富氢液通过增加自噬治疗大鼠神经病理性疼痛
2024-04-01何颖张广华田立东于泳浩
何颖 张广华 田立东 于泳浩
摘要:目的 評价自噬在富氢液治疗神经病理性疼痛中的作用。方法 将鞘内置管成功的40只成年雄性SD大鼠随机分为5组:假手术组(S组)、神经病理性疼痛组(C组)、富氢液组(H组)、自噬抑制剂组(M组)和富氢液+自噬抑制剂组(HM组),各8只。采用坐骨神经慢性压迫法(CCI)制备大鼠神经病理性疼痛模型。M组和HM组于术后鞘内注射自噬抑制剂3-甲基腺嘌呤(3-MA)30 μg/kg,H组和HM组于术后腹腔注射富氢液(0.6 mmol/L)10 mL/kg,其他组鞘内/腹腔给予等量生理盐水,2次/d,连续7 d。于造模前1 d和造模后1、3、5、7和14 d(T0—T5)测定大鼠机械刺激缩足阈值(MWT)和热刺激缩足潜伏期(TWL)。取脊髓L4—L6节段,采用Western blot法检测自噬相关蛋白微管相关蛋白轻链3(LC3)Ⅱ、Beclin-1和p62蛋白的表达;并测定脊髓组织中超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量。结果 与S组比较,C组T2—T5时MWT和TWL均降低,T5时脊髓LC3Ⅱ、Beclin-1和p62蛋白表达水平升高,SOD活性降低,MDA含量增加(P<0.05)。与C组比较,H组T2—T5时MWT和TWL均升高,T5时脊髓LC3Ⅱ和Beclin-1蛋白表达水平升高,p62蛋白表达水平减少,SOD活性增强,MDA含量减少(P<0.05);M组T2—T5时MWT和TWL均降低,T5时脊髓LC3Ⅱ和Beclin-1蛋白表达水平减少,p62蛋白表达水平升高,SOD活性降低,MDA含量增加(P<0.05)。与M组比较,HM组T2—T5时MWT和TWL均升高,T5时脊髓LC3Ⅱ和Beclin-1蛋白表达水平升高,p62蛋白表达水平减少,SOD活性增高,MDA含量减少(P<0.05)。结论 富氢液可减轻大鼠神经病理性痛,抑制脊髓氧化应激,其机制可能与增加自噬有关。
关键词:氢;神经痛;自噬;脊髓;氧化性应激
中图分类号:R614文献标志码:ADOI:10.11958/20230698
Hydrogen-rich saline treated neuropathic pain in rats by increasing autophagy
HE Ying1, ZHANG Guanghua1, TIAN Lidong1, YU Yonghao2△
1 National Health Commission Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Department of Anesthesiology, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; 2 Department of Anesthesiology, Tianjin Medical University General Hospital
△Corresponding Author E-mail: yyu@tmu.edu.cn
Abstract: Objective To evaluate the role of autophagy in the treatment of neuropathic pain (NP) with hydrogen-rich saline. Methods Forty adult male Sprague-Dawley rats with successful intubation were randomly divided into 5 groups (n=8) using a random number table: the sham operation group (group S), the neuropathic pain group (group C), the hydrogen-rich saline group (group H), the autophagy inhibitor group (group M) and the hydrogen-rich saline + autophagy inhibitor group (group HM). There