APP下载

激光驱动拉伸氢分子产生阈下谐波中拉比振荡特征的取向依赖

2024-04-04张红牛龚雪魏盼赵松峰

张红牛 龚雪 魏盼 赵松峰

摘要:通过数值求解二维模型分子在强激光场中的含时薛定谔方程,研究了拉伸氢分子产生阈下谐波中拉比振荡特征的取向依赖.结果表明,三次谐波附近展现出精细次峰结构,借助于两态模型,将这些次峰结构归因于基态和第一激发态之间强耦合引起的拉比振荡.文中还发现这些次峰结构对分子取向角有很强的依赖,且次峰结构随着取向角(0°~90°)的增大而逐渐消失,这是由两态间的耦合强度随取向角增大而减小所引起.

关键词:拉伸氢分子;精细次峰结构;拉比振荡;取向依赖

中图分类号:O 562.4文献标志码:A文章编号:1001-988Ⅹ(2024)02-0037-06

Alignment dependence of Rabi-flopping signatures in the below-threshold harmonics from the stretched H2 driven by lasers

ZHANG Hong-niu,GONG Xue,WEI Pan,ZHAO Song-feng

Abstract:We investigated the alignment dependence of Rabi-flopping signatures in the below-threshold harmonic generation from the stretched hydrogen molecules by numerically solving the two-dimensional time-dependent Schrdinger equation of molecules in laser fields.We found that fine sub-peaks near the third order harmonic and these fine sub-peaks can be attributed to Rabi oscillations originated from the strong-coupling between the ground state and the first excited state by using the two-state model.We also found that these fine sub-peaks strongly depend on alignment angles of molecules and gradually disappear as the alignment angle(0°~90°) increases because the coupling strength between these two states decreases with the alignment angle increasing.

Key words:stretched hydrogen molecules;fine sub-peak structures;Rabi-flopping;alignment dependence

物质在强激光场中产生的高次谐波是超快科学领域最热门的研究课题,主要因为高次谐波在产生超短阿秒脉冲上取得了巨大成功[1-2],使得人们有能力实时观测阿秒量级的电子动力学,也为物理、化学、生物、材料、信息、能源等领域提供了全新的研究手段,因而2023年诺贝尔物理学奖授予了发展产生阿秒超短脉冲实验方法的3位科学家.

高次谐波的产生机制可用“三步模型”[3]或“四步模型”[4]来解释.低次谐波起初被简单地认为是微扰响应[5],因而没有引起研究者的广泛关注.然而,用重散射图像无法对实验中近阈值谐波的反常椭偏依赖给出合理的解释[6-8],对近阈值和阈下谐波产生机制的研究重新引起了人们的关注[9],当然也和低阶谐波在产生高重频真空紫外光源上的重要应用密不可分[10-11].Yost等[12]在Xe原子在强激光场中产生的阈值附近及阈下谐波中观测到了量子路径干涉.次年,Power等[13]在中红外激光驱动的Cs原子中观测到了负群速度色散现象.这两个实验观测表明,用微扰理论无法解释低阶谐波的产生机制.理论方面,研究者分别采用求解含时薛定谔方程(TDSE)[14-19]和经典蒙特卡罗方法(CTMC)[20]對原子阈下谐波的产生机制进行了探索.

分子阈下谐波也同样引起了实验和理论研究者的关注.早在2010年,Soifer等[21]用泵浦-探测方案观测到氧分子谐波的反常椭偏依赖,这种反常的椭偏依赖在氮分子中并没有出现.最近,陆培祥等[22]研究了多轨道对氮分子产生谐波的贡献.理论方面,研究者分别用含时密度泛函理论(TDDFT)[23-24]和数值求解TDSE[25-30]研究了双原子分子在激光场中产生的阈下谐波.在我们课题组之前的工作中,通过数值求解单电子TDSE[29],发现大核间距的氢分子离子在激光场中产生的阈下谐波具有精细次峰结构,并将次峰结构的出现归因于周期间的干涉效应.之后,魏盼等[30]在拉伸的氢分子和氮分子在激光场中产生的阈下谐波中也发现存在类似的精细次峰结构,并将这些精细次峰结构解释为两态间的强耦合拉比振荡.

