关于度量空间中改变距离的函数和的不动点定理
2024-05-20李斌肖海强常大磊
李斌 肖海强 常大磊
摘要:不动点理论在研究方程解的存在性、唯一性及具体计算都有重要的理论与实用价值。本文基于巴拿赫度量空间中压缩映射原理通过两点之间距离的改变,借助于单调函数自映射原理在已有的结论基础上推广了度量空间上自映射的Pathak、Rekha Sharam、Khan、和Sastry and Babu 函数和的一些不动点定理,并得出函数和唯一不动点定理 。
关键词:不动点;距离变化;函数和
中图分类号:O177.2文献标志码:A文献标识码
Some fixed point theorems about the sum of functions in metric spaces by altering distances
LI Bin,XIAO Haiqiang,CHANG Dalei*
(College of Sciences,Shihezi University,Shihezi,Xinjiang 832000,China)
Abstract: Fixed point theory has important theoretical and practical value in studying the existence, uniqueness, and specific calculations of equation solutions. Based on the principle of contractive mapping in Banach metric space, this paper extends some fixed point theorems of Pathak and Rekha Sharam, Khan, and Sastry and Babu function sums of self-mapping in metric space by changing the distance between two points and by virtue of the principle of monotone function self-mapping on the basis of the existing conclusions, and obtains function and unique fixed point theorems。
Key words: fixed point;alteration of distances;the sum of functions
著名的度量空間上的巴拿赫压缩原理已被一些作者推广。Rhoades[1] 和 TaskoviAc'1][2]已经建立了度量空间上的自映射的推广。此外,Khan等[3]通过Banach压缩原理改变点之间的距离,得到了度量空间上的自映射的概念。随后一些学者又继续朝这个方向研究[4-7],推广了改变距离的函数的不动点定理,本文在结合已有结论的基础上[8-9],得出了关于度量空间中改变距离的函数和的不动点定理。
4 结论
本文在已有结论的基础上,首先在度量空间中建立自映射,通过改变点之间的距离,并结合Nashine等、Fang和Masmali等的定理得到了改变距离的函数和的不动点的存在性,其次,结合Amini-harandi等和Venkata等的定理得到了不动点的唯一性,最后,我们利用已有的结论和Kumar等的定理推广了函数和的不动点的一些性质。
参考文献(References)
[1] RHOADES B E. A comparison of various definitions of contractive mappings[J]. Transactions of the American Mathematical Society, 1977, 226: 257-290.
[2] TASKOVIC' R M.Some new principles in fixed point theory[J].Math.Japon.1990,35:645-666.
[3] KHAN M S, SWALEH M, SESSA S. Fixed point theorems by altering distances between the points[J]. Bulletin of the Australian Mathematical Society, 1984,30(1): 1-9.
[4] KAMRAN T, KIRAN Q.Fixed point theorems for multi-valued mappings obtained by altering distances[J]. Mathematical and Computer Modelling, 2011, 54(11-12): 2772-2777.
[5] SASTRY K P R, NAIDU S V R, BABU G V R, et al. Generalization of common fixed point theorems for weakly commuting maps by altering distances[J]. Tamkang Journal of Mathematics, 2000, 31(3): 243-250.
[6] ANSARI Q H, BABU F. Proximal point algorithm for inclusion problems in Hadamard manifolds with applications[J]. Optimization Letters, 2021, 15(3): 901-921.
[7] SASTRY K P R, NAIDU S V R. Uniform convexity and strict convexity in metric linear spaces[J]. Mathematische Nachrichten, 1981, 104(1): 331-347.
[8] NAIDU S V R. Some fixed point theorems in metric spaces by altering distances[J]. Czechoslovak Mathematical Journal, 2003, 53(1): 205-212.
[9] MOHD I, LADLAY K. Fixed point theorems for two pairs of nonself mappings in metrically convex spaces by altering distances[J]. Mathematica Moravica, 2006,(10): 27-40.
[10] SASTRY K P R, NAIDU G A. Fixed point theorems for weak K-quasi contractions on a generalized metric space with partial order[J]. International Journal of Engineering Research and Applications, 2017, 7(2): 18-25.
[11] ALI J,POPA V, IMDAD M. Strict common fixed point theorems for hybrid pairs of mappings via altering distances and an application[J]. Honam Mathematical Journal, 2016, 38(2): 213-229.
[12] AMINI-HARANDI A, PETRUEL A. A fixed point theorem by altering distance technique in complete metric spaces[J]. Miskolc Mathematical Notes, 2013,14(1):11.
[13] NASHINE H K, AYDI H. Generalized altering distances and common fixed points in ordered metric spaces[J]. International Journal of Mathematics and Mathematical Sciences, 2012, 2012: 736367.
[14] FANG J X. A note on fixed point theorems of Hadzˇíc[J]. Fuzzy Sets and Systems, 1992, 48(3): 391-395.
[15] AHMAD J, AZAM A, SAEJUNG S. Common fixed point results for contractive mappings in complex valued metric spaces[J]. Fixed Point Theory and Applications, 2014, 2014(1):67.