were 8 rats in each group. The NP model was established by chronic constriction of the sciatic nerve (CCI) in rats. The autophagy inhibitor 3-methyladenine (3-MA) was intraperitoneally injected with 30μg/kg in the group M and the group HM. The hydrogen-rich saline (0.6 mmol/L) was intraperitoneally injected with 10 mL/kg in the group H and the group HM. The other groups were intraperitoneally injected with the same amount of normal saline twice a day for 7 consecutive days. Paw withdrawal threshold to mechanical stimulation (MWT) and paw withdrawal latency to thermal stimulation (TWL) were measured at 1 day before and 1, 3, 5, 7 and 14 days after modeling (T0-T5). After the last measurement of pain threshold, the L4-L6 segment of spinal cord was removed for determination of the expression of autophagy-related proteins microtubule-associated protein light chain 3 (LC3) Ⅱ, Beclin-1 and p62 proteins by Western blot assay. The expression levels of superoxide dismutase (SOD) and malondialdehyde (MDA) in spinal cord tissue were detected. Results Compared with the group S, MWT and TWL were decreased in the group C at T2-5, the expression levels of LC3 Ⅱ, Beclin-1 and p62 were increased, SOD activity was decreased, and MDA content was increased at T5 (P<0.05). Compared with the group C, MWT and TWL were increased in the group H at T2-5, LC3 Ⅱ and Beclin-1 protein expression levels were increased, p62 protein expression levels were decreased, SOD activity was increased, and MDA content was decreased at T5 (P<0.05). MWT and TWL were decreased in the group M at T2-5, LC3 Ⅱ and Beclin-1 protein expression levels were decreased, p62 protein expression levels were increased, SOD activity was decreased, and MDA content was increased at T5 (P<0.05). Compared with the group M, MWT and TWL were increased in the group HM at T2-5, LC3 Ⅱ and