APP下载

以糯米灰浆为代表的中国传统有机-无机复合灰浆研究进展和新发现

2024-03-15张秉坚张梓芊胡瑜兰

文物保护与考古科学 2024年1期
关键词:灰浆糯米有机

张秉坚,张梓芊,鲁 晖,胡瑜兰

(1.浙江大学艺术与考古学院,浙江杭州 310028;2.浙江大学化学系,浙江杭州 310027)

0 引 言

在我国古代数千年的建筑实践中,人们为了使建筑物更加舒适、安全、牢固和美观,曾尝试使用了多种多样的、通常被称为“灰浆”的建筑胶凝材料[1-2]。其中,石灰灰浆是中国古代应用最为广泛的无机胶凝材料。考古发掘表明,“白灰面”[3],即石灰,在新石器时代晚期已经被大量使用。在长期的建筑实践中,古代工匠还常常会在石灰灰浆中加入一些天然有机材料(如糯米、桐油、蛋清、糖类、血料、植物汁液等),制成有机-无机复合灰浆。这些起初看似随意的添加却因其带来的出色性能而被保留和不断改进。随着中华文明的发展,中国古代有机-无机复合灰浆的传统技艺,尤其是糯米灰浆、桐油灰浆等工艺被一直传承下来,不仅满足了当时人们修造建筑的需求,也使许多古代建筑物和装饰艺术能够留存至今,成为中国古代传统建筑体系的鲜明特色和重要组成部分。

现代科学界普遍认同人类探索材料“复合”的实践已有数千年的历史,糯米灰浆、桐油灰浆等经常被作为重要证据[4]。许多资料表明,以灰浆为代表的胶凝材料的进展对当时社会产生过重要影响,例如:以石灰、桐油和黄麻制作的艌料是“水密舱”技术的核心工艺之一,从唐代兴起到明代繁荣,曾为推动中国与世界的远洋航海发挥过重要作用[5];应用以石灰、黏土、糯米、红糖等混合铸浆的“灰隔”技术建造的灰隔墓室,因其不透气、结构坚固、良好的韧性和抗渗透性,可保存尸体不腐,成为流行于宋、元、明时期的重要墓葬形式[6];以石灰、桐油和猪血等为主要原料的油作技术,包括地仗、油饰、彩画、髹漆,已成为从明代一直传承至今的主流建筑装饰工艺技术[7]。这些种类繁多的建筑胶凝材料配方和工艺是古代劳动人民智慧的结晶,在中国建筑史上具有极其重要的地位,反映了当时建筑领域的科技水平。没有可靠的建筑胶凝材料,房屋、城墙、桥梁、石塔等建筑物在各种自然力的作用下将会很快变成松散的土、石、砖的堆积物,从而失去使用和文化价值。

与欧洲国家不同,中国火山不多,没有普遍利用火山灰制作水硬性灰浆的条件。为了改进灰浆的性能,中国古人更多地尝试了取自农牧业产品的有机添加物(如糯米、桐油、蛋清、血料、糖、树汁等),制成有机-无机复合灰浆。已经发现,这类有机-无机复合材料的韧性和自修复能力比欧洲的水硬性灰浆要好[8-9],它们更适应中国木构建筑的特点。

1 传统灰浆中有机残留物的分析检测方法

由于遗存至今的古代建筑灰浆中有机物含量少、杂质多,使用现代谱学方法检测往往较为复杂和困难。考虑到古代天然有机胶结物的种类有限,因此可以应用化学或生物分析的方法,快速简便地完成有机添加物的检测,例如:使用碘试剂法,能够很轻易地检测出淀粉;使用免疫分析的方法,能够高度选择性和十分灵敏地鉴别壁画颜料层和灰浆地仗层中的胶结物。

1.1 化学检测技术

近十多年来,浙江大学等单位已开发出一系列针对古代灰浆中残留有机成分的快速鉴定方法。这些方法以经典化学分析技术为基础,包括:碘-淀粉法检测糯米;班氏试剂法检测蔗糖;考马斯亮蓝法检测蛋白质;还原酚酞法和血色原结晶法检测血痕;乙酰丙酮显色法及泡沫试验法检测干性油等。对于普通灰浆,仅用0.6 g样品就能分别识别是否存在淀粉(糯米)、糖(蔗糖)、蛋白质(蛋清)、血料(动物血)、干性油(桐油)等[9-10]。

