZHAI Limei, WANG Hongyuan, et al. Reduction potential of nitrogen fertilizer under slow-release fertilizer application in Liaohe Delta rice area[J]. Soil and Fertilizer Sciences in China, 2022,(5): 51-60.

[21] 朱勇勇, 宋秉羲, 杨王敏, 等. 旱作条件下氮肥减施对水稻生长、产量与经济收益的影响[J]. 生态环境学报, 2021, 30(11): 2150-2156.

ZHU Yongyong, SONG Bingxi, YANG Wangmin, et al. Effects of reduced nitrogen application on rice growth, yield and economy profits under dry farming conditions[J]. Ecology and Environmental Sciences, 2021, 30(11): 2150-2156.

[22] Jin X X, Zuo Q, Ma W W, et al. Water consumption and water-saving characteristics of a ground cover rice production system[J]. Journal of Hydrology, 2016, (540): 220-231.

[23] 何进宇, 刘飞杨, 马波, 等. 不同旱作节水灌溉条件对土壤理化性质及水稻产量的影响[J]. 干旱地区农业研究, 2023, 41(1): 121-127.

HE Jinyu, LIU Feiyang, MA Bo, et al. Effects of different irrigation conditions on soilphysicochemical properties and rice yield[J]. Agricultural Research in the Arid Areas, 2023, 41(1): 121-127.

[24] Li Y S, Wu L H, Zhao L M, et al. Influence of continuous plastic film mulching on yield, water use efficiency and soil properties of rice fields under non-flooding condition[J]. Soil and Tillage Research, 2007, 93(2): 370-378.

[25] 柳燕兰, 马明生, 张绪成, 等. 施肥对旱作区新修梯田土壤理化性质及马铃薯产量的影响[J]. 寒旱农业科学, 2022, 1(11): 115-118.

LIU Yanlan, MA Mingsheng, ZHANG Xucheng, et al. Effects of fertilization on soil physical and chemical properties and potato yield of new terraced farmland in raid-fed region[J]. Journal of Cold-Arid Agricultural Sciences, 2022, 1(11): 115-118.

[26] 孙红, 孙明明, 吕世翔, 等. 水旱轮作对土壤和水稻的影响[J]. 黑龙江农业科学, 2019,(10): 141-143.

SUN Hong, SUN Mingming, LYU Shixiang, et al. Effects of paddy-upland rotations on soil and rice[J]. Heilongjiang Agricultural Sciences, 2019,(10): 141-143.

[27] 赵龙, 张友良, 王娟, 等. 水稻覆膜旱作对土壤环境及水稻生长的影响研究进展[J]. 水资源与水工程学报, 2020, 31(5): 255-260.

ZHAO Long, ZHANG Youliang, WANG Juan, et al. Research progress of effects of ground cover rice production system with plastic film mulch on soil environment and rice growth[J]. Journal of Water Resources and Water Engineering, 2020, 31(5): 255-260.

[28] 李艾芬, 麻万诸, 章明奎. 水稻土的酸化特征及其起因[J]. 江西农业学报, 2014, 26(1): 72-76.

LI Aifen, MA Wanzhu, ZHANG Mingkui. Characteristics and causes of acidification of paddy soil[J]. Acta Agriculturae Jiangxi, 2014, 26(1): 72-76.

[29] 樊红柱, 曾祥忠, 张冀, 等. 覆盖旱作水稻的生长及水分利用效率研究[J]. 西南农业学报, 2010, 23(2): 349-353.

FAN Hongzhu, ZENG Xiangzhong, ZHANG Ji, et al. Effects of different mulch modes on rice production and water utilization efficiency[J]. Southwest China Journal of Agricultural Sciences, 2010, 23(2): 349-353.

[30] 赵成全, 姜洪涛, 任朝明, 等. 水稻旱直播高产高效栽培关键技术的研究[J]. 吉林农业科学, 2007, 32(4): 9-11.

