基于转录组测序挖掘疣吻沙蚕性腺发育相关基因
2024-01-01赵玉薇黄成唐驰鹏朱鹏张虹杨家林许尤厚李万就刘芳星
摘要:【目的】鉴定筛选出与疣吻沙蚕性腺发育相关的候选基因及信号通路,揭示其性别分化及变态的分子调控 机制,为疣吻沙蚕大规模人工繁育技术的突破提供理论依据。【方法】以成熟雄性(M)、成熟雌性(F)和未变态疣吻沙 蚕(R)为研究对象,通过Illumina NovaSeq6000平台完成高通量转录组测序,经过滤、质量控制及拼接组装后,依据 Fold Changegt;2且错误发现率(FDR)lt;0.01的筛选标准,通过DESeq2筛选出差异表达基因(DEGs),然后进行GO功能 注释分析和KEGG信号通路富集分析,并以实时荧光定量PCR对转录组测序结果进行验证。【结果】经转录组测序从9个疣吻沙蚕样品中获得46891条Unigenes,在COG、GO、KEGG、KOG、Pfam、Swiss-Prot、TrEMBL、eggNOG和Nr等 9个主要功能数据库中有27878条Unigenes得到注释。依据筛选标准,共筛选出1798个DEGs,其中,M vs F组有349个 DEGs,R vs F组有1090个DEGs,R vs M组有359个DEGs。GO功能注释分析发现,DEGs主要注释到细胞、细胞部分、 结合、细胞过程、单生物过程等GO功能条目;KEGG信号通路富集分析结果表明,DEGs主要富集在氧化磷酸化、花生四烯酸代谢、视黄醇代谢、甘氨酸/丝氨酸/苏氨酸代谢等信号通路上。综合DEGs的KEGG信号通路富集分析及Nr数 据库BLASTx比对分析,最终筛选出DMRTI、SOX7、HSP90、CALM等14个与疣吻沙蚕性腺发育相关的DEGs。实时荧 光定量PCR检测的目的基因表达趋势与转录组测序分析结果基本一致,进一步证实转录组测序结果的准确性。【结论】疣吻沙蚕的性腺发育和成熟机制与多基因发挥功能及多个信号通路相关,包括雄性个体偏向MT-CYB、HSP60和DNAH5等基因,雌性个体偏向HSP90、SOX7和COL1A1等基因,以及氧化磷酸化、花生四烯酸代谢、视黄醇代谢、甘氨 酸/丝氨酸/苏氨酸代谢等与性腺发育相关的信号通路。
关键词:疣吻沙蚕;性腺发育;差异表达基因(DEGs);转录组测序
中图分类号:S963.219
文献标志码:A
文章编号:2095-1191(2024)03-0623-15
Transcriptome sequencing for mining gonadal development– related genes in Tylorrhynchus heterochaetus
ZHAO Yu-wei1, HUANG Cheng1, TANG Chi-peng1, ZHU Peng1, ZHANG Hong1*,
YANG Jia-lin1, XU You-hou1, LI Wan-jiu2, LIU Fang-xing3
('Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi 535011, China; 2Guangxi Guihai Entrepreneurship Service Co., Ltd., Qinzhou, Guangxi 538001, China; 3Qinnan District Agricultural and Rural Affairs Bureau of Qinzhou City, Guangxi, Qinzhou, Guangxi 535009, China)
Abstract:[Objective]To identify candidate genes and signaling pathways associated with gonadal development in Tylorrhynchus heterochaetus, aiming to elucidate the molecular mechanisms underlying sexual maturation, which provided a theoretical foundation for advancing large-scale artificial breeding techniques for I. heterochaetus. 【Method】The study involved the examination of mature male (M), mature female (F), and undifferentiated T. heterochaetus (R) specimens.