已成功检测的案例包括:故宫灰浆检测(7处49个样品)[11];“华光礁Ⅰ号”古船艌料分析[12];浙江8处古城墙砌筑灰浆分析[13];浙江5处塔的18个灰浆样品分析[14];全国7处古城墙灰浆的检测[15]等。

用化学分析法检测三合土时,土的黄色会干扰碘试剂等检测的显色结果。为克服该困难,一种超滤-分光光度技术被创建[16],由此使浙江天妃宫炮台、广东虎门炮台等处的三合土样品得到检测[17]。

传统灰浆分析的其他新技术还有:酶水解法检测含土灰浆中淀粉的分析技术[18];切片显微方法鉴别纤维种类的技术[19];多仪器多方法综合集成检测各种复杂传统灰浆的技术[20]等。

1.2 免疫分析技术

另一类检测古代传统灰浆中有机残留物的方法源自生物免疫分析技术。壁画、彩绘、彩画等灰浆中的胶结物大多是一些蛋白质类胶结物,如动物胶(皮胶、骨胶等)、蛋清、酪素和植物胶(桃胶等)。免疫分析的原理是利用抗体与抗原的特定结合关系,其中:酶联免疫吸附法(ELISA)利用抗体与抗原作用,加上酶标抗体、发色剂,产生颜色变化,从而确定受检物质含量,该方法十分灵敏;免疫荧光法(IFM)是把样品包埋起来,在截面上,滴加一抗、二抗、荧光素标记物等,从而可以在荧光显微镜下清晰地识别待测成分及位置。IFM与ELISA方法配合使用,既灵敏又能确定层位关系[21]。免疫法的优势是:1)方法非常灵敏;2)所需样品量少;3)可识别目标成分的层位关系;4)检测结果受生物降解影响较小;5)高分子保护材料对检测结果干扰小。试验发现,B-72、硅丙、纯丙、聚醋酸乙烯酯等加固材料对蛋清、动物胶、血料等的检测结果几乎没有影响[21]。使用免疫分析技术完成的实例有:秦始皇兵马俑彩绘胶结物蛋清的(IFM)检测[22];麦积山泥塑和壁画胶结物检测[23];须弥山石窟泥塑和壁画胶结物检测[24-25];四川广汉龙居寺壁画胶结物检测[26];四川马尔康甲扎尔甲山洞窟壁画胶结物检测[27];故宫养心殿彩画颜料胶结物检测[28];四川安岳石窟彩绘胶结物检测[29]等。

为拓展免疫检测范围,已开发出多种特色抗体,例如桃胶抗体[30]、紫胶抗体[31]、糯米抗体[32]、胶原蛋白抗体和大漆抗体[33-34]等,为发展免疫检测技术提供了材料支撑。

1.3 传统灰浆中有机残留物分析方法的最新发展

为了获得更加准确的检测结果,在前述化学分析技术的基础上,一种新的半定量化学分析法已被应用于传统灰浆中残留有机物的检测[35]。该方法不仅减少了文物样品和试剂的消耗量,而且可实现大批量快速检测,得到半定量的检测数据。

近3年来,为拓展文物分析技术,开始将“电化学”与“免疫检测”结合,为文物中微量有机胶结物的分析检测提供了新的方法。目前ELISA法只能一次检测一种胶结物,而文物中常常存在两种及以上不同种类的胶结物。为了一次性识别几种胶结物,结合免疫磁珠高效富集蛋白技术[36-37]并借鉴电化学分析方法——可通过两种途径:一种是制备丝网印刷电极和“蛇形”微通道,构建多通道便携的微流控检测装置,引导溶液流经不同电极表面,从而快速判断和定量检测出3种胶结物;另一种是制备多种电化学信号探针分别标记到电极或抗体上,通过抗体特异性识别抗原,实现了同时追踪3种胶结物的目的[38-39]。

2 具有中国特色的传统有机-无机复合灰浆

2.1 古建筑遗址取样检测结果

对现存古建筑及遗址进行调研和取样分析,是了解中国古代传统复合灰浆应用情况和材料构成发展的重要方式。到目前为止,浙江大学团队已经进行了大量现场调查取样和检测分析[40-42],调研地点也包括了中国周边国家[43]。

截止到2023年11月,已从全国22个省级行政区的252处遗址取到样品1 149个。通过化学法共检出424个样品含有传统有机添加物(检出率为36.9%):307个样品检测出1种添加物,107个样品检测出2种添加物,10个样品检测出3种添加物。这其中,176个样品检测出糯米淀粉,253个样品检测出蛋白质,99个样品检测出油脂,18个样品检测出蔗糖,5个样品检测出血料。通过化学法检出各种有机添加物的灰浆样品的年代分布和地域分布分别如图1和表1所示。