[16] MASMALI I, DALAL S, REHMAN N. Fixed point results by altering distances in fuzzy metric spaces[J]. Advances in Pure Mathematics, 2015, 5(6): 377-382.
[17] VENKATA R G, VIJAYA S Y. Fixed and periodic point results for generalized altering distance with partial order relation[J]. Journal of Statistics and Mathematical Engineering, 2021, 7(1): 16-28.
[18] KUMAR M, DEVI S, SINGH P. Fixed point theorems by using altering distance function in S-metric spaces[J]. Communications in Mathematics and Applications, 2022, 13(2): 553-573.
[19] DONG Q L,LIU L L,GIBALI A.A dynamic simultaneous algorithm for solving split equality fixed point problems[J].Optimization,2024,73(3):833-849.
[20] KARLSSON A.A metric fixed point theorem and some of its applications[J].Geometric and Functional Analysis,2024,34(2):486-511.
[21] BRAVO M,COMINETTI R.Stochastic fixed-point iterations for nonexpansive maps: Convergence and error bounds[J].SIAM Journal on Control and Optimization,2024,62(1):191-219.
[22] SALUJA S G.Some common fixed point theorems for contractive type conditions in complex valued S-metric spaces[J].International Journal of Mathematical Combinatorics,2023,2(1):1-17.
[23] HAMAIZIA T.Coincidence and common fixed point theorems for hybrid mappings[J].General Mathematics,2023,31(1):51-57.
[24] OREGAN D.Continuous selecting families and collectively fixed point theory[J].Aequationes mathematicae,2023,97(4):871-881.
[25] SOLAN E,SOLAN O N.Browders theorem through brouwers fixed point theorem[J].The American Mathematical Monthly,2023,130(4):370-374.
[1] RHOADES B E. A comparison of various definitions of contractive mappings[J]. Transactions of the American Mathematical Society, 2010, 226(0): 257-290.
[2] M.R.TaskoviAc'1]:Some new principles in fixed point theory.Math.Japon.1990,35:645-666.
[2] NAIDU S V R. Some fixed point theorems in metric spaces by altering distances[J]. Czechoslovak Mathematical Journal, 2003, 53(1): 205-212.
[3] KHAN M S, SWALEH M, SESSA S. Fixed point theorems by altering distances between the points[J]. Bulletin of the Australian Mathematical Society, 1984,30(1): 1-9.
[3] MOHD I, LADLAY K. Fixed point theorems for two pairs of nonself mappings in metrically convex spaces by altering distances[J]. Mathematica Moravica, 2006,(10): 27-40.
[5] ANSARI Q H, BABU F. Proximal point algorithm for inclusion problems in hadamard manifolds with applications[J]. Optimization Letters, 2021, 15(3): 901-921.
[6] SASTRY K P R, NAIDU S V R. Uniform convexity and strict convexity in metric linear spaces[J]. Mathematische Nachrichten, 1981, 104(1): 331-347.
[7] SASTRY K P R, NAIDU S V R, BABU G V R, et al. Generalization of common fixed point theorems for weakly commuting maps by altering distances[J]. Tamkang Journal of Mathematics, 2020, 31(3): 243-250.
[8] SASTRY K P R, NAIDU G A. Fixed point theorems for weak K-Quasi contractions on a generalized metric space with partial order[J]. International Journal of Engineering Research and Applications, 2017, 7(2): 18-25.
[10] KAMRAN T, KIRAN Q.Fixed point theorems for multi-valued mappings obtained by altering distances[J]. Mathematical and Computer Modelling, 2011, 54(11-12): 2772-2777.
[11] ALI J,POPA V, IMDAD M. Strict common fixed point theorems for hybrid pairs of mappings via altering distances and an application[J]. Honam Mathematical Journal, 2016, 38(2): 213-229.
[12] AMINI-HARANDI A, PETRUASXU]EL A. A fixed point theorem by altering distance technique in complete metric spaces[J]. Miskolc Mathematical Notes, 2013,14(1):11-11.
[13] NASHINE H K, AYDI H. Generalized altering distances and common fixed points in ordered metric spaces[J]. International Journal of Mathematics and Mathematical Sciences, 2012, 2012: 1-23.
[14] FANG J X. A note on fixed point theorems of Hadzci′c[J]. Fuzzy Sets and Systems, 1992, 48(3): 391-395.
[15] MASMALI I, DALAL S, REHMAN N. Fixed point results by altering distances in fuzzy metric spaces[J]. Advances in Pure Mathematics, 2015, 5(6): 377-382.
[16] VENKATA R G, VIJAYA S Y. Fixed and periodic point results for generalized altering distance with partial order relation[J]. Journal of Statistics and Mathematical Engineering, 2021, 7(1): 16-28.
[17] KUMAR M, DEVI S, SINGH P. Fixed point theorems by using altering distance function in s-metric spaces[J]. Communications in Mathematics and Applications, 2022, 13(2): 553-573.
[18] AHMAD J, AZAM A, SAEJUNG S. Common fixed point results for contractive mappings in complex valued metric spaces[J]. Fixed Point Theory and Applications, 2014, 2014(1):67-78.
(責任编辑:编辑郭芸婕)