Beclin-1 protein expression levels were increased, p62 protein expression levels were decreased, SOD activity was increased, and MDA content was decreased at T5 (P<0.05). Conclusion Hydrogen-rich saline can alleviate neuropathic pain and inhibit oxidative stress in spinal cord in rats, and the mechanism may be related to the increase of autophagy.
Key words: hydrogen; neuralgia; autophagy; spinal cord; oxidative stress
神经病理性疼痛是一种由感觉神经损伤或疾病直接引起的疼痛,严重影响患者的生活质量,是一种难以治愈的慢性疼痛,在普通人群中的发病率约为7%[1],因此探究神经病理性疼痛的机制和治疗方法具有重要临床意义。有研究表明,富氢液因其抗氧化和抗炎等作用,可以减轻大鼠神经病理性疼痛[2-3]。另有研究发现,自噬在神经病理性疼痛中发挥着重要作用,鞘内注射自噬诱导剂雷帕毒素能提高脊髓背角小胶质细胞自噬水平,抑制白细胞介素-1β(IL-1β)释放,提高大鼠痛阈,从而减轻神经病理性疼痛[4]。但富氢液可否通过增加自噬来改善神经病理性疼痛尚不明确。本研究旨在探讨自噬在富氢液治疗神经病理性疼痛中的作用,为神经病理性疼痛的治疗提供新思路。
1 材料与方法
1.1 材料
1.1.1 实验动物 清洁级健康雄性SD大鼠40只,8~10周龄,体质量180~220 g,购自军事医学科学院实验动物中心,动物生产许可证号:SCXK(京)-0008。所有大鼠均单笼饲养于天津市内分泌研究所动物中心[动物使用许可证号:SYXK(津)2020-0001],处于昼夜交替的通风环境,自由饮水、饮食,实验开始前适应性饲养7 d。
1.1.2 主要试剂与仪器 3-甲基腺嘌呤(3-MA,美国Sigma公司);微管相关蛋白轻链3(LC3)Ⅱ兔单克隆抗体、Beclin-1兔单克隆抗体、p62鼠单克隆抗体、羊抗兔二抗及羊抗鼠二抗(英国Abcam公司);BCA试剂盒、RIPA裂解液(北京中杉金桥生物技术有限公司);超氧化物歧化酶(SOD)、微量丙二醛(MDA)测试试剂盒(南京建成生物工程研究所);BSEVF3 von Frey纤维丝(美国Harvard Apparatus公司);YLS-6B智能热板仪(安徽省淮北正华生物仪器设备有限公司)。
1.2 方法
1.2.1 实验分组及干预 腹腔注射10%水合氯醛(300 mg/kg)麻醉大鼠,保留自主呼吸,必要时追加麻醉药物。于L3—L4棘突间隙逐层分离组织结构,用镊子夹住PE-10聚乙烯导管尖端轻柔地将导管于间隙向上置入1.5~2.0 cm。如果大鼠出现甩尾反射,或导管内可见清亮的脑脊液流出,则标志置管成功。采用随机数字表法将40只鞘内置管成功大鼠分为5组:假手术组(S组)、神经病理性疼痛组(C组)、富氢液组(H组)、自噬抑制剂组(M组)和富氢液+自噬抑制剂组(HM组),每组8只。M组和HM组于术后鞘内注射3-MA 30 μg/kg;H组和HM组于术后腹腔注射富氢液(0.6 mmol/L)10 mL/kg;其余组鞘内/腹腔给予等容量生理盐水,2次/d,连续7 d。
1.2.2 神经病理性疼痛模型的制备 除S组外,各组参照文献[5]采用坐骨神经慢性压迫法(CCI)制备神经病理性疼痛模型。腹腔注射10%水合氯醛(300 mg/kg)麻醉大鼠后,用小剥离子经左后肢股二头肌间隙钝性分离肌肉,暴露坐骨神经,用4.0含铬羊肠线于坐骨神经主干结扎4道,每道间隔1 mm,以打结时引起小腿肌肉轻微抽动且不影响血供为准。局部用生理盐水冲洗,缝合各层组织,用碘伏消毒皮肤预防感染。术后大鼠出现舔足、缩爪、术侧足不敢着地等疼痛行为学表现为造模成功。S组除不结扎坐骨神经外,其余操作均与C组相同。
1.2.3 富氢液的制备 参照文献[6]制备富氢液。将生理盐水暴露在0.4 MPa压力下的高纯氢气环境中6 h,使生理盐水达饱和状态,氢气浓度达0.6 mmol/L,4 ℃冰箱储存备用。
