APP下载

植物角质层蜡质组成、生物合成及响应外界胁迫功能研究进展

2024-01-12刘亚欣高小妹黄梦月裴腊明

关键词:植物学

刘亚欣 高小妹 黄梦月 裴腊明

文章编号:1671-3559(2024)01-0101-05DOI:10.13349/j.cnki.jdxbn.20230426.001

摘要:为了探讨植物角质层蜡质在植物响应生物胁迫与非生物胁迫中的功能,为改良植物性状、提高作物品质及作物遗传育种提供新的资源,对植物角质层蜡质的组成、生物合成途径及功能进行综述:植物角质层蜡质主要由长链脂肪酸及其衍生物即烷烃、醛类、酮类、初级醇、次级醇和蜡酯等组成;生物合成途径可分为3个步骤,即C16、C18脂肪酸的从头合成、C16、C18脂肪酸延伸形成长链脂肪酸和长链脂肪酸通过酰基还原途径和脱羰基;植物角质层蜡质在植物响应干旱、紫外线辐射和抗病虫害等非生物和生物胁迫中发挥重要功能。指出利用新的生物技术对蜡质功能及作用机制进行深入研究,探讨植物的抗逆性,是今后的研究方向。

关键词:植物学;角质层蜡质;生物胁迫;非生物胁迫;合成机制

中图分类号:Q945.78

文献标志码:A

开放科学识别码(OSID码):

Research Progresses on Composition, Biosynthesis, and

Functions in Response to Outer Stresses of Plant Cuticular Wax

LIU Yaxin, GAO Xiaomei, HUANG Mengyue, PEI Laming

(School of Biological Science and Technology, University of Jinan, Jinan 250022, Shangdong, China)

Abstract: To explore functions of plant cuticular wax in response to biotic and abiotic stresses, and provide new resources for improving plant traits as well as enhancing crop quality and genetic breeding, composition, biosynthesis pathways, and functions of plant cuticular wax were reviewed, including main composition of plant cuticular wax such as long-chain fatty acids and their derivatives (alkanes, aldehydes, ketones, primary alcohols, secondary alcohols, and wax esters), three steps of biosynthesis pathway such as de novo synthesis of C16 and C18 fatty acids, elongation of C16 and C18 fatty acids to form long-chain fatty acids, and synthesis of wax components through acyl reduction and decarbonylation pathways of long-chain fatty acids, as well as important functions of plant cuticular wax in responses to abiotic and biotic stresses such as drought, ultraviolet radiation and disease and pest resistance. The future research direction was pointed out to be using new biotechnology to research functions and mechanism of wax and discussing stress resistance of plants.

Keywords: botany; cuticle wax; biotic stress; abiotic stress; synthesis mechanism

大多數植物的地上部分都覆盖着一层疏水性角质层,这是植物抵御外界胁迫的第一道防线,主要由蜡质和角质组成。角质是一种三维聚合物,主要由中间链, ω-羟基, C16、C18环氧羟基脂肪酸通过酯键交联形成,呈网状结构,角质是角质层的支撑结构[1]。蜡质主要由超长链脂肪酸及其衍生物, 如烷

收稿日期:2022-11-21          网络首发时间:2023-04-27T10:20:01

基金项目:国家自然科学基金项目(31801278)

第一作者简介:刘亚欣(1998—),女,山东枣庄人。硕士研究生,研究方向为植物分子育种。E-mail:liuyx122345@163.com。

通信作者简介:裴腊明(1983—),女,山东日照人。副教授,博士,研究方向为作物遗传育种。E-mail:mls_peilm@ujn.edu.cn。

网络首发地址:https://kns.cnki.net/kcms/detail/37.1378.N.20230426.1715.002.html

烃、初级醇、次级醇、醛、酮和蜡酯等组成,是角质层实现功能的主要承担者[2],因此,蜡质的功能及合成机制备受关注。

1  植物表皮蜡质的组成

大多数植物表皮蜡质主要由超长链脂肪酸及其衍生物组成,如烷烃、初级醇、次级醇、醛、酮和蜡酯[2],碳链长度大多在18~36个碳原子之间,较少见的有环状化合物和甾醇化合物[3]。在不同植物中蜡质组分有所不同,如甘蔗的表皮蜡质主要由脂肪酸和烷烃组成[4];玉米的表皮蜡质主要由醛和初级醇组成[5];烷烃和酮类是韭菜叶中表皮蜡质的主要成分[6]。同一植物不同组织的蜡质成分也不同,如紫苜蓿叶的表皮蜡质以初级醇为主,而在茎中烷烃为主[7]。