High-throughput transcriptome sequencing was conducted using the Illumina NovaSeq 6000 platform. Following data fil-tration, quality control, and splicing assembly, differentially expressed genes (DEGs) were identified using DESeq with criteria of Fold Change ≥2 and 1 discovery rate (FDR) lt;0.01. DEGs were further analyzed through GO functional an- notation and KEGG pathway enrichment. The sequencing results were validated using real-time fluorescence quantitative PCR. 【Result] Transcriptome sequencing analysis yielded 46891 unigenes from 9 T. heterochaetus samples, and 27878 unigenes were annotated in 9 major functional databases such as COG, GO, KEGG, KOG, Pfam, Swiss-Prot, TrEMBL, eggNOG and Nr. According to the screening criteria, a total of 1798 DEGs were identified, including 349 DEGs in M vs F group, 1090 DEGs in R vs F group, and 359 DEGs in R vs M group. GO functional annotation indicated that DEGs were primarily associated with cell, cell parts, binding, cellular processes, and single biological processes.KEGG pathway enrichment analysis revealed that DEGs enriched in pathways such as oxidative phosphorylation, arachidonic acid metabolism, retinol metabolism, and glycine/serine/threonine metabolism. Fourteen DEGs related to gonadal development including DMRT1, SOX7, HSP90 and CALM were identified through KEGG pathway enrichment and BLASTx analysis of the Nr database. The expression trend of the target gene detected by real-time fluorescence quantitative PCR was basically consistent with the results of transcriptome sequencing analysis, which further confirmed the accuracy of transcriptome sequencing results. 【Conclusion】The mechanism underlying gonadal development and maturation involves the interplay of multiple genes and signaling pathways. This includes male-biased genes such as MT-CYB, HSP60 and DNAH5, and female-biased genes like HSP90, SOX7 and COL1A1, as well as oxidative phosphorylation, arachidonic acid metabolism, retinol metabolism, glycine / serine / threonine metabolism pathways related to gonadal de- velopment.