1.2.4 机械痛阈和热痛阈的测定 于造模前1 d和造模后1、3、5、7、14 d(T0—T5)测定大鼠的机械刺激缩足阈值(MWT)和热刺激缩足潜伏期(TWL)。采用BSEVF3 von Frey纤维丝对准大鼠左后足第2、3趾骨间施加压力,记录出现嘶叫、缩足反应或舔舐左足时的压力,间隔10 min,测定3次,取平均值即为MWT。将大鼠置于52 ℃的YLS-6B智能热板仪上,记录从左后足接触热板至出现回缩、嘶叫或舐足时的时间,间隔10 min,测定3次,取平均值即为TWL。
1.2.5 Western blot法检测脊髓神经细胞自噬相关蛋白的表达 T5时测定痛阈后经生理盐水心脏灌注,取脊髓L4—L6节段,加入组织蛋白裂解液提取脊髓组织总蛋白,测定样品蛋白质含量。经SDS凝胶电泳将蛋白转至PVDF膜;室温条件下使用5%脱脂奶粉将膜封闭2 h,洗膜后加入一抗LC3Ⅱ、Beclin-1、p62和内参β-actin(稀释度均为1∶1 000),4 ℃孵育过夜;洗膜后在室温条件下加入羊抗兔二抗及羊抗鼠二抗(稀释度均为1∶5 000)孵育1 h;暗室中將显色底物加至PVDF膜上反应2 min,曝光,扫描。采用Quantity One图像分析软件测定条带灰度值,以目的条带灰度值与内参β-actin灰度值的比值反映LC3 Ⅱ、Beclin-1和p62的表达量。
1.2.6 脊髓组织氧化应激水平检测 脊髓L4—L6节段用4 ℃生理盐水制备10%脊髓组织匀浆,12 000 r/min离心10 min,取上清液。参照试剂盒说明书检测上清液中SOD活性和MDA含量。
1.3 统计学方法 采用SPSS 21.0进行数据分析。计量资料以均数±标准差([x] ±s)表示,多组间比较采用单因素方差分析,组间多重比较行LSD-t检验;不同时点多组间比较采用重复测量设计的方差分析。P<0.05为差异有统计学意义。
2 结果
2.1 各组造模前后行为学结果 组内比较:除S组外,其余组造模前后不同时点MWT(F时间=218.116)和TWL(F时间=233.644)差异有统计学意义(P<0.05);各组MWT和TWL总体均呈下降变化,C组、M组和HM组T5时达到最低,H组MWT和各组TWL均在T4时达到最低。组间比较:各组间MWT(F组间=281.176)和TWL(F组间=76.298)差异均有统计学意义(P<0.05)。T0和T1时,各组MWT和TWL差异均无统计学意义(P>0.05);T2—T5时,与S组比较,C组MWT和TWL均降低(P<0.05);与C组比较,H组MWT和TWL均升高,M组MWT和TWL均降低(P<0.05);与M组比较,HM组MWT和TWL均升高(P<0.05),见表1、2。
2.2 各组脊髓自噬相关蛋白的表达 与S组比较,C组脊髓LC3Ⅱ、Beclin-1和p62蛋白表达水平升高(P<0.05)。与C组比较,H组脊髓LC3Ⅱ和Beclin-1蛋白表达水平升高,p62蛋白表达水平降低;M组脊髓LC3Ⅱ和Beclin-1蛋白表达水平降低,p62蛋白表达水平升高(P<0.05)。与M组比较,HM组脊髓LC3Ⅱ和Beclin-1蛋白表达水平升高,p62蛋白表达水平降低(P<0.05),见图1、表3。
2.3 各组脊髓氧化应激水平相关指标的表达 与S组比较,C组脊髓SOD活性降低,MDA含量增加(P<0.05)。與C组比较,H组脊髓SOD活性增强,MDA含量减少;M组脊髓SOD活性降低,MDA含量增加(P<0.05)。与M组比较,HM组SOD活性增强,MDA含量减少(P<0.05),见表4。
3 讨论
CCI是研究神经病理性疼痛的一种常用建模方法,结扎坐骨神经可引起神经水肿及炎症反应,模拟临床上的自发性疼痛、痛觉过敏等症状。本研究结果显示,与S组比较,C组T2—T5时大鼠MWT降低,TWL缩短,行为学表现为痛阈水平降低,提示神经病理性疼痛模型造模成功。有研究发现,富氢液因其抗氧化和抗炎等作用对神经病理性疼痛大鼠具有治疗作用[2-3]。本研究结果显示,与C组比较,H组T2—T5时大鼠MWT升高,TWL延长,行为学表现为痛阈水平提高,表明富氢液治疗后大鼠的神经病理性疼痛减轻。