2  植物表皮蜡质的生物合成

植物表皮蜡质的合成途径可分为3个步骤:1)C16、C18脂肪酸的從头合成;2)C16、C18脂肪酸延伸形成蜡质合成前提物质即超长链脂肪酸(VLCFAs);3)VLCFAs通过酰基还原途径和脱羰基途径合成烷烃、醛类、酮类、初级醇、次级醇和蜡酯等蜡质组分[8]。以上合成过程在植物表皮细胞中完成。

2.1  C16、C18脂肪酸的从头合成

C16、C18脂肪酸的从头合成是在质体中进行的。在质体中,乙酰辅酶A在乙酰辅酶A羧化酶的催化下,形成丙二酰单酰辅酶A;丙二酰单酰辅酶A在脂肪酸合成酶复合体的催化下经缩合、还原、脱水和还原4步循环反应合成相应的酰基-ACP,每个循环反应酰基链增加2个碳原子。当碳链长度为16或18时,循环反应停止,C16或C18的酰基-ACP被酰基ACP硫酯酶水解成C16或C18脂肪酸。

2.2  长链脂肪酸及其衍生物的合成

脂肪酸的进一步延长是在内质网中进行的[9]。C16、C18脂肪酸在胞质中被长链酰基辅酶A合成酶催化形成相应的酰基辅酶A并转运至内质网中[10]。在内质网中酰基辅酶A被脂肪酸延长酶复合体通过循环反应催化形成C20、C22、…、C36长链脂肪酸[11]。该过程与脂肪酸的从头合成相似,同样需要经4步反应,即缩合、还原、脱水和还原。脂肪酸延长酶复合体由β-酮脂酰辅酶A合成酶(KCS)、β-酮脂酰辅酶A还原酶(KCR)、β-羟酯酰辅酶A脱水酶(HCD)和反式烯脂酰辅酶A还原酶(ECR)4种酶组成,每个循环反应增加2个碳原子[12-13]。长链脂肪酸延伸的限速步骤是由KCS催化的,KCS是限速酶[14]。第1个编码KCS酶的基因是从缺少长链脂肪酸的拟南芥突变体中分离出来的,因此将该基因命名为FAE1[15]。在拟南芥中,KCS基因家族有21个成员,其中8个编码KCS[16]。AtFAE1(KCS18)在种子发育过程中发挥作用,并参与C20、C22、C24、C26脂肪酸的合成[15];AtKCS5参与C26、C28、C30脂肪酸的合成[17]。 在玉米中, GL4是拟南芥CER6(KCS6)的同源基因, 参与幼苗叶片角质层蜡质的积累[18-19];WSL1和ONI1是水稻中的2个KCS基因, 分别是叶片角质层蜡质的生物合成和新鞘正常发育所必需的[18];在番茄中CER6是的编码KCS的基因, 参与果实角质蜡质的积累[20]。

VLCFAs通过脱羰基途径和酰基还原基途径合成各种蜡质组分。 在脱羰基途径中, 主要合成醛类、酮类、烷烃和次级醇等。 首先VLCFAs被还原成醛类, 然后通过脱羰基反应形成烷烃, 烷烃可进一步修饰为次级醇和酮类[21]。 有学者对拟南芥中几个CER基因在脱羰基途径中的作用进行了研究。 CER3编码VLCFAs还原酶, 将VLCFAs还原成醛, 在CER3缺失突变体中醛类、烷烃、次级醇和酮的含量显著减少[21-24];CER1编码脱羰基酶, 将醛脱羰基为烷烃, 在CER1缺失突变体中烷烃、次级醇和酮类的含量显著减少, 醛类含量略有增加[21, 25-26]。 研究[26]表明, 在拟南芥中CER1与CER3相互作用共同参与烷烃的合成;酵母双杂实验证明细胞色素b5亚型可与CER1和CER3相互作用并作为氧化还原辅助因子参与烷烃的合成。在酰基还原途径中,主要合成初级醇和蜡酯等。在拟南芥CER4突变体中初级醇和蜡酯的含量显著减少,醛类、烷烃、次级醇和酮的含量略有增加;通过实验进一步证明CER4编码与醇合成相关的长链脂肪酰辅酶A还原酶,参与植物表皮蜡质中初级醇的合成[27]。蜡酯是由脂肪醇和脂肪酸形成的酯类物, 主要存在于角质层中。研究[28]表明,AtWSD1基因所编码的蛋白是蜡酯合酶或二酰基甘油酰基转移酶家族中的一员,参与蜡酯的合成。