ZHAO Chengquan, JIANG Hongtao, REN Chaoming, et al. Studies on key techniques of sowing rice directly on dry land for high yield and high efficiency[J]. Journal of Jilin Agricultural Sciences, 2007, 32(4): 9-11.

[31] 朱伦. 早稻旱直播栽培试验初报[J]. 广西农学报, 2008, 23(3): 10-11, 15.

ZHU Lun. A report on dry direct seeding cultivation technique of early rice[J]. Journal of Guangxi Agriculture, 2008, 23(3): 10-11, 15.

[32] 庞喆, 王启龙. 不同灌溉量对土壤理化性质及水稻生长发育的影响[J]. 灌溉排水学报, 2019, 38(S2): 37-41.

PANG Zhe, WANG Qilong. Effects of different irrigation amounts on soil physical and chemical properties and rice growth and development[J]. Journal of Irrigation and Drainage, 2019, 38(S2): 37-41.

[33] 李金才, 黄义德, 魏凤珍, 等. 旱作对水稻干物质积累、分配及产量的影响[J]. 安徽农业科学, 2001, 29(1): 56-57.

LI Jincai, HUANG Yide, WEI Fengzhen, et al. Effects of dry farming on dry matter accumulation, distribution and yield of rice[J]. Journal of Anhui Agricultural Sciences, 2001, 29(1): 56-57.

[34] 魏永霞, 侯景翔, 吴昱, 等. 不同水分管理旱直播水稻生长生理与节水效应[J]. 农业机械学报, 2018, 49(8): 253-264.

WEI Yongxia, HOU Jingxiang, WU Yu, et al. Effects of different water management on growth physiology and water-saving of dry direct seeding rice[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8): 253-264.

[35] 徐令旗, 郭晓红, 吕艳东, 等. 旱直播对水稻穗部性状、产量和经济效益的影响[J]. 干旱地区农业研究, 2021, 39(5): 186-192.

XU Lingqi, GUO Xiaohong, LV Yandong, et al. Effects of dry direct seeding on panicle characters, yield and economic benefits of rice[J]. Agricultural Research in the Arid Areas, 2021, 39(5): 186-192.

[36] 武姣娜, 魏晓东, 李霞, 等. 植物氮素利用效率的研究进展[J]. 植物生理学报, 2018, 54(9): 1401-1408.

WU Jiaona, WEI Xiaodong, LI Xia, et al. Research progress in nitrogen use efficiency in plants[J]. Plant Physiology Journal, 2018, 54(9): 1401-1408.

[37] 程爽, 车阳, 田晋钰, 等. 水稻缓控释氮肥应用研究现状与展望[J]. 扬州大学学报(农业与生命科学版), 2020, 41(2): 1-8.

CHENG Shuang, CHE Yang, TIAN Jinyu, et al. Research advances and prospects of slow-controlled release nitrogen fertilizer in rice[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2020, 41(2): 1-8.

[38] 段里成, 吕伟生, 方加海, 等. 施氮量和每穴苗数对双季杂交早稻产量及氮肥利用率的影响[J]. 生态学杂志, 2018, 37(10): 2959-2967.

DUAN Licheng, LV Weisheng, FANG Jiahai, et al. Effects of nitrogen application rate and seedlings per hole on yield and nitrogen use efficiency of double-season early hybrid rice[J]. Chinese Journal of Ecology, 2018, 37(10): 2959-2967.

[39] 郭腾飞, 梁国庆, 周卫, 等. 施肥对稻田温室气体排放及土壤养分的影响[J]. 植物营养与肥料学报, 2016, 22(2): 337-345.

GUO Tengfei, LIANG Guoqing, ZHOU Wei, et al. Effect of fertilizer management on greenhouse gas emission and nutrient status in paddy soil[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 337-345.