Key words: Tylorrhynchus heterochaetus; gonadal development; differentially expressed genes (DEGs) ; transcriptome sequencing
Foundation items: Guangxi Key Research and Development Plan Project (Guike AB20297020) ; Guangdong Basic and Applied Basic Research Project(General Project of Guangdong and Guangxi Joint Foundation) (2020A1515410006) ;tion(Beibu Gulf University) (2019ZB10)
0 引言
【研究意义】疣吻沙蚕(Tylorrhynchus hetero- chaetus)俗称禾虫,隶属于环节动物门(Annelida)多 毛纲(Polychaeta)游走目(Mobilida)沙蚕科(Nereidi- dae),生长于温带和亚热带沿海咸、淡水交界地区, 在我国的广东、广西、福建等地均有分布(陈兴汉, 2014;Chen et al.,2020)。疣吻沙蚕为雌雄异体,雄 性明显多于雌性,一年中有2个繁殖季节(陈兴汉, 2014)。疣吻沙蚕没有明显的生殖系统,其生殖腺 起源于体腔上皮,生殖细胞于体腔中发育成熟,在繁 殖季节通过异性信息素诱导发生变态,成熟精子排 出体外进行受精,且沙蚕属于终生繁殖一次性生物, 即繁殖后死亡(杨威等,2012)。由于栖息地被破 坏、环境污染等原因,野生疣吻沙蚕数量呈明显的下 降趋势,已无法满足市场需求(Chen et al.,2020;杨 尉和陈兴汉,2022;刘顺等,2023),因此开展疣吻沙 蚕滩涂养殖、池沼养殖和工厂化养殖等人工养殖具 有广阔前景。【前人研究进展】至今,有关沙蚕科物 种的研究多集中于繁殖习性(Chatelain et al.,2008; García-Alonso et al.,2011)、生物学特征(曹晨晨,2016;王忠新,2022)、毒性效应(宿丽丽,2016;Cong et al.,2022)、生化组成(胡园等,2018)、人工育苗(王 茂元和周洪磊,2020)、生理功能(宋静静等,2021)及 其生态习性(张鹏展等,2022)等方面,在相关基因挖掘方面主要涉及多齿围沙蚕(Perinereis nuntia)(Won et al.,2013)和双齿围沙蚕(P.aibuhitensis)(岑 万等,2019)。早期研究认为,沙蚕伴随着性成熟而 产生的形态学改变是由前叶脑神经节分泌的脑激素 持续性抑制所引起(Golding,1974);随着研究的深 入,发现沙蚕繁殖内分泌调控中还存在第二类神经 激素——促性腺激素,包括催产素(Tessmar-Raible et al.,2007)和5-羟巴胺(Heuer and Loesel,2008)等。转录组测序(RNA-Seq)是在基因组水平上识别基因 最便捷、经济的方法之一(崔凯等,2019),已广泛应 用于功能基因挖掘和差异表达基因(Differentiallyexpressed genes,DEGs)分析等研究领域(张建等, 2022;袁建等,2023;赵旺生等,2023)。近年来,基于 转录组测序分析挖掘水生动物性腺功能基因的研究 越来越普遍。姜虎成(2015)基于454高通量测序技术研究克氏原螯虾(Procambarus clarkii)性腺发育 相关基因功能,结果挖掘出大量参与卵巢发育、泛素 蛋白酶体途径、细胞周期调控蛋白和精巢发育等途 径的相关基因,包括vitellogenin(vg)、cyclinB、cdc2、 dmcl和ubiquitin等候选基因。