APP下载

不平衡磁拉力作用下无刷双馈电机的转子振动特性研究

2024-05-30任泰安吴霞吴松荣阚超豪田杰王群京

电机与控制学报 2024年4期

任泰安 吴霞 吴松荣 阚超豪 田杰 王群京

摘 要:

無刷双馈电机长时间运行会出现转轴弯曲、轴承磨损等状况,导致气隙动偏心,并因此产生不平衡磁拉力,影响转子系统动力学特性。为了研究由不平衡磁拉力引起的转子振动特性问题,建立Jeffcott转子动力学模型,得出考虑不平衡磁拉力作用下转子系统的振动微分方程组,并对其自由振动响应进行了计算。以某型号无刷双馈电机的样机尺寸为例,分析气隙动偏心状态下电机气隙长度、转子材料及几何尺寸等对电机振动特性的影响,并利用Runge-Kutta法对振动微分方程组进行分析,结果表明:当转子动偏心率较小时,利用该转子系统的振动微分方程组计算出的解析解与数值计算结果吻合较好,转子的一阶振幅误差仅为0.2%,二阶振幅误差为2%,具有较高的精度且计算较为简便,为电机的高可靠运行提供理论支撑。

关键词:无刷双馈电机;转子系统;动偏心;振动特性;不平衡磁拉力

DOI:10.15938/j.emc.2024.04.011

中图分类号:TM30

文献标志码:A

文章编号:1007-449X(2024)04-0102-09

收稿日期: 2023-04-20

基金项目:磁浮技术与磁浮列车教育部重点实验室开放课题基金;中央高校基本科研业务费专项基金(JZ2021HGTA0157);湖北省机械传动与制造工程重点实验室开放基金(MTMEOF2021B03);安徽省工业节电与用电安全重点实验室开放课题(KFKT201905)

作者简介:任泰安(1992—),男,博士,讲师,研究方向为新型特种电机、电磁场计算;

吴 霞(1996—),男,硕士研究生,研究方向为电机电磁场计算;

吴松荣(1977—),男,博士,副教授,研究方向为电力电子与电力传动;

阚超豪(1974—),男,博士,副教授,研究方向为新型电机的运行理论及控制;

田 杰(1968—),男,博士,教授,研究方向为新型机械传动;

王群京(1960—),男,博士,教授,博士生导师,研究方向为伺服电机及其控制。

通信作者:吴松荣

Rotor vibration characteristics of brushless doubly-fed machine under unbalanced magnetic pull

REN Taian1,2,3, WU Xia1, WU Songrong2, KAN Chaohao1, TIAN Jie4, WANG Qunjing5

(1.School of Electrical Engineering and Automation,Hefei University of Technology,Hefei 230009,China; 2.Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle Ministry of Education,Chengdu 610031,China;

3.Undergraduate School,Hefei University of Technology,Hefei 230009, China;

4.School of Mechanical Engineering,Hefei University of Technology,Hefei 230009, China; 5.School of Electrical Engineering and Automation,Anhui University,Hefei 230601 China)

Abstract:

When brushless dual feed is operated for a long time,the rotor shaft will bend and bear,which leads to the dynamic eccentricity of the air gap and the unbalanced magnetic pull, affecting the dynamic characteristics of the rotor system. In order to study the vibration characteristics of the rotor caused by the unbalanced magnetic pull, the Jeffcott rotor dynamic model was established to obtain the vibration differential equations of the rotor system considering the unbalanced magnetic pull, and then free vibration response was calculated. Taking a certain prototype of brushless doubly-fed machine (BDFM) as an example of size, the influence of the machines air gap length, rotor material and geometric size was analyzed on the machines vibration characteristics under the condition of air gap dynamic eccentricity, and the Runge-Kutta method was used to analyze the vibration differential equations. The results show that when the rotor eccentricity is small, the analytical results calculated by the vibration differential equations of the machine system are in good agreement with the numerical results, the first-order amplitude error of the rotor is only 0.2%, and the second-order amplitude error is 2%, which can be simply calculated with the high accuracy. The conclusions provide theoretical support for highly reliable operation of the machine.

Keywords:brushless doubly-fed machine (BDFM);rotor system;dynamic eccent-ricity;vibration characteristics;unbalanced magnetic pull

0 引 言

无刷双馈电机具有调速范围宽广,功率因数可调,较硬的机械特性,系统所需变频器容量小等众多优势,在交流调速与变速恒频发电领域的应用前景较为明朗[1-4]。

无刷双馈电机长时间运行时会出现转轴弯曲、轴承磨损等状况,从而引起转子的不平衡,导致气隙动偏心,并因此产生不平衡磁拉力。不平衡磁拉力的存在使定转子偏心进一步增大,而偏心的增长又将导致不平衡磁拉力变大,形成正反馈,造成电机的故障率增大,对电机安全稳定运行产生严重的影响[5-6]。