2.3  植物表皮蜡质的转运

在内质网中合成的各种蜡质组分需要转运至植物表皮。首先各种蜡质组分从内质网中转运到质膜,然后通过质膜运输到原生质体外并通过细胞壁运输到植物表面[29-31]。表皮蜡质的转运是由多种转运蛋白介导的。在拟南芥acbp1突变体的茎中蜡质的含量有所下降,ACBP1所编码的酰基辅酶A结合蛋白1定位于内质网和质膜上,表明ACBP1可能介导蜡质组分从内质网转运至质膜[32]。其中ABC转运蛋白已被证实参与表皮蜡质的转运:在拟南芥中CER5是ABC转运蛋白WBC亚家族的成员,在cer5突变体的茎中表皮蜡质的含量仅为野生型的41%[33-34],而表皮细胞中却积累了较多的内含物,表明CER5所编码的ABC转运蛋白,参与蜡质组分从质膜向表皮的运输过程[34]。

3  植物表皮蜡质的响应外界胁迫功能

表皮蜡质是覆盖于植物地上部分的疏水屏障,作为植物抵御外界胁迫的第一道防线,在生物和非生物胁迫中发挥重要作用。

3.1  抗旱与保水功能

干旱是造成土地荒漠化和农业减产的最重要自然灾害之一[35],因此,植物在进化过程中形成了多种抗旱机制,如发达的根系[36]、高效的气孔结构与调节系统[37]、叶片形态[38]、表皮蜡质增厚[39]等。在这些抗旱机制中,表皮蜡质是植物抵御干旱的重要屏障[18]。

表皮蠟质是在植物表皮形成的一层防止非气孔水分流失的疏水层,具有维持植物体内水分平衡、防止水分流失的功能,在干旱胁迫中发挥一定作用。小麦在干旱条件下表皮蜡质中的烷烃的质量分数增加50%[40];在干旱条件下烟草表皮蜡质通过减小气孔导度来增强植株的抗旱性[41],并通过调节气孔发育来增强拟南芥的抗旱性[42]。在拟南芥中,在干旱条件下转录因子AtMYB94可以直接激活参与蜡质合成相关基因的转录,从而增强植株的抗旱性[43];同时还有研究[44]报道了玉米中类似的转录因子ZmMYB94,通过参与幼苗中表皮蜡质的合成来增强植株对干旱的耐受性。

3.2  抗紫外线辐射功能

太阳的紫外线辐射通过破坏脱氧核糖核酸(DNA)、膜系统和光合作用系统等对地球表面的植物造成伤害[45]。在漫长的进化过程中,陆地植物进化了多种抵御紫外辐射的机制,例如合成黄酮类或酚类化合物积累在表皮细胞的液泡、细胞壁、蜡质层或与角质单体结合,提高植物对紫外线辐射的吸收能力[46]。此外,植物叶表皮毛的结构与密度、蜡质层及表皮细胞层的厚度都会影响紫外线是否能穿透叶肉细胞[47];蜡质含量高的植物叶片比含量低的叶片能吸收更多的紫外线[48]。随着紫外线辐射的增加,黄瓜和大麦叶片的角质蜡的质量分数增加了约25%[49]。在玉米蜡质缺失突变体中,玉米植株叶片的叶片形态与遗传物质均受到紫外线辐射的伤害[48]。研究[50]表明,植物叶表皮蜡对紫外线辐射有阻隔作用,只有不到1%的紫外线能通过蜡质进入叶肉细胞。