[40] 兰艳, 黄鹏, 江谷驰弘, 等. 施氮量和栽插密度对粳稻D46产量及氮肥利用率的影响[J]. 华南农业大学学报, 2016, 37(1): 20-28.

LAN Yan, HUANG Peng, JIANG Guchihong, et al. Effect of planting density and nitrogen application on yield and nitrogen uptake and utilization of japonica rice cultivar D46[J]. Journal of South China Agricultural University, 2016, 37(1): 20-28.

[41] 董瑜皎, 袁江, 吕世华. 2个氮水平下不同施锌方式对覆膜水稻产量及锌吸收的影响[J]. 西南农业学报, 2018, 31(8): 1655-1661.

DONG Yujiao, YUAN Jiang, LU Shihua. Effects of different Zn application methods on yield and Zn uptake of plastic mulching rice under two nitrogen levels[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(8): 1655-1661.

[42] 邓小强, 范贵国, 王懿. 施氮量对覆膜栽培水稻经济性状、产量与氮肥利用的影响[J]. 湖北农业科学, 2016, 55(16): 4103-4106.

DENG Xiaoqiang, FAN Guiguo, WANG Yi. Effects of nitrogen application level on economic characters, yield and nitrogen use of rice cultivated with film mulching[J]. Hubei Agricultural Sciences, 2016, 55(16): 4103-4106.

[43] 周江明, 赵琳, 董越勇, 等. 氮肥和栽植密度对水稻产量及氮肥利用率的影响[J]. 植物营养与肥料学报, 2010, 16(2): 274-281.

ZHOU Jiangming, ZHAO Lin, DONG Yueyong, et al. Nitrogen and transplanting density interactions on the rice yield and N use rate[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 274-281.

[44] 郝玉波, 李梁, 于洋, 等. 增施秸秆有机肥及减施化肥对玉米产量形成和肥料偏生产力的影响[J]. 黑龙江农业科学, 2021,(7): 15-18.

HAO Yubo, LI Liang, YU Yang, et al. Effects of increasing straw organic fertilizer and decreasing chemical fertilizer on maize yield formation and feitilizer partial factor productivity in black soil area[J]. Heilongjiang Agricultural Sciences, 2021,(7): 15-18.

[45] 陈晓萍, 曹雪仙, 陈文伟, 等. 氮肥减施对水稻产量、氮吸收和利用的影响[J]. 浙江农业科学, 2021, 62(12): 2367-2370.

CHEN Xiaoping, CAO Xue-Xian, CHEN Wen-Wei, et al. Effect of nitrogen fertilizer reduction on rice yield and nitrogen uptake and utilization[J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(12): 2367-2370.

[46] 鲁伟林, 段仁周, 余新春, 等. 氮肥施用量对杂交粳稻氮素吸收和利用的影响[J]. 中国农学通报, 2016, 32(30): 1-6.

LU Weilin, DUAN Renzhou, YU Xinchun, et al. Effects of nitrogen fertilizer on nitrogen absorption and utilization of japonica hybrid rice[J]. Chinese Agricultural Science Bulletin, 2016, 32(30): 1-6.

[47] 王道中, 张成军, 郭熙盛. 减量施肥对水稻生长及氮素利用率的影响[J]. 土壤通报, 2012, 43(1): 161-165.

WANG Daozhong, ZHANG Chengjun, GUO Xisheng. Effects of lower fertilizer on rice growth and nitrogen use efficiency[J]. Chinese Journal of Soil Science, 2012, 43(1): 161-165.

[48] 王瑜, 赵庆雷, 信彩云, 等. 氮肥减施对麦茬机插水稻产量及氮肥利用的影响[J]. 农业与技术, 2023, 43(1): 6-8.

WANG Yu, ZHAO Qinglei, XIN Caiyun, et al. Effect of nitrogen fertilizer reduction on rice yield and nitrogen utilization by mechanical transplanting after wheat stubble[J]. Agriculture and Technology, 2023, 43(1): 6-8.