图1 通过化学法检出各种有机添加物的灰浆样品年代分布图

采用免疫分析法检测了217个壁画、彩绘和彩画的灰浆样品(含颜料层、白灰层和地仗层),在其中154个样品中检测出蛋白质类胶结物(检出率为70.9%):75个样品检测出1种蛋白质,54个样品检测出2种蛋白质,17个样品检测出3种蛋白质,8个样品检测出4种蛋白质。这其中,94个样品检测出明胶,89个样品检测出桃胶,45个样品检测出蛋清,43个样品检测出酪素。通过免疫法检出各种蛋白质类胶结物的灰浆样品年代分布见图2。

图2 通过免疫法检出蛋白质类胶结物的灰浆样品年代分布图

2.2 中国广泛使用有机-无机复合灰浆的原因

研究表明,中国传统复合灰浆的发明与使用与中国的地理位置和自然环境相关。而且,近万年来中国延续不断的农业文明,为发展有机-无机复合灰浆提供了物质基础。同时,中国特产糯米、糯黍、桐油等的添加可以明显改善石灰浆的黏结性能和机械强度,这是有机-无机复合灰浆能够得到广泛应用的主要原因。另外,传统复合灰浆都是根据应用需要和经验以特定配方和工艺施工的,从而调控了灰浆的黏结特性,特别适合中国的木构建筑体系。此外,根据应用场合调整添加材料的规格和档次也与中国古代社会的等级性、厚葬文化等社会民风相契合。最后,传统复合灰浆也特别符合中国传统自然观中的因地制宜、物尽其用的实用理念[44-45]。

3 以糯米灰浆为代表的中国传统有机-无机复合灰浆的机理研究

通过实验室模拟研究发现,许多有机物的添加能够明显提高石灰灰浆的性能,使之具有更稳定的物理性质和更好的力学强度,例如在石灰中加入质量分数3%的糯米浆以后,它的抗压强度提高了30倍,表面硬度提高了2.5倍,耐水浸泡性在68 d以上[46]。探究其原因,至少有以下三方面[47-48]。

1) 糯米浆对石灰的碳酸化反应类似于生物矿化模板剂的作用,约束和调控着碳酸钙结晶颗粒的大小、形貌和结构,比纯石灰浆碳化的颗粒要细小和致密许多(图3),这种细密结构正是糯米灰浆抗压强度和表面硬度较高的微观基础。

图3 糯米浆调控了碳酸钙形成过程中结晶颗粒的大小和结构[43]

2) 糯米浆和生成的碳酸钙颗粒之间有协同作用。在固化的糯米灰浆中,糯米浆成分和碳酸钙颗粒分布均匀,它们之间互相包裹,填充密实,形成了有机-无机协同作用的复合结构,这是糯米灰浆具有较好韧性和强度的原因。

3) 糯米灰浆巧妙地利用了石灰的防腐作用。糯米石灰浆的完全碳化是一个长期过程,在灰浆中的氢氧化钙全部转化为碳酸钙之前,强碱性环境能抑制和杀灭细菌,防止了糯米成分腐烂。

以上研究结果被许多国外媒体称为“中国科学家发现了长城千年不倒的秘密”(详见4.1部分)。

在糯米灰浆机理研究的基础上,浙江大学文物保护材料实验室又继续研究了桐油灰浆[49-51]、蛋清灰浆[52]、血料灰浆[53-54]和糖水灰浆[9]的作用机理,以及有机-无机灰浆与砖表面相互作用的界面机理。

4 糯米灰浆研究对世界的影响

4.1 国外媒体报道

2010年底,由杨富巍、张秉坚、马清林合写的关于糯米灰浆微观作用机理的研究论文[47]首次在国际发表后,国外多家科学网站、学术期刊和新闻媒体都进行了报道或转载,例如美国化学会(ACS)、物理学家组织网(PHYSORG)、每日科学网(Science Daily)、《科学新闻》(ScienceNews)、《美国国家地理》(NationalGeographic)、《建筑学评论》(ArchitectureView)、《每日邮报》(DailyMail)、《每日电讯报》(DailyTelegraph)、美国有限电视新闻网(CNN)和微软美国全国广播公司(MSNBC)等。