3.3  抗病虫害功能

在自然环境中, 植物会遇到细菌、真菌、病毒等各种病原体的侵袭, 严重威胁植物的生长和作物的产量[51]。 植物表皮蜡质的特殊化学成分和形态结构可使植物抵御病原体的侵染[52]。 真菌病原体可以合成或分泌角质酶和脂肪酶等水解酶来降解表皮蜡质[53]。 例如, 稻瘟病菌可以合成角质酶2(CUT2)并黏附于植物体表面, 通过激活CUT2使植株表面的角质层渗透性增加,从而降低植株对稻瘟病菌的抗性[54]。研究[54]表明,角质层渗透性的改变可以影响植物的抗病性。MdMYB30过表达的苹果愈伤组织对苹果溃疡病表现出较强的抗性,表明MdMYB30正向调节苹果果实蜡质的生物合成,增强苹果对某些真菌病原菌的抗性[55]。

4  展望

表皮蜡质是在植物表皮形成的一层防止非气孔水分流失的疏水层, 可以保护植物免受强光、干旱、病原体入侵和昆虫食草动物的侵袭。 植物表皮蜡质是植物从水生环境向干旱陆地环境进化而形成的结构, 因此研究植物表皮蜡质与响应各种逆境的调节机制以及角质层组分作为信号分子提高植物对病原体的敏感性是十分重要的。 随着分子生物学的快速发展, 许多植物表皮蜡质合成相关基因被挖掘, 将为改良植物性状、提高作物品质以及作物遗传育种提供新的资源。

参考文献:

[1]NAWRATH C. Unraveling the complex network of cuticular structure and function[J]. Current Opinion in Plant Biology, 2006, 9(3): 281.

[2]KUNST L, JETTER R, SAMUELS A L. Biosynthesis and transport of plant cuticular waxes[M]//Annual Plant Reviews Online, Annual Plant Reviews Book Series, Vol 23: Biology of the Plant Cuticle, 2018:182.

[3]董林洁, 包曙光, 曹高燚, 等. 植物表皮蜡质与抗旱响应[J]. 分子植物育种, 2023, 21(1): 294.

[4]MAGRI N T C, SARTORI J A D S, JARA J L P, et al. Precipitation of nonsugars as a model of color reduction in sugarcane juice (Saccharum spp.) submitted to the hydrogen peroxide clarification of the crystal sugar process[J]. Journal of Food Processing and Preservation, 2019, 43(10): 1.

[5]JAVELLE M, VERNOUD V, DEPGE-FARGEIX N, et al. Overexpression of the epidermis-specific homeodomain-leucine zipper Ⅳ transcription factor outer cell layer 1 in maize identifies target genes involved in lipid metabolism and cuticle biosynthesis[J]. Plant Physiology, 2010, 154(1): 278.

[6]DUSTY P. Biochemistry and molecular biology of wax production in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47: 407.

[7]ZHANG J Y, BROECKLING C D, BLANCAFLOR E B, et al. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa)[J]. The Plant Journal, 2005, 42(5): 694.

[8]PASCAL S, BERNARD A, DESLOUS P, et al. Arabidopsis CER1-LIKE1 functions in a cuticular very-long-chain alkane-forming complex[J]. Plant Physiology, 2019, 179(2): 416.

[9]張左悦. 植物脂肪酸合成及其在基础抗性和生物固氮中的价值探究[J]. 现代园艺, 2020, 43(24): 211.

[10]BATSALE M, BAHAMMOU D, FOUILLEN L, et al. Biosynthesis and functions of very-long-chain fatty acids in the responses of plants to abiotic and biotic stresses[J]. Cells, 2021, 10(6):1286.

[11]KUNST L, SAMUELS L. Plant cuticles shine: advances in wax biosynthesis and export[J]. Current Opinion in Plant Biology, 2009, 12(6): 721.

[12]LI-BEISSON Y, SHORROSH B, BEISSON F, et al. Acyl-lipid metabolism[J]. The Arabidopsis Book, 2013,11: 1.

[13]LESSIRE R, BESSOULE J J, CASSAGNE C. Involvement of a β-ketoacyl-CoA intermediate in acyl-CoA elongation by an acyl-CoA elongase purified from leek epidermal cells[J]. Biochimicaet Biophysica Acta: Lipids and Lipids Metabolism, 1989, 1006(1): 39-40.