近年一些研究发现线粒体功能障碍在神经病理性疼痛的发生发展中起重要作用。Springer[7]等发现,外周神经损伤可干扰线粒体动力学,导致线粒体功能障碍和病理性活性氧产生增加,氧化应激水平增加,引起神经病理性疼痛。神经细胞通过自噬移除损伤的线粒体,发挥保护神经细胞的作用[8]。还有研究报道富氢液可通过介导自噬对帕金森病模型大鼠起到神经保护作用[9]。因此,针对线粒体功能障碍的清除途径——线粒体自噬的研究可能是治疗神经病理性疼痛的重要靶点。本研究采用自噬标志蛋白LC3、Beclin-1和p62反映脊髓细胞的自噬水平。LC3分为LC3Ⅰ和LC3Ⅱ,LC3Ⅱ在自噬体膜表面表达,其与自噬泡数量呈正相关[10],LC3Ⅱ表达上调代表自噬增多,也可能代表自噬体降解受阻。因此,本研究结合其他自噬标志蛋白p62和Beclin-1进行分析。p62作为自噬降解的标志物可与LC3结合,并通过泛素化底物的作用进入自噬小体并降解自噬泡,p62表达水平与细胞自噬的活性呈负相关[11],Beclin-1与Ⅲ型PI3K结合形成复合物,以调节自噬前体中其他蛋白的定位,从而调节自噬活性[12]。本研究结果显示,与S组比较,C组造模后14 d大鼠脊髓LC3Ⅱ、Beclin-1和p62表达上调,表明CCI本身作为一种损伤刺激会诱发自噬现象,但p62表达上调提示自噬降解过程被抑制,自噬流受阻;与C组比较,H组大鼠脊髓LC3Ⅱ、Beclin-1表达上调,而p62表达下调,自噬水平增加,行为学表现为MWT升高,TWL延长,大鼠痛阈水平提高,提示富氢液可能通过增加自噬水平减轻神经病理性疼痛;M组大鼠自噬蛋白LC3Ⅱ和Beclin-1表达下调,p62表达上调,自噬水平下降,行为学表现为MWT降低,TWL缩短,大鼠痛阈水平降低,提示抑制自噬水平后大鼠的神经病理性疼痛加重;与M组比较,HM组大鼠脊髓LC3Ⅱ、Beclin-1表达上调,而且p62表达下调,自噬水平增加,行为学表现为MWT升高,TWL延长,大鼠痛阈水平提高,进一步证明富氢液可以通过增加自噬水平减轻神经病理性疼痛。
有研究发现,在氧化应激过程中,星形胶质细胞自噬损伤会上调红细胞衍生核因子2样蛋白2(NFE2L2)[13]。这是一种在增加谷胱甘肽水平和抗氧化应激中发挥重要作用的关键蛋白[14-15],自噬损伤亦增加了初级星形胶质细胞的活性氧水平,这可能与线粒体功能障碍有关,而自噬激活可下调NFE2L2及其靶基因的活性,并且自噬与NFE2L2通路的协同激活较单独激活自噬具有更强的镇痛作用。本研究采用SOD活力和MDA含量来反映机体氧化应激水平。SOD是一种清除自由基的内源性抗氧化酶,其活性可反映机体细胞清除活性氧的能力[16]。作为脂质过氧化反应的一种产物,MDA含量可反映机体内脂质过氧化程度[17]。本研究结果显示,与C组比较,H组造模后14 d大鼠SOD活性增强,MDA含量减少,提示富氢液治疗后大鼠氧化应激水平降低;M组大鼠SOD活性降低,MDA含量增加,提示自噬水平受抑制后大鼠氧化应激水平增加;与M组比较,HM组大鼠SOD活性增强,MDA含量减少,提示富氢液可通过减轻脊髓氧化应激来部分逆转3-MA对神经病理性疼痛的加重作用。
综上所述,富氢液可减轻大鼠神经病理性疼痛,抑制脊髓氧化应激,其机制与增加自噬有关。
参考文献
[1] 张昆龙,薛白洁,肖玮,等. 重复经颅磁刺激对神经病理性疼痛患者疼痛和情绪的影响[J]. 中国现代神经疾病杂志,2022,22(11):940-947. ZHANG K L,XUE B J,XIAO W,et al. Effects of repetitive transcranial magnetic stimulation on pain and emotion of patients with neuropathic pain[J]. Chin J Contemp Neurol Neurosurg,2022,22(11):940-947. doi:10.3969/j.issn.1672-6731.2022.11.005.
[2] CHEN H,ZHOU C,XIE K,et al. Hydrogen-rich saline alleviated the hyperpathia and microglia activation via autophagy mediated inflammasome inactivation in neuropathic pain rats [J]. Neuroscience,2019,421:17-30. doi:10.1016/j. neuroscience.2019.10.046.