糯米灰浆研究成果吸引了许多国内外新闻媒体来浙江大学采访或拍摄科普片。其中,英国第四频道《长城的秘密》科技片、奥地利PreTV《长城》纪录片、德国公共电视台ZDF《中国长城》纪录片等摄制组通过国家审批后,先后来到浙江大学实验室和河北明长城现场等地,拍摄了浙江大学团队对糯米灰浆取样、检测和机理研究的过程(图4)。这几部片子已在英国、美国、德国、法国和中国国内播放。

图4 英国雄狮电视摄制组来浙江大学实验室和秦皇岛板厂峪长城现场拍摄纪录片《长城的秘密》

4.2 国际学者引用情况

以Web of Science核心数据库为基础统计,通过关键词“Sticky Rice+Lime Mortar”进行搜索,到2023年11月为止,全世界发表“糯米灰浆”相关研究的论文共计42篇,其中中国38篇(浙江大学团队18篇)。在这42篇中,被引用次数最高的三篇论文见表2。

表2 Web of Science核心数据库中发表“糯米灰浆”研究论文被引数最高的三篇论文(统计到2023年11月)

4.3 对国际传统复合材料探索的启示

国外学者受中国糯米灰浆研究影响,除通常引用文献外,也开始探索当地的传统有机-无机复合材料的性能并加以利用,例如:波兰卢布林工业大学学者研究发现添加阿拉伯树胶可以明显改善石灰-偏高岭土灰浆的力学性能[55];西班牙格拉纳达大学的学者开始研究和验证古玛雅人将植物汁液掺入石灰灰浆的作用机理和对灰浆性能的影响[56];印度SRM大学的学者研究了槟榔提取物对石灰浆在机械、物理性能和耐久性方面的提升作用[57]等。国际传统有机-无机复合灰浆研究开始热了起来。

4.4 对国际复合材料发展史研究的影响

中国糯米灰浆、桐油灰浆等有机-无机复合灰浆已成为人类探索材料“复合”的典型案例,例如著名材料学家、巴黎索邦大学教授Clément Sanchez等在国际知名材料学刊AdvancedFunctionalMaterials发表综述文章[58],专门用一节介绍了浙江大学的研究成果,并将中国糯米灰浆列为了人类技艺时代有机-无机复合材料发展的里程碑之一(图5)。

图5 世界有机-无机复合材料发展进程图[58]

5 中国新石器时代“白灰面”的新发现

到2018年底,浙江大学团队检出的年代最早的含淀粉样品为江苏徐州东汉墓的灰浆,最早的含油脂和蛋白质成分样品为安徽六安文一战国墓灰浆,最早的含糖类样品来自五代时期江苏苏州虎丘塔,最早的含血料样品为元末明初的浙江建德严州城墙灰浆[42]。

综述,针对施工阶段的火灾问题,有施工技术规程进行规范。针对外保温使用阶段的火灾风险,由建筑设计防火规范予以解决。目前,在我国已达成了采用燃烧性能等级不低于B2级的保温材料,并按照建筑类型和建筑高度增加防火隔离带、施涂一定厚度的防护层、在外墙使用耐火完整性不低于0.50h的防火门和防火窗等防火技术措施的外保温防火解决方案。理论上讲,外保温的防火风险将得到有效控制。

2019年8月,在陕西省考古研究院马明志领队的指导下,浙江大学团队对正在发掘的陕西延安芦山峁新石器时代遗址(“2018年度全国十大考古新发现”之一)进行了考察和取样。从遗址墙面和地面取得的15个代表性白灰面样品的检测结果看,该遗址白灰面的石灰全部是人工烧制的,所含碳酸钙比例相当高(约在90%以上),大部分白灰面样品中含有蛋白质成分。通过酶联免疫法检测进一步确定了所含蛋白质为明胶(动物胶)。芦山峁遗址属于新石器时代龙山文化遗址,根据碳十四测年数据遗址距今约4300年。这项检测将中国古人应用有机-无机复合凝胶材料的年代向前推进了2000多年。同时发现,只要遗存的灰浆还是碱性的,添加的有机物成分就可能保存数千年[59-61]。