[14]MILLAR A A, KUNST L. Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme[J]. The Plant Journal, 1997, 12(1): 121.

[15]JAMES D W, Jr, LIM E, KELLER J, et al. Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator[J]. The Plant Cell, 1995, 7(3): 313-314.

[16]JOUBS J, RAFFAELE S, BOURDENX B, et al. The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling[J]. Plant Molecular Biology, 2008, 67(5): 547.

[17]TRENKAMP S, MARTIN W, TIETJEN K, et al. Specific and differential inhibition of very-long-chain fatty acid elongases from Arabidopsis thaliana by different herbicides[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(32): 11905.

[18]LEE S B, SUH M C. Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species[J]. Plant Cell Reports, 2015, 34(4): 567.

[19]LIU S Z, DIETRICH C R, SCHNABLE P S. DLA-based strategies for cloning insertion mutants: cloning the gl4 locus of maize using Mu transposon tagged alleles[J]. Genetics, 2009, 183(4): 1221-1222.

[20]SMIRNOVA A, LEIDE J, RIEDERER M. Deficiency in a very-long-chain fatty acid β-ketoacyl-coenzyme a synthase of tomato impairs microgametogenesis and causes floral organ fusion[J]. Plant Physiology, 2013, 161(1): 196.

[21]JENKS M A, TUTTLE H A, EIGENBRO DE  S D, et al. Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis[J]. Plant Physiology, 1995, 108(1): 369.

[22]CHEN X B, GOODWIN S M, BOROFF V L, et al. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production[J]. The Plant Cell, 2003, 15(5): 1178-1179.

[23]KURATA T, KAWABATA-AWAI C, SAKURADANI E, et al. The YORE-YORE gene regulates multiple aspects of epidermal cell differentiation in Arabidopsis[J]. The Plant Journal, 2003, 36(1): 55.

[24]ROWLAND O, LEE R, FRANKE R, et al. The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1[J]. FEBS Letters, 2007, 581(18): 3541.

[25]AARTS M G, KEIJZER C J, STIEKEMA W J, et al. Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility[J]. The Plant Cell, 1995, 7(12): 2117.

[26]BOURDENX B, BERNARD A, DOMERGUE F, et al. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses[J]. Plant Physiology, 2011,156(1): 29.

[27]ROWLAND O, ZHENG H Q, HEPWORTH S R, et al. CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis[J]. Plant Physiology, 2006, 142(3): 866.

[28]LI F L, WU X M, LAM P, et al. Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis[J]. Plant Physiology, 2008, 148(1): 97.

[29]SAMUELS L, KUNST L, JETTER R. Sealing plant surfaces: cuticular wax formation by epidermal cells[J]. Annual Review of Plant Biology, 2008, 59: 693.

[30]YEATS T H, ROSE J K C. The formation and function of plant cuticles[J]. Plant Physiology, 2013, 163(1): 11.

[31]XU X J, FENG J C, LYU S Y, et al. Leaf cuticular lipids on the Shandong and Yukon ecotypes of saltwater cress, Eutrema salsugineum, and their response to water deficiency and impact on cuticle permeability[J]. Physiologia Plantarum, 2014, 151(4): 446.

[32]XUE Y, XIAO S , KIM J, et al. Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation[J]. Journal of Experimental Botany,2014,65(18): 5473.

[33]BIRD D, BEISSON F, BRIGHAM A, et al. Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion[J]. The Plant Journal, 2007, 52(3): 490-491.

[34]PIGHIN J A, ZHENG H Q, BALAKSHIN L J, et al. Plant cuticular lipid export requires an ABC transporter[J]. Science, 2004, 306(5696): 702.

[35]ZHANG J H. Chinas success in increasing per capita food production[J]. Journal of Experimental Botany, 2011, 62(11): 3710.

[36]BARRIOS-MASIAS F H, KNIPFER T, MCELRONE A J. Differential responses of grapevine rootstocks to water stress are associated with adjustments in fine root hydraulic physiology and suberization[J]. Journal of Experimental Botany, 2015, 66(19): 6069.