Kianann等(2022)通过转录组测序对AG消融后的罗氏沼虾(Macrobra-chium rosenbergii)性腺发育进行分析,结果发现 Hsp70、IGFBP7等多个基因及PI3K信号通路等参与了性别逆转过程;Wu等(2023)对褐点石斑鱼(Epi- nephelus fuscoguttatus)性腺进行转录组测序分析, 确定dmrtl等功能基因参与性别分化,并发现视黄酸信号通路参与早期的性别分化。【本研究切入点】 疣吻沙蚕的雌雄性别比例及个体大小差异明显,无 论食用还是药用都需其完成变态(性成熟)。目前, 有关疣吻沙蚕的研究主要集中于人工育苗(王茂元 和周洪磊,2020)及其抗疲劳作用(Yang et al.,2020;Sunil et al.,2021),但对于疣吻沙蚕为何出现雌雄比 例差异和变态发育的调控机理尚未明确。【拟解决的 关键问题】对疣吻沙蚕不同发育时期、不同性别进行 转录组测序分析,鉴定筛选出与性腺发育相关的候 选基因及信号通路,揭示疣吻沙蚕性别分化及变态 的分子调控机制,为其大规模人工繁育技术的突破 提供理论依据。
1材料与方法
1.1试验材料
疣吻沙蚕由北部湾大学禾虫养殖基地提供,于 2021年5月人工繁殖布卵,从2021年7月10日一2023年11月15日期间,每月选取10尾,记录其形态 及体质量等,用于形态学观察并统计成熟时间。选 取正常生长的成熟雄性(M)、成熟雌性(F)和未变态疣吻沙蚕(R)各6尾,一部分样品置于4%多聚甲醛中固定,经HE染色后显微镜观察拍照,用于组织学特征分析;另一部分样品装入1.5mL的EP管中,液 氮速冻后-80℃冰箱保存,用于性腺转录组测序 分析。
1.2总RNA提取、组装及功能注释
采用TRIzol试剂(美国Invitrogen公司)提取不同性别的疣吻沙蚕组织总RNA,为保证RNA测序分析准确性,对原始序列(Raw reads)进行过滤,去除携带接头、N(无法确定碱基信息)比例高于10%、低质量(50%以上碱基的质量值Q≤5)的Reads,即获得 有效序列(Clean reads)。使用Trinity对Clean reads"进行拼接组装,取同1个Cluster中最长的转录本作 为Unigenes,然后以DIAMOND v2.0.4将Unigenes 序列录入Nr、Swiss-Prot、COG、GO、KOG、KEGG、Pfam 和eggNOG等数据库(表1)进行比对,以获得Unige- nes功能注释信息。
1.3转录组分析
采用Bowtie将测序获得的Clean reads与UniGene 数据库进行比对,根据比对结果并结合RSEM进行表达水平估计。将获得的Read count进行FPKM转换,经标准化处理后,依据Fold Change≥2且错误发现率(FDR)lt;0.01的筛选标准,通过DESeq2筛选出不同性别疣吻沙蚕间的DEGs,同时基于GO和KEGG数 据库分别进行GO功能注释分析及KEGG信号通路 富集分析。
1.4实时荧光定量PCR验证
为验证转录组测序数据的准确性,从筛选获得 的DEGs中选取6个DEGs进行实时荧光定量PCR 验证。以a-TUB为内参基因,每个样品设3次重复。采用NCBI设计实时荧光定量PCR扩增引物(表2), 委托生工生物工程(上海)股份有限公司合成。实 时荧光定量PCR反应体系10.0 pL:2×PerfectStart®Green qPCR SuperMix5.0 μL,上、下游引|物各0.25 μL, cDNA模板1.0μL,Nuclease-free H20 3.5μL。扩增程序:94℃预变性30s;94℃5s,60℃30s,进行 42个循环。通过熔解曲线确认数据准确性,以2-44c 法换算目的基因相对表达量。
2结果与分析
2.1疣吻沙蚕形态观察结果
由图1-A可看出:处于未变态时期的疣吻沙蚕 性腺发育不明显;变态后的雌性疣吻沙蚕背须光滑、 无乳突,尾部呈青绿色;变态后的雄性疣吻沙蚕疣足背须上有乳突,中间有纵向乳白色带。组织学观察 发现,正常成熟雌性疣吻沙蚕卵母细胞的卵黄颗粒 发达,分布均匀,充满整个胞体,处于成熟期(图1-B); 正常成熟雄性疣吻沙蚕精巢中充满精子,处于精子 期(图1-C)。据疣吻沙蚕养殖情况发现:从2021年 5月人工繁殖布卵培育至2023年12月,出现多次繁 殖现象,分别在2022年的6、7和11月及2023年的7、 8和10月,与陈兴汉(2014)的研究结果基本一致,即 同一时间布卵,但繁殖时间并未同步。
2.2测序数据质量评价及序列组装分析结果