文中将通过数值求解二维模型分子在激光场中的TDSE,证实在拉伸的二维模型氢分子中同样也能发生强耦合拉比振荡,在三次谐波附近发现精细次峰结构;然后,通过将分子旋转不同角度(即取向角),研究了精细次峰结构对分子取向角的依赖.文中除特别说明外,均采用原子单位.

2 结果与讨论

在我们前期的工作中[29-30],在拉伸的三维氢分子离子、氢分子和氮分子阈下谐波中都发现了精细次峰结构.对于二维模型分子,计算的能级和三维真实分子能级存在差别,但是只要选择合适的核间距和激光波长,使得两个孤立的分子态(即电荷共振态)之间能发生强耦合的拉比振荡,我们预期能在阈下谐波中看到类似的精细次峰结构,并进一步研究这些精细次峰结构对分子取向角的依赖.文中选择激光的偏振方向沿x轴,通过旋转分子来研究三次谐波附近的精细次峰结构对分子取向角的依赖.

图1给出了拉伸氢分子沿线偏振激光场时(即取向角为0°)的谐波谱.计算中,采用的半高全宽为24 fs,激光强度为1×1013W·cm-2,波长为2 000 nm,核间距R=8 a.u..从放大的插图中很清晰地观察到了三次谐波附近的精细次峰结构.这说明在拉伸的二维模型氢分子中同样能产生类似于三维拉伸分子中阈下谐波的精细次峰结构[29,30,38].

圖2分别展示了用求解二维含时薛定谔方程和两态模型所得的基态和第一激发态布局随时间的变化.从图中可以看出,拉伸氢分子的基态和第一激发态之间发生了强耦合的拉比振荡.当分子取向角为0°时,我们计算的跃迁偶极矩x21为3.82,因而拉比频率 ΩR=x21E0为0.065 a.u,对应的耦合参数δ=2ΩR/ω=5.7,表明满足强耦合条件δ1[37].在大核间距下,二维模型氢分子的波函数可近似用基态和第一激发态描述,原因在于其他激发态与这两个态的能级间隔太大.在激光场驱动下,基态中的活性电子首先通过偶极跃迁被激发到场缀饰的第一激发态,然后从激光场中获得能量,最后复合到场缀饰的基态而发射出低能光子.

图3a分别比较了采用求解TDSE和两态模型得到的拉伸氢分子的阈下谐波谱和含时诱导偶极矩.可以看出,用两种方法计算的阈下谐波谱以及含时诱导偶极矩都吻合得很好,这表明分子阈下谐波谱中这些精细的次峰结构可归因于两个强耦合分子态之间的拉比振荡.另外,相邻子峰之间的间距约为0.25ω,对应于ΩR/12.

图4给出了不同取向角下拉伸氢分子产生的阈下谐波谱.随着取向角的增大,体系的柱对称性被破坏,从而出现了偶次谐波.另外,三次谐波附近的精细次峰结构随着取向角的增大逐渐消失,我们认为这是两态之间的耦合强度逐渐变弱引起的.从图4a到4g,不同取向角下跃迁偶极矩依次为3.82,3.69,3.31,2.70,1.91,0.99,0,而相应的耦合参数依次为5.7,5.5,4.9,4.0,2.8,1.5,0.以取向角90°为例,图4h和4i分别展示了拉伸氢分子的基态和第一激发态的波函数,可以看出,在激光偏振方向(x轴)上第一激发态存在波节面,因而跃迁偶极矩为零,则相应的耦合参数也为零.

3 结束语

文中通过数值求解二维模型分子在线偏振激光场中的含时薛定谔方程,研究了拉伸氢分子产生的三次谐波附近精细次峰结构对取向角的依赖.结果表明,拉伸的二维模型氢分子中也能产生谐波的精细次峰结构,结合两态模型可以确认这些次峰结构产生的原因是两态之间发生了强耦合拉比振荡.另外,三次谐波附近的精细次峰结构敏感地依赖于分子取向角,我们认为这是两态间的跃迁偶极矩和耦合强度随取向角逐渐变小引起的.