国内外已有一些研究人员在不平衡磁拉力对传统电机转子系统动力学特性的影响方面进行了研究。ZHU等[7]针对单相电机转子偏心引起的噪声与振动进行了研究。GUO等[8]分析了不同极对数电机的不平衡磁拉力和离心力作用下转子的径向振动,并进行了频谱分析。CALLEECHARAN[9]对水力发电机转子的径向稳定性展开了研究。WU等[10]分析了同步电机转子径向振动的稳定性。上述文献针对的研究对象是工作在额定转速下的电机,如水轮发电机等多通过数值积分的方法对电机的非线性振动进行分析[8,11]。无刷双馈电机由于结构的特殊性,电机内部存在多种励磁源[12-14],采用上述的数值积分法求解电机转子系统动力学特性问题时较复杂,常通过忽略不平衡磁拉力的非线性项来简化求解过程,而目前对该电机转子系统的解析求解和动力学特性等内容的研究文献较少[15-16,20]。

本文推导不同极对数组合形式下转子系统不平衡磁拉力的解析表达式,采用以单跨对称弹性转子模型模拟电机转子,分析不同极对数组合形式下的转子系统自由振动响应,以某型号无刷双馈电机的样机尺寸为例,通过Runge-Kutta法对振动微分方程组的解析解进行验证。

为了验证上述解析结果的正确性,本文采用Runge-Kutta数值法对保留15阶的泰勒级数高阶项进行求解,图4、图5、图6分别给出了3种不同初始条件下,转子沿x和y轴方向的位移响应。

初始条件一:x(0)=0.02,y(0)=0.01,x·(0)=0,y·(0)=0,θ=π/3。

初始条件二:x(0)=0.05,y(0)=0.03,x·(0)=0,y·(0)=0,θ=π/3。

初始条件三:x(0)=0.2,y(0)=0.1,x·(0)=0,y·(0)=0,θ=π/3。

对比图4(a)和图5(a)、图4(b)和图5(b)可知,在初始条件较小的情况下,采用Runge-Kutta数值法按照前15阶的计算结果与采用解析法按照前3阶的计算结果误差仅在0.5%以内。对比图4(a)和图6(a)、图4(b)和图6(b)可知,随着初始条件的增大,采用解析法按照前3阶计算结果的相对误差也随之增加,但其波形趋势基本相同。

通过对上述3种初始条件下得到的位移响应波形进行快速傅里叶变换,可得出各种情况下x和y轴方向的频谱如图7、图8、图9所示。

由图7(a)和图7(b)可知,在动态偏心率较小时,转子的一阶频率与二阶频率吻合较好,转子的一阶振幅误差为0.2%,二阶振幅误差为2%,说明在动态偏心率较小时,解析法具有较高的精确度,计算较为简便。

由图8(a)和图8(b)可知,当动态偏心率略微增加时,一阶和二阶频率仍能较好的吻合,此时,一阶振幅的误差仅为1%,而二阶振幅误差增加为14%,由于该条件下二阶振幅对转子系统振动特性的影响较小,此时采用解析法仍具有较好的精确度。由图9(a)和图9(b)可知,当动态偏心率为22.5%时,一阶和二阶频率的误差均在15%左右,一阶振幅的误差为10%,二阶振幅误差达到了38%,说明在转子动态偏心率较大时,该解析法有一定局限性,须采用数值法对转子系统的振动特性进行分析。

4 結 论

本文对无刷双馈电机的振动特性进行了研究,建立转子的动力学方程组,利用解析法推导出了转子振动的响应,并利用Runge-Kutta法对保留15阶的不平衡磁拉力进行了数值计算,得到以下结论:

1)无刷双馈电机不平衡磁拉力与定子两套绕组的极对数有关,当两套绕组极对数均大于1时,其不平衡磁拉力与定子两套绕组的电流频率无关,当两套绕组极对数之差为2时,初始相位差θ也会对不平衡磁拉力造成影响。

2)无刷双馈电机的不平衡磁拉力与转子半径、气隙长度、两套绕组的基波磁动势幅值及转子的轴向长度有关。

3)无刷双馈电机两套绕组极对数之差为2时,转子振动响应由两阶不同的频率简谐波叠加而成,其频率与转子半径,气隙长度,两套绕组的基波幅值及转子的轴向长度有关,每阶固有频率对应的模态只与功率和控制绕组两种合成磁动势的初始相位差有关。

4)转子的振动幅值与初始条件有关,当初始条件较小时其振动幅值较小,初始条件增大时,其振动幅值也随之增大,但转子的固有频率与初始条件无关。

5)在初始条件较小的情况下,按照前3阶不平衡磁拉力计算的结果与按照前15阶的计算结果误差不大,但随着初始条件的增大其误差也随之增大。

参 考 文 献:

[1] 姜云磊,程明,王青松,等. 不平衡负载下双定子无刷双馈发电机独立运行控制策略[J]. 电工技术学报,2018,33(5): 998.

JIANG Yunlei,CHENG Ming,WANG Qingsong, et al. Control strategy of stand-alone brushless doubly fed induction generator system under unbalanced loads[J]. Transactions of China Electrotechnical Society,2018, 33(5): 998.