采用Illumina NovaSeq 6000平台对3个发育阶段的9个疣吻沙蚕样品(R1-1、R1-2、R1-3、M2-1、M2-2、M2-3、F3-1、F3-2和F3-3)进行测序,共获得57.68 Gb的有效碱基(Clean dases),各样品的Cleanreads在19215809~24322383条,Q30均在94.00%以 上,总匹配率为90.81%~96.88%(表3),说明转录组样本测序质量良好。Clean reads经Trinity组装后共获得46891条Unigenes,通过BUSCO将组装后的 Unigenes 比对到后生动物(Metazoa_odb9)单拷贝保守基因集(共978个基因),并以比对上的同源基因 数目评估疣吻沙蚕基因组序列完整性,结果显示, 84.5%的BUSCOgroups能完整比对上,包括71.0%单拷贝和13.5%多拷贝。组装得到的Unigenes总长度为36358896bp,其N50为1215bp。
2.3Unigenes功能注释分析结果
将组装获得的46891条Unigenes在COG、GO、 KEGG、KOG、 Pfam、Swiss-Prot、TrEMBL、eggNOG和Nr等9个主要功能数据库中进行功能注释,结果(表4)显示,共有27878条Unigenes得到注释,其中,COG数据库注释到5676个基因(占20.36%),GO数据库注释到23258个基因(占83.43%),KEGG数据库注释到19597个基因(占70.30%),KOG数据库注释到15412个基因(55.28%),Pfam数据库注释到18968个基因(68.04%),Swiss-Prot数据库注释到11257个基因(占40.38%),TrEMBL数据库注释到26346个基因(占94.50%),eggNOG数据库注释到19721个基因(占70.74%),Nr数据库注释到26372个基因(占94.60%)。
在GO功能注释分析中,23258条Unigenes被注 释到分子功能(Molecular function)、细胞组分(Cel- lular component)及生物学过程(Biological process)三大功能类别上,共涉及44个功能条目(图2)。其 中,在生物学过程中主要注释到细胞进程(Cellular"process)和代谢过程(Metabolic process)等功能条 目,在分子功能中主要注释到结合(Binding)和催 化活性(Catalytic activity)等功能条目,在细胞组分 中主要注释到细胞结构实体(Cellular anatomical entity)、细胞内受体(Intracellular)及含蛋白复合物(Protein-containing complex)等功能条目。
在KEGG信号通路富集分析中,19597条Unige- nes富集在细胞过程(Cellular processes)、环境信息 处理(Environmental information processing)、遗传信 息处理(Genetic information processing)、人类疾病 (Human diseases)、新陈代谢(Metabolism)及有机系 统(Organismal systems)等6个信号通路上,其中又 以转运和分解代谢(Transport and catabolism,1531 条)、翻译(Translation,1460条)、信号转导(Signal transduction,1341条)、折叠排序与降解(Folding, sorting and degradation,1184条)、碳水化合物代谢 (Carbohydrate metabolism,886条)等信号通路为主。
此外,经KOG数据库功能预测分类,有15412条Unigenes可被分为25个类群(图3),其中,注释到Unigenes数目超过2000条的类群有信号转导机制 (Signal transduction mechanisms,2347条)和一般功 能预测(General function prediction only,2214条)。 据Nr数据库的BLASTx比对分析结果可知,有11.94%的Unigenes与异盘并殖吸虫(Paragonimus heterotre- mus)的氨基酸序列高度同源,有9.37%的Unigenes 与海蠕虫(Capitella teleta)的氨基酸序列高度同源,即在亲缘关系上较接近;而剩余的10669条Unige- nes(约占基因总量48.6%)与其他物种的同源性均小 于1.61%,可能是疣吻沙蚕的特有转录本。
2.4 DEGs筛选及表达分析结果