参考文献:

[1]CORKUM P B,KRAUSZ F.Attosecond science[J].Nature Physics,2007,3(6):387.

[2]KRAUSZ F,IVANOV M.Attosecond physics[J].Reviews of Modern Physics,2009,81(1):234.

[3]CORKUN P B.Plasma perspective on strong field multi-ionisation[J].Physical Review Letters,1993,71(13):1997.

[4]STRELKOV V.Role of autoionizing state in resonant high-order harmonic generation and attosecond pulse production[J].Physical Review Letters,2010,104(12):123901.

[5]LHUILLIER A,SCHAFER K J,KULANDER K C.Theoretical aspects of intense field harmonic generation[J].Journal of Physics B:Atomic,Molecular and Optical Physics,1991,24(15):3341.

[6]BUENETT N,KAN C,CORKUM P B.Ellipticity and polarization effects in harmonic generation in ionizing neon[J].Physical Review A,1995,51(5):R3421.

[7]MIYAZAKI K,TAKADA H.High-order harmonic generation in the tunneling regime[J]. Physical Review A,1995,52(4):3021.

[8]KAKEHATA M,TAKADA H,YUMOTO H,et al.Anomalous ellipticity dependence of high-order harmonic generation[J].Physical Review A,1997,55(2):R864.

[9]XIONG W H,PENG L Y,GONG Q H.Recent progress of below-threshold harmonic generation[J].Journal of Physics B:Atomic,Molecular and Optical Physics,2017,50(3):032001.

[10]GOHLE C,UDEM T,HERRMANN M,et al.A frequency comb in the extreme ultraviolet[J].Nature,2005,436:237.

[11]CINGOZ A,YOST D C,ALLISON T K,et al.Direct frequency comb spectroscopy in the extreme ultraviolet[J].Nature,2012,482:71

[12]YOST D C,SCHIBLI T R,YE J,et al.Vacuum-ultraviolet frequency combs from below-threshold harmonics[J].Nature Physics,2009,5:815.

[13]POWER E P,MARCH A M,CATOIRE F,et al.XFROG phase measurement of threshold harmonics in a Keldysh-scaled system[J].Nature Photonics,2010,4:352.

[14]XIONG W H,GENG J W,TANG J Y,et al.Mechanisms of below-threshold harmonic generation in atoms[J].Physical Review Letters,2014,112(23):233001.

[15]LI P C,SHEU Y L,LAUGHLIN C,et al.Dynamical origin of near- and below-threshold harmonic generation of Cs in an intense mid-infrared laser field[J].Nature Communications,2015,6:7178.

[16]HE L X,LAN P F,ZHAI C Y,et al.Quantum path interference in the wavelength-dependent below-threshold harmonic generation[J].Physical Review A,2015,91(2):023428.

[17]CAMP S,SCHAFER K J,GAARDE M B.Interplay between resonant enhancement and quantum path dynamics in harmonic generation in helium[J].Physical Review A,2015,92(1):013404.

[18]XU R H,CHEN Y J,LIU J,et al.Tracking origins of below-threshold harmonics with a trajectory-resolved fully quantum approach[J].Physical Review A,2016,94(6):063417.

[29]郭春祥,焦志宏,周效信,等.激光強度依赖的阈下谐波产生机制[J].物理学报,2020,69(7):074203.

[20]XIONG W H,GENG J W,GONG Q H,et al.Half-cycle cutoff in near-threshold harmonic generation[J].New Journal of Physics,2015,17(12):123020.

[21]SOIFER H,BOTHERON P,SHAFIR D,et al.Near-threshold high-order harmonic spectroscopy with aligned molecules[J].Physical Review Letters,2010,105(14):143904.

[22]LONG J,CHEN Y H,ZHU X S,et al.Below- and near-threshold harmonic generation from multiple orbitals[J].Journal of Physics B:Atomic,Molecular and Optical Physics,2023,56(5):055601.

[23]YANG H,LIU P,LI R X,et al.Ellipticity dependence of the near-threshold harmonics of H2 in an elliptical strong laser field[J].Optics Express,2013,21(23):28684.