Effects of nitrogen fertilizer reduction on rice yield and nitrogen partial

factor productivity under dry farming conditions

ZHAO Minhua1,2, SONG Bingxi1," ZHANG Yupeng1, GAO Zhihong1,

ZHU Yongyong1, CHEN Xiaoyuan1

(1.College of Biology and Agriculture, Shaoguan University/Engineering Research Center for Efficient Utilization of Water and Soil Resources in Northern Guangdong, Shaoguan Guangdong 512005, China; 2. College of Life and Geographical Sciences, Kashi University/Key Laboratory of Biological Resources and Ecology of Xinjiang Pamir Plateau, Kashi University, Kashgar Xinjiang 844000, China)

Abstract:【Objective】 To explore the effects of reducing nitrogen application on nutrient content and nitrogen partial factor productivity of rice under dry farming conditions.

【Methods】 A field experiment was conducted with Meixiangnian as the material. Five treatments were set up: conventional flooding nitrogen application (216 kg/hm2, CK), dry farming nitrogen application (216 kg/hm2, H0), dry farming nitrogen reduction 10 % (194.4 kg/hm2, H10), dry farming nitrogen reduction 20 % (172.8 kg/hm2, H20), dry farming nitrogen reduction 40 % (129.6 kg/hm2, H40). The effects of different water conditions and nitrogen fertilizer reduction on soil basic nutrients, rice biomass, nitrogen content, yield and partial factor productivity of nitrogen fertilizer in paddy field were studied.

【Results】 The results showed that compared with the traditional flooding cultivation, rice dry farming significantly increased soil organic matter content, significantly reduced soil pH value and available phosphorus content, and other nutrient contents did not change significantly. Dry farming reduced the biomass of rice roots, stems, leaves, panicles, total nitrogen content and partial factor productivity of nitrogen fertilizer. There was no significant change in the number of plants per unit area, 1000-grain weight and yield of rice under dry farming. Under the condition of reducing nitrogen fertilizer in dry farming, the change of soil nutrient status was different, and the change was slighter than that of dry farming and traditional flooding cultivation. The biomass and nitrogen content of roots, stems, leaves and panicles of rice decreased with the increase of nitrogen fertilizer reduction, and the biomass and nitrogen content of panicles increased significantly under H40 treatment compared with H0 treatment. The partial factor productivity of nitrogen fertilizer increased with the increase of nitrogen fertilizer reduction, and reached the highest at H40. Compared with H0, the yield of H10 and H20 did not decrease significantly, and the decrease of H40 was greater than those of H10 and H20, but the yield was not significantly different from that of H0.

【Conclusion】 Reducing nitrogen fertilizer by 40 % under dry farming conditions can significantly increase fertilizer productivity while reducing yield.

Key words:rice; dryland; nitrogen reduction; nitrogen use efficiency; yield

Fund projects:Natural Science Foundation of Guangdong Province (2023A1515011736); Innovation Training Project for College Students of Shaoguan University" (202110576016);Science and Technology Program Project of Shaoguan City (220606154533827);Key Scientific Research Platform Project in General Universities of Department of Education of Guangdong Province (2020KCXTD037)

Correspondence author:CHEN Xiaoyuan(1968-), male, from Shaoguan Guangdong,professor,Ph.D.,master/doctoral supervison,research direction:Crop water and nutrients are highly effcient, (E-mail)chenxy2@163.com

猜你喜欢

旱作水稻产量
什么是海水稻
让“有机旱作·晋品”成为一张靓丽名片
有机旱作,倚“特”而立 向“高”而行
有机旱作落地生根 实用技术推广见效
2022年11月份我国锌产量同比增长2.9% 铅产量同比增长5.6%
今年前7个月北海道鱼糜产量同比减少37%
在『有机旱作』上做出特色
水稻种植60天就能收获啦
海水稻产量测评平均产量逐年递增
一季水稻