通过比较不同组别疣吻沙蚕的转录组测序结 果,共获得1798个DEGs(图4-A)。M vsF组有349个DEGs,其中,184个DEGs呈上调表达,165个DEGs呈下调表达;R vs F组有1090个DEGs,其中,718个DEGs呈上调表达,372个DEGs呈下调表达;R vs M组有359个DEGs,其中,174个DEGs呈上调表达,185个DEGs呈下调表达。由图4-B可看出,3个比较组的共有DEGs为9个,而M vs F组、R vsF组、Rvs M组的特有DEGs分别是60、746和91个。
2.5DEGs的GO功能注释和KEGG信号通路富集分析结果
DEGs的GO功能注释分析结果显示,筛选获得的1798个DEGs注释在生物学过程、细胞组分、分子功能三大类别的2347条GO功能条目上。由表5可看出,在生物学过程方面,DEGs主要注释到纤毛运 动(Cilium movement)、病毒RNA基因组复制(Viral RNA genome replication)等功能条目;在细胞组分 方面,DEGs主要注释到运动纤毛(Motile cilium)、病毒壳体(Viral capsid)等功能条目;在分子功能方面,DEGs主要注释到细胞色素C氧化酶活性 (Cytochrome-C oxidase activity)、RNA导向5'-3'RNA 聚合酶活性(RNA-directed 5'-3'RNA polymerase ac- tivity)等功能条目。
图5展示了3个比较组疣吻沙蚕DEGs的KEGG 信号通路富集情况(前20条信号通路)。MvsF组的 DEGs 主要富集在心肌收缩(Cardiac muscle contrac- tion)、心肌细胞中肾上腺素能信号传导(Adrenergic signaling in cardiomyocytes)、氧化磷酸化(Oxidative phosphorylation)等信号通路上;R vs F组的DEGs主 要富集在甘氨酸/丝氨酸/苏氨酸代谢(Glycine,serine and threonine metabolism)、花生四烯酸代谢(Arachi- donic acid metabolism)、视黄醇代谢(Retinol metabo-lism)等信号通路上;Rvs M组的DEGs主要富集在心肌收缩、氧化磷酸化、阿尔茨海默氏病(Alzheimer disease)等信号通路上。
2.6疣吻沙蚕性腺发育相关基因筛选结果
综合DEGs的KEGG信号通路富集分析及Nr数 据库BLASTx比对分析,共筛选出14个与疣吻沙蚕性腺发育相关的DEGs,分别是DMRTI、SOX7、 SOX4、CALM、HSP90、COL1A1、ADCY10、ATPase6、 GPX、COX、Ser/Thr、DNAH5、MT-CYB和HSP60基因(表6和图6)。
2.7实时荧光定量PCR验证结果
利用实时荧光定量PCR对转录组测序筛选获
得的HSP70、HSP83、HSP90、DMRTA2、ROPNIL和 SOX7等6个DEGs进行验证,结果(图7)显示,6个DEGs在成熟雄性(M)、成熟雌性(F)和未变态疣吻沙蚕(R)中的表达趋势与转录组测序分析结果基本 一致,进一步证实转录组测序结果的准确性。
3讨论
3.1疣吻沙蚕性腺发育及成熟相关基因
一般而言,有机体的性别由遗传和环境2个因素决定(周丽青等,2020)。本研究通过高通量转录组测序从不同发育时期、不同性别的疣吻沙蚕中筛选出1798个DEGs,综合DEGs的KEGG信号通路富集分析及Nr数据库BLASTx比对分析,最终筛选出14个与疣吻沙蚕性腺发育相关的DEGs,包括DMRTI、SOX7、HSP90及CALM等基因。其中,DMRTI基因在多个物种中与睾丸的分化和发育密切相关(Zhonget al.,2022;Liu et al.,2023),在水产物种的卵巢中也有表达,但表达差异未达显著水平(Guo et al.,2005;Johnsen et al.,2010)。DMRT1基因不仅决定某些动物的性别,还对其性别维持起重要作用(Murphy etal.,2015)。SOX家族基因参与细胞分化、器官发育等生物学过程,且多个SOX家族基因成员被证实参与了机体性腺发育及性别分化(Heenan et al.,2016)。SOX7基因参与雌性机体的性腺分化及卵子形成过程(崔晓羽,2021);SOX4基因在中国大鲵(Andrias davidianus)卵巢中的表达水平相对高于其他组织,故推测其与性腺发育有关(刘静,2015);SOX4和DAX1基因参与了泥鳅的早期胚胎发育、神经系统形成及性腺发育与分化(霍蔚然,2019)。HSP90基因在早期胚胎发育过程中发挥作用,主要表达于卵巢,尤其在卵母细胞和早期胚胎中高表达(Bei et al.,2020)。