[24]LI P C,SHEU Y L,CHU S I.Role of nuclear symmetry in below-threshold harmonic generation of molecules[J].Physical Review A,2020,101(1):011401(R).

[25]DONG F L,TIAN Y Q,YU S J,et al.Polarization properties of below-threshold harmonics from aligned molecules H+2 in linearly polarized laser fields[J].Optics Express,2015,23(14):18106.

[26]NASIRI A K,TELNOV D A,CHU S I.Above- and below-threshold high-order-harmonic generation of H+2 in intense elliptically polarized laser fields[J].Journal of Physics B:Atomic,Molecular and Optical Physics,2014,90(3):033425.

[27]RIVIRE P,MORALES F,RICHTER M, et  al.Time reconstruction of harmonic emission in molecules near the ionization threshold[J].Journal of Physics B:Atomic,Molecular and Optical Physics,201 4,47(24):241001.

[28]LI P C,WANG Z B,CHU S I.Multichannel-resolved dynamics in resonance-enhanced below-threshold harmonic generation of H+2 molecular ions[J].Physical Review A,2021,103(4):043113.

[29]DU L L,WANG G L,LI P C,et al.Interference effect in low-order harmonic generation of H+2 in intense laser fields[J].Physical Review A,2018,97(2):023404.

[30]WEI P,GUAN Z,DU L L, et al.Rabi-flopping signatures in below-threshold harmonic generation from the stretched H2 and N2 molecules in intense laser fields[J].Optics Express,2021,29(26):43225.

[31]PETERS M,NGUYEN-DANG T T,CHARRON E, et al.Laser-induced electron diffraction:a tool for molecular orbital imaging[J].Physical Review A,2012,85(5):053417.

[32]GONG X,WEI P,GAUAN Z,et al.Generation of elliptically polarized isolated attosecond pulses from N2 and O2 molecules in orthogonal few-cycle two-color fields[J].Results in Physics,2023,45:106215.

[33]WANG R R,MA M Y,WEN L C,et al.Comparative study of electron vortices in photoionization of molecules and atoms by counter-rotating circularly polarized laser pulses[J].Journal of the Optical Society of America B,2023,40(7):1755.

[34]FEIT M D,FLECK J A,STEIGER A.Solution of the Schrdinger equation by a spectral method[J].Journal of Computational Physics,1982,47(3):433.

[35]JIANG T F,CHU S I.High-order harmonic generation in atomic hydrogen at 248 nm:dipole-moment versus acceleration spectrum[J].Physical Review A,1992,46(11):7324.

[36]赵松峰,周效信,金成.强激光场中模型氢原子和真实氢原子的高次谐波与电离特性研究[J].物理学报,2006,55(8):4085.

[37]ZUO T,CHELKOWSKI S,BANDRAUK A D.Harmonic generation by the H+2 molecular ion in intense laser fields[J].Physical Review A,1993,48(5):3844.

[38]DU L L,WANG G L,LI P C,et al.Low-order harmonic generation of hydrogen molecular ion in laser field studied by the two-state model[J].Chinese Physics B,2018,27(11):113201.

[39]GAUTHEY F I,GARRAWAY B M,KNIGHT P L.High harmonic generation and periodic level crossings[J].Physical Review A,1997,56(4):3096.

[40]FIGUEIRA D M,FARIA C,ROTTER I.High-order harmonic generation in a driven two-level atom:Periodic level crossings and three-step processes[J].Physical Review A,2002,66(1):013402.

[41]HUANG P,XIE X T,L X Y,et al.Carrier-envelope-phase-dependent effects of high-order harmonic generation in a strongly driven two-level atom[J].Physical Review A,2009,79(4):043806.

(責任编辑 孙对兄)

收稿日期:2023-07-05;修改稿收到日期:2023-11-25

基金项目:国家自然科学基金资助项目(12164044)

作者简介:张红牛(1997—),男,甘肃白银人,硕士研究生.主要研究方向为强激光场中的原子分子物理.E-mail:17393154807@163.com

*通信联系人,教授,博士,博士研究生导师.主要研究方向为强激光场中的原子分子物理.E-mail:zhaosf@nwnu.edu.cn