2022年3月,在陕西省考古研究院和榆林考古勘探队的帮助下,浙江大学团队又采集了陕西榆林地区30多处史前房屋基址的白灰面样品,年代从泉护二期、庙底沟二期到石峁文化时期。通过化学分析方法、X射线衍射法、酶联免疫法和热裂解气相色谱-质谱联用等检测,发现在4700年前的陕北地区,当时的居民已普遍开始向建筑灰浆中添加各种农牧业产物,包括酪素、动物胶和蛋清。这一发现也为新石器时代中国北方农牧交错带的形成提供了证物[62]。此外,通过检测还发现,在榆林米脂龙镇寨山遗址的白灰面中掺有支链淀粉添加物。这是目前已知的最早掺入糯米淀粉的灰浆案例。榆林的新发现将中国糯米灰浆的应用历史提早了两千多年。为了确证该项发现,最近又在榆林绥德、米脂、横山、榆阳、子洲共5个县31处遗址上采集了68个白灰面样品,检测发现其中21个含有糯米淀粉——现在可以说,中国发明糯米淀粉灰浆的历史已有4700年。

与南方的稻作农业不同,中国北方早期农业的代表性作物主要为黍和粟,糯黍(软靡子)是其品种之一,支链淀粉含量高达90%[63]。目前,关于榆林地区新石器时代白灰面中所含支链淀粉是来源于糯稻还是糯黍的论证还在进行中。

6 传统糯米灰浆的改良研究与文物保护应用

6.1 传统糯米灰浆配方优化与应用

由于民间流传的传统糯米灰浆配方良莠不齐,为了将糯米灰浆应用于现代文物保护工程,浙江大学团队以古代典型糯米灰浆配方为基础,开展了一系列配方优化研究和性能检测。突破主要从石灰和淀粉入手。

1) 石灰。研究发现石灰在陈化过程中,随着陈化时间的增加,氢氧化钙的粒径呈现逐渐减小的趋势,经过半年以上的陈化,可以形成直径50~200 nm的纳米颗粒。这是陈化石灰具有良好流变性、保水性、密实粘连性和高反应活性的微观解释[64]。研究也发现“二次石灰”,即氢氧化钙经高温(650℃)再次煅烧和水消化以后也可形成粒径为200~300 nm的椭圆状纳米氢氧化钙颗粒。另外,经液相法制备的纳米氢氧化钙,在加入表面活性剂后,会生成六方晶型颗粒的纳米氢氧化钙粉体,粒径在50 nm左右。用纳米化的氢氧化钙制备糯米灰浆,其强度和黏结性能都能提高[65]。

2) 淀粉。经试验对比各种淀粉,发现添加含支链淀粉较多的米种(如糯米或糯黍),能明显改善灰浆固化后的表面硬度、抗压强度、耐冻融性等。因为支链淀粉的模板作用和保水作用强于直链淀粉,故而前者更有利于灰浆性能的改善。值得注意的是灰浆中支链淀粉的浓度具有最佳值[66-67]。

在应用方面,通过一系列试验[68-70],经实验室配方优化的糯米灰浆已被用于文物保护工程[71-72]。从2007年到2010年,应用优化糯米灰浆实施的文物保护工程有:浙江德清寿昌桥维修工程(2007年2月);杭州梵天寺石经幢维修工程(2009年11月);杭州香积寺石塔维修工程(2010年8月)(图6)。这三处维修工程的施工单位都是南京博物院文物保护所。

图6 经实验室配方优化的糯米灰浆已被应用于文物保护工程中

6.2 改良糯米灰浆产品研制

传统石灰陈化工艺耗时,糯米熬浆繁琐——陈旧的工艺是迫使糯米灰浆退出历史舞台的主要原因。为适应现代文物保护工程的需求,需研制“开包即用”的糯米灰浆产品,使传统糯米灰浆的使用能与现代水泥一样便捷,这已成为糯米灰浆重新进入文物保护工程领域必须解决的关键技术问题。为此,浙江大学团队进行了长期探索性研究[73-74]。糯米灰浆的科学改良包括三个方面。

1) 通过使用不同氢氧化钙原料制备糯米灰浆,发现使用传统陈化石灰的糯米灰浆抗压强度最佳、施工性能最好。经过系列试验最终找到与陈化石灰乳中氢氧化钙颗粒粒径、比表面积和微观形貌相近的氢氧化钙原料及制备技术,免去了制备陈化石灰耗时费力的繁冗过程。

2) 通过对糯米作用机理的研究,了解糯米糊化程度对灰浆性能的影响,发现可以事先预糊化,制作成干粉,由此避免了现场熬制糯米浆的繁琐过程,使糯米灰浆制作过程大大简化。

3) 通过骨料级配和添加减水剂等配方优化试验,解决了糯米灰浆早期强度低、收缩率较大等缺陷。

改良后的糯米灰浆可制成“开包即用”的干粉产品,加水后凝结时间≤36 h,收缩率≤1.2%,28天龄期抗压强度≥2 MPa,基本满足古建筑修缮灰浆要求。目前,已研制出3种古建筑修缮专用糯米灰浆产品,即砌筑用改良糯米灰浆、灌注用改良糯米灰浆、灌注用改良糯米三合土。相关配方与制备工艺已获得国家发明专利[75-77]。