钙调蛋白(Calmodulin,CaM)也称钙调素,在杂交F代及真鲷亲本中均与性腺发育调控有关(陈淑吟等,2018)。三角帆蚌性腺CALM基因具有高度保守性,干扰其表达对雌性个体的影响大于雄性个体,故推测CALM基因与雌性的性别发育相关(崔晓羽,2021)。ATPase6通过调控氧化磷酸化通路而影响生物体三磷酸腺苷酶(ATP)的合成。杨娜(2022)研究发现,菲(PHE)胁迫是通过抑制ATPase6基因表达而引起卵巢细胞线粒体 DNA损伤和代谢紊乱,最终导致卵巢发育及其生殖功能受损。此外,精子活力低下的男性患者存在ATPase6基因变异现象,ATPase6是构成ATP合成酶的亚基,参与线粒体氧化磷酸化过程,其结构和功能异常均会导致精子线粒体ATP合成不足,进而影响精子的运动及受精能力(Holyoake et al.,2015)。本研究中,ATPase6基因在雌性疣吻沙蚕的表达量较雄性疣吻沙蚕呈上调趋势,故推测该基因参与雌性个体的性腺发育过程。COX可催化花生四烯酸生成前列腺素(PGs),在PGs的合成过程中发挥着调节作用。日本沼虾性早熟雌虾个体中的COX基因表达水平较正常成熟个体的低,PGs含量也较正常成熟个体的低,说明COX基因低表达会影响雌虾的卵巢发育(江红霞,2017);COX基因在加快罗氏沼虾卵巢成熟方面也发挥着重要作用(陈国柱,2022)。ADCY10基因编码的可溶性腺苷酸环化酶(SAC)可调控Camp/PKA通路和AMPK活性,其中,Camp/PKA通路在颗粒细胞促卵泡激素(FSH)的功能调节和E2产生过程中发挥重要作用(Chen and Chan,2017),AMPK活性则影响卵母细 胞成熟(Jayarajan et al.,2019),故推测ADCY10基因 通过调节生殖激素分泌水平而调控疣吻沙蚕的繁殖 过程。
依据抑制因子的影响和催化底物特异性的不 同,Ser/Thr磷酸酶又可划分为PP1和PP2两大类。Ser/Thr磷酸酶在未成熟精子发育至成熟精子的变 态过程中发生磷酸化,与精子运动性有密切联系(吴 文静等,2021)。DNAH5基因是与纤毛相关的基因, 对精子鞭毛的组装、维持及运动必不可少(彭杨等,2017)。邓丽秋(2023)研究发现,DNAH5基因在海月水母雄性个体中特异表达。MT-CYB是呼吸复合体ⅢI中唯一由线粒体DNA编码的亚基,负责线粒 体呼吸中电子从还原型辅酶Q到细胞色素C的转 运。Mao等(2015)研究表明,精子MT-CYB和MTATP6 基因的多态性及位点突变与体外受精失败相关。
MT-CYB基因突变可能会导致线粒体功能出现某些缺陷,与男性不育症的发展存在关联(Jaweesh et al.,2022)。HSP60基因在哺乳动物的精原细胞和精母 细胞中均能检测到,主要在生殖细胞线粒体中表达, 定位于精子鞭毛中段(Liman,2023)。总之,性腺发 育是一个多基因、多信号通路共同参与调控的复杂 过程,在信号通路中这些DEGs间的作用位点还有 待进一步探究。
3.2疣吻沙蚕性腺成熟及繁殖相关信号通路
疣吻沙蚕的性腺发育和成熟机制与多基因发挥 功能及多个信号通路相关。本研究的KEGG信号通路富集分析结果表明,筛选获得的DEGs主要富集 在氧化磷酸化、花生四烯酸代谢、视黄醇代谢等信号 通路上,表明这些DEGs对疣吻沙蚕性腺形成发挥 重要作用。
氧化磷酸化产生充足ATP是绝大多数细胞生理 功能的基础,但能量代谢并非线粒体的唯一功能,线 粒体还参与信号传导等生理及病理过程。越来越多 的研究证实,线粒体在卵子成熟、受精及胚胎发育过程中发挥着重要作用(van Blerkom and Davis,2007)。体外受精的鱼类,其精子ATP的产生完全依 赖于精子内部底物代谢,而三羧酸循环和氧化磷 酸化途径扮演着重要角色(Dzyuba et al.,2017)。疣 吻沙蚕卵子属于不同步发育型,随着成熟卵子的排 出,未成熟卵子不断发育并分批排出。这种分批产 卵行为,其繁殖亲体需消耗大量能量,且生殖期复杂 的繁殖行为(求偶、群浮、交配及产卵)也需要能量支 撑,与筛选获得的疣吻沙蚕DEGs在氧化磷酸化通 路大量富集的结果相吻合。