[37]PORNSIRIWONG W, ESTAVILLO G M, CHAN K X, et al. A chloroplast retrograde signal, 3′-phosphoadenosine 5′-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination[J]. eLife, 2017, 6: 1.

[38]FAROOQ M, WAHID A, KOBAYASHI N, et al. Plant drought stress: effects, mechanisms and management[J]. Agronomy for Sustainable Development, 2009, 29(1): 185.

[39]SHEPHERD T, GRIFFITHS D W. The effects of stress on plant cuticular waxes[J]. The New Phytologist, 2006, 171(3): 470.

[40]LIU X W, FEAKINS S J, DONG X J, et al. Experimental study of leaf wax n-alkane response in winter wheat cultivars to drought conditions[J]. Organic Geochemistry, 2017, 113: 210.

[41]CAMERON K D, TEECE M A, SMART L B, et al. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco[J]. Plant Physiology, 2006, 140(1): 178.

[42]YANG J, ORDIZ M I, JAWORSKI J G, et al. Induced accumulation of cuticular waxes enhances drought tolerance in Arabidopsis by changes in development of stomata[J]. Plant Physiology and Biochemistry, 2011, 49(12): 1451-1452.

[43]LEE S B, SUH M C. Cuticular wax biosynthesis is up-regulated by the MYB94 transcription factor in Arabidopsis[J]. Plant & Cell Physiology,2015,56(1): 51.

[44]ROCCA N L, MANZOTTI P S, CAVAIUOLO M, et al. The maize fused leaves1 (fdl1) gene controls organ separation in the embryo and seedling shoot and promotes coleoptile opening[J]. Journal of Experimental Botany, 2015, 66(19): 5759.

[45]ROZEMA J, VAN DE STAAIJ J, BJRN L O, et al. UV-B as an environmental factor in plant life: stress and regulation[J]. Trends in Ecology & Evolution, 1997, 12(1): 22.

[46]PFNDEL E E, AGATI G, CEROVIC Z G. Optical properties of plant surfaces[M]//Annual Plant Reviews Online, Annual Plant Reviews Book Series, Vol 23: Biology of the Plant Cuticle, 2007, 23: 216.

[47]KARABOURNIOTIS G, PAPADOPOULOS K, PAPAMARKOU M, et al. Ultraviolet-B radiation absorbing capacity of leaf hairs[J]. Physiologia Plantarum, 1992, 86(3): 414.

[48]LONG L M, PATEL H P, CORY W C, et al. The maize epicuticular wax layer provides UV protection[J]. Functional Plant Biology, 2003, 30(1): 75.

[49]STEINMLLER D, TEVINI M. Action of ultraviolet radiation (UV-B) upon cuticular waxes in some crop plants[J]. Planta, 1985, 164(4): 559.

[50]ROBBERECHT R, CALDWELL M M, BILLINGS W D. Leaf ultraviolet optical properties along a latitudinal gradient in the Arctic-Alpine Life Zone[J]. Ecology, 1980, 61(3) : 616-617.

[51]ZHOU J M, ZHANG Y L. Plant immunity: danger perception and signaling[J]. Cell, 2020, 181(5): 978.

[52]李婧婧, 黄俊华, 谢树成. 植物蜡质及其与环境的关系[J]. 生态学报, 2011, 31(2): 570.

[53]KOLATTUKUDY P E, ROGERS L M, LI D, et al. Surface signaling in pathogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(10): 4080.

[54]SKAMNIOTI P, GURR S J. Magnaporthe grisea cutinase 2 mediates appressorium differentiation and host penetration and is required for full virulence[J]. The Plant Cell, 2007, 19(8): 2674.

[55]ZHANG Y L, ZHANG C L, WANG G L, et al. The R2R3-MYB transcription factor MdMYB30 modulates plant resistance against pathogens by regulating cuticular wax biosynthesis[J]. BMC Plant Biology, 2019, 19(1): 362.

(責任编辑:于海琴)

猜你喜欢

植物学
再论《山海经·五藏山经》的植物学
数据库在植物学教学中的应用
基于混合式教学的植物学课程翻转课堂构建
基于问题式教学策略的植物学课程翻转课堂构建
植物学
植物学
植物学
植物学教学改革的实践与探索
植物学
药用植物学野外实习与调查分析