[3] CHEN Q,CHEN P,ZHOU S,et al. Hydrogen-rich saline attenuated neuropathic pain by reducing oxidative stress[J]. Can J Neurol Sci,2013,40(6):857-863. doi:10.1155/2019/8685954.
[4] FENG T,YIN Q,WENG Z L,et al. Rapamycin ameliorates neuropathic pain by activating autophagy and inhibiting interleukin-1β in the rat spinal cord[J]. J Huazhong Univ Sci Technolog Med Sci,2014,34(6):830-837. doi:10.1007/s11596-014-1361-6.
[5] BENNETT G J,XIE Y K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man[J]. Pain,1988,33(1):87-107. doi:10.1016/0304-3959(88)90209-6.
[6] ZHOU L,WANG X,XUE W,et al. Beneficial effects of hydrogen-rich saline against spinal cord ischemia-reperfusion injury in rabbits [J]. Brain Res,2013,1517:150-160. doi:10.1016/j.brainres.2013.04.007.
[7] SPRINGER M Z,MACLEOD K F. Mitophagy:mechanisms and role in human disease [J]. J Pathol,2016,240(3):253-255. doi:10.1002/path.4774.
[8] GHOSH A,TYSON T,GEORGE S,et al. Mitochondrial pyruvate carrier regulates autophagy,inflammation,and neurodegeneration in experimental models of Parkinson's disease [J]. Sci Transl Med,2016,8(368):368ra174. doi:10.1126/scitranslmed.aag2210.
[9] ZHANG Z,SUN X,WANG K,et al. Hydrogen-saturated saline mediated neuroprotection through autophagy via PI3K/AKT/mTOR pathway in early and medium stages of rotenone-induced Parkinson's disease rats [J]. Brain Res Bull,2021,172:1-13. doi:10.1016/j.brainresbull.2021.04.003.
[10] BARTH S,GLICK D,MACLEOD K F. Autophagy:assays and artifacts[J]. J Pathol,2010,221(2):117-124. doi:10.1002/path.2694.
[11] LEE H S,DANIELS B H,SALAS E,et al. Clinical utility of LC3 and p62 immunohistochemistry in diagnosis of drug-induced autophagic vacuolar myopathies:a case-control study [J]. PLoS One,2012,7(4):e36221. doi:10.1371/journal.pone.0036221.
[12] KUBISCH J,T?REI D,F?LDV?RI-NAGY L,et al. Complex regulation of autophagy in cancer-integrated approaches to discover the networks that hold a double-edged sword[J]. Semin Cancer Biol,2013,23(4):252-261. doi:10.1016/j.semcancer.2013.06.009.
[13] LI J,TIAN M,HUA T,et al. Combination of autophagy and NFE2L2/NRF2 activation as a treatment approach for neuropathic pain[J]. Autophagy,2021,17(12):4062-4082. doi:10.1080/15548627.2021.1900498.
[14] BUENDIA I,MICHALSKA P,NAVARRO E,et al. Nrf2-ARE pathway:an emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases[J]. Pharmacol Ther,2016,157:84-104. doi:10.1016/j.pharmthera.2015.11.003.
[15] BAXTER P S,BELL K F S,HASEL P,et al. Synaptic NMDA receptor activity is coupled to the transcriptional control of the glutathione system[J]. Nat Commun,2015,6:6761. doi:10.1038/ncomms7761.
[16] MA W,MAO J,YANG X,et al. A single-atom Fe-N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection[J]. Chem Commun (Camb),2018,55(2):159-162. doi:10.1039/c8cc08116f.
[17] CERD?-BERNAD D,VALERO-CASES E,PASTOR J J,et al. Saffron bioactives crocin,crocetin and safranal:effect on oxidative stress and mechanisms of action[J]. Crit Rev Food Sci Nutr,2022,62(12):3232-3249. doi:10.1080/10408398.2020.1864279.
(2023-05-16收稿 2023-08-18修回)
(本文編辑 陈丽洁)