[2] 韩力,高强,罗辞勇,等. 不同转子结构无刷双馈电机的运行特性对比[J]. 电机与控制学报,2010,14(3):9.

HAN Li,GAO Qiang,LUO Ciyong,et al. Comparasion on the performance of brushless doubly-fed machine with different rotor structures[J]. Electric Machines and Control,2010,14(3): 9.

[3] 任泰安,阚超豪,胡杨,等. 极对数组合形式对绕线转子无刷双馈电机性能的影响[J]. 电工技术学报, 2020,35(3): 509.

REN Taian,KAN Chaohao,HU Yang,et al. Influence of pole-pairs combination on the performance of wound rotor brushless double-fed machine[J]. Transactions of China Electrotechnical Society,2020,35(3): 509.

[4] 张凤阁,王秀平,贾广隆,等. 无刷双馈电机复合转子结构参数的优化设计[J]. 电工技术学报,2014,29(1): 77.

ZHANG Fengge,WANG Xiuping,JIA Guanglong,et al. Optimum design for composite rotor structural parameters of brushless doubly fed machines[J]. Transactions of China Electrotechnical Society,2014,29(1):77.

[5] DORRELL David. Calculation of unbalanced magnetic pull in small cage induction motors with skewed rotors and dynamic rotor eccentricity[J]. IEEE Transactions on Energy Conversion,1996,11(3):483.

[6] PERERS Richard,LUNDIN Urban,LEIJON Mats. Saturation effects on unbalanced magnetic pull in a hydro-electric generator with an eccentric rotor[J]. IEEE Transactions on Magnetics,2007,43(10): 3884.

[7] ZHU Ziqiang,HOWE David. Effect of rotor eccentricity and magnetic circuit saturation on acoustic noise and vibration of single-phase induction motors[J]. Electric Machine and Power Systems,1997,25(3):443.

[8] GUO Dan, CHU Fulei,CHEN D. The unbalanced magnetic pull and its effects on vibration in a three-phase generator with eccentric rotor[J]. Journal of Sound and Vibration,2002,254(2):297.

[9] CALLEECHARAN. Stability analysis of an hydropower generator subjected to unbalanced magnetic pull[J]. Measurement and Technology,2011,5(6):231.

[10] 李志和,李正光,孫维鹏. 不平衡磁拉力作用下偏心转子的非线性振动[J]. 吉林大学学报,2011,49(3):459.

LI Zhihe,LI Zhengguang,SUN Weipeng. Nonlinear vibration of an eccentric rotor subjected to unbalanced magnetic pull [J]. Journal of Jilin University,2011,49(3):459.

[11] XU Xueping,HAN Qinkai,CHU Fulei. Nonlinear vibration of a generator rotor with unbalanced magnetic pull considering both dynamic and static eccentricities[J]. Archive of Applied Mechanics,2016,86(8):1521.

[12] MCMAHON R A,ROBERTS P C,WANG X,et al. Performance of BDFM as generator and motor[J]. IET Electric Power Applications,2006,153(2):289.

[13] MCMAHON Richard,TAVNER Peter,ABDI Ehsan,et al. Characterising brushless doubly fed machine rotors[J]. IET Electric Power Applications,2013,7(7):535.

[14] HAN Peng,ZHANG Julia,CHENG Ming. Analytical analysis and performance characterization of brushless doubly fed machines with multibarrier rotors[J]. IEEE Transactions on Industry Applications,2019,55(6):5758 .

[15] ABDI Salman,ABDI Ehsan,MCMAHON Richard. A study of unbalanced magnetic pull in brushless doubly fed machines[J]. IEEE Transactions on Energy Conversion,2015,30(3):1218.

[16] ABDI Salman,ABDI Ehsan,TOSHANI Hamid,et al. Vibration analysis of brushless doubly-fed machines in the presence of rotor eccentricity[J]. IEEE Transactions on Energy Conversion,2020,35(3):1372.

[17] DORRELL D G,THOMSON W T. Analysis of airgap flux,current,and vibration signals as a function of the combination of static and dynamic airgap eccentricity in 3-phase induction motors[J].IEEE Transactions on Industry Applications,1997,33(1):24.

[18] PAN Weidong, CHEN Xi, WANG Xuefan. Generalized design method of the three-phase Y-connected wound rotor for both additive modulation and differential modulation brushless doubly fed machines[J]. IEEE Transactions on Energy Conversion,2021,36(3):1940.

[19] XIANG Changle,LIU Feng,LIU Hui,et al. Nonlinear dynamic behaviors of permanent magnet synchronous motors in electric vehicles caused by unbalanced magnetic pull[J]. Journal of Sound and Vibration,2016,371:277.

[20] 戈寶军,毛博,林鹏,等.无刷双馈电机转子偏心对气隙磁场的影响[J].电工技术学报,2020,35(3):502.

GE Baojun,MAO Bo,LIN Peng,et al. Influence of rotor eccentricity on air gap magnetic field of brushless doubly-fed motor [J]. Transactions of China Electrotechnical Society,2020,35(3):502.

(编辑:刘素菊)