6.3 改良糯米灰浆在文物保护工程中的应用

由于文物的珍贵和不可再生性,改良糯米灰浆的示范应用十分谨慎。经过文物主管单位的审核批准,已应用的古建筑修缮工程包括:浙江温州龙湾国安寺塔维修加固工程(2014年3月,全塔嵌补灌浆加固);河北秦皇岛抚宁板厂峪长城修复展示(2014年9月,局部城砖摆砌);浙江绍兴新昌大佛寺石经幢维修加固工程(2014年12月,全塔嵌补灌浆加固);杭州闸口白塔维修加固工程(2016年6月,塔身层间灌浆加固)[42]等(图7)。

图7 改良糯米灰浆已被应用于文物修缮工程中

经过6~8年的跟踪观察,改良糯米灰浆的应用效果良好。最近,改良糯米灰浆又开始了进一步的推广应用,例如:杭州海塘临平段(局部)异地迁移工程中的石塘修筑工程(2023年8月,全工段砌筑与嵌缝);浙江武义毓英塔修缮工程(2023年11月,全塔修缮补砌)等。

目前,在传统糯米灰浆研究基础上,国内已有许多研究改进和应用发展,例如:糯米改性土研究及在古城墙修复工程中的应用[78];改性糯米灰浆研究及在九寨沟钙华地质裂缝修复中的应用[79];糯米灰浆配比研究及在砖石古塔修复中的应用[80];糯米浆改性土研究及在城墙修复中的应用[81]等。中国传统材料科学化研究和应用的春天正在到来。

7 结 论

经过15年时间,浙江大学等单位针对古代建筑灰浆,通过一系列科学和技术研究,已在以下几方面取得了明显进展。

1) 通过古代文献考证、古建筑遗址调研取样和检测技术创新,对全国22个省级行政区的252处遗址的1149个古代灰浆样品进行了检测分析,初步摸清了中国古代建筑灰浆的基本组成、地域分布,以及各时期的变化,从建筑材料角度证明了中国古代建筑历史的连续性。

2) 通过模拟试验和作用机理研究发现,以糯米灰浆为代表的中国传统有机-无机复合灰浆之所以能够明显提高石灰灰浆的性能,是因为糯米浆等天然有机物分子具有类似于生物矿化模板剂的作用,调控了石灰浆的碳化过程,使碳酸钙的结晶颗粒更细小和致密,同时糯米浆等有机物分子又很好地利用了石灰的防腐作用。这种通过“复合”改进材料性能的举措是中国古人的创造,加上糯米和桐油等原产于中国,更使糯米灰浆和桐油灰浆等成为中国特色。

3) 当埋藏环境偏碱性,石灰浆中的有机物成分就可能保存下来。通过最近几年对陕西榆林“白灰面”的调查和检测研究发现,向石灰浆中添加糯米淀粉、动物胶、蛋清和酪素等的现象早在4700年前就已存在。由此看出当时居民已经普遍有意识地向建筑灰浆中添加各种农牧业产物。这一发现也为新石器时代中国北方农牧交错带的形成提供了证物。

4) 为达到“使用原来的材料修复文物”的目标,经过长期的配方-工艺-性能试验,已初步找到较优的传统糯米灰浆工艺和配方;十多年的跟踪观察表明使用传统糯米灰浆工艺维修的古建筑状况稳定。同时,为适应一般文物修缮工程的施工需要,在保持传统糯米灰浆主要成分和作用机制不变的基础上,研制出“开包即用”的改良糯米灰浆产品,应用示范工程已经过8年以上的考验,证明这些产品可以试用于古建筑修缮。

综上所述,这一系列的探索性研究为弘扬和保护我国延绵不断的五千年文明提供了鲜活的案例。

猜你喜欢

灰浆糯米有机
北京延庆和怀柔明代长城灰浆微结构剖析对比研究
有机旱作,倚“特”而立 向“高”而行
艾草与糯米的相遇——青团
冬食糯米滋养温补
白果仁糯米粥 有助于改善尿失禁
中国古建筑中糯米灰浆的应用研究
九十九分就是不及格——有机农业,“机”在何处?
胃热失眠,喝点百合糯米茶
利用SEM探讨传统糯米—石灰灰浆的硬化机理
有机心不如无机心