GPX基因属于花生四烯酸代谢通路上的相关基 因,而GPX是抗氧化系统中重要的抗氧化酶。动物 的有氧代谢与活性氧自由基(Reactive oxygen spe-cies,ROS)被认为是参与繁殖生物学包括卵母细胞成熟、受精及胚胎发育的重要信号分子(Liuet al.,2019)。日本沼虾SOD基因低表达和GPX基因过表 达,最终导致日本沼虾的性早熟(江红霞,2017)。PI3K/Akt信号通路是卵巢发育相关基因富集的主要信号通路(赵园园等,2022;饶琳洁等,2023)。Guo等(2019)研究表明,细胞因子bFGF和FSH通过PI3K/Akt和ERK信号通路促使鸡颗粒细胞增殖及 抑制凋亡,而促进卵巢卵泡活化;陈盼盼(2020)研究 发现,蚂蝗(Whitmania pigra)雌性性腺发育过程中的DEGs主要富集在PI3K/Akt和溶酶体等信号通路上。COL1A1基因通过激活PI3K/Akt信号通路影响 山羊卵泡发育与成熟,进而调控贵州黑山羊的产羔 性能(周明帅,2023)。Shen等(2019)研究证实,过表达COL1A1基因后可激活PI3K/Akt/mTOR信号通路,促进ECM合成,进而调控颗粒细胞生物学作用。本研究也发现,COL1A1基因是PI3K/Akt信号通路 上的DEGs,故推测COLIA1基因是通过PI3K/Akt信 号通路参与疣吻沙蚕雌性个体发育。
雌性与雄性疣吻沙蚕、性成熟与未成熟疣吻沙 蚕间的DEGs主要富集在代谢途径上,说明代谢途 径可能是参与调控疣吻沙蚕性腺发育及性别分化的 关键信号通路。目前,有关代谢途径对生物性腺发 育及性别分化的影响研究已有较多报道,如饥饿诱 导致使幼年青鳉发生代谢改变,引起DMRT1基因异位表达,进而导致性别逆转(Sakae and Tanaka, 2021);代谢途径是维持间性红螯虾两性性腺发育平 衡的关键信号通路(刘芳芳,2023)。本研究结果也 表明代谢途径对性腺形成发挥着重要作用,是疣吻 沙蚕性腺发育及分化的关键信号通路。与疣吻沙蚕 性腺相关的代谢途径涉及大量候选基因和复杂的调 控通路,因此,后续研究有待于从分子角度深入探究 疣吻沙蚕代谢途径对其性腺发育及分化的影响,以 阐明沙蚕科物种性别调控的分子机制。
4结论
疣吻沙蚕的性腺发育和成熟机制与多基因发挥 功能及多个信号通路相关,包括雄性个体偏向 MTCYB、HSP60和DNAH5等基因,雌性个体偏向HSP90、SOX7和COLIA1等基因,以及氧化磷酸化、 花生四烯酸代谢、视黄醇代谢、甘氨酸/丝氨酸/苏氨 酸代谢等与性腺发育相关的信号通路。
参考文献(References):
曹晨晨.2016.两种体色双齿围沙蚕(Perinereis aibuhitensis)的生物学差异研究[D].大连:大连海洋大学.[Cao C C.
2016. Comparative study of the biology of different body color Perinereis aibuhitensis[D]. Dalian:Dalian Ocean University.] doi:10.7666/d.D01051608.
岑万,江鑫,周翊韬,杨莹,林岗,黄镇.2019.基于Cytb基因序列的双齿围沙蚕分子鉴定[J].福建农业科技,50(5):7-11. [Cen W,Jiang X,Zhou Y T,Yang Y,Lin G,Huang Z.
2019. Molecular identification of Perinereis aibuhitensis based on Cytb gene sequence[J]. Fujian Agricultural Science and Technology , 50 (5) : 7-11. ] doi : 10.13651/j.cnki.
fjnykj.2019.05.002.
陈国柱.2022.罗氏沼虾性腺发育及相关功能基因表达分
析[D].湖州:湖州师范学院.[Chen G Z.2022.Gonadal development and expression analysis of related functional genes in Macrobrachium rosenbergii[D]. Huzhou: Huzhou University.] doi:10.27946/d.cnki.ghzsf.2022.000230.
陈盼盼.2020.蚂蟥性腺发育分子机制初探[D].南京:南京
农业大学.[Chen P P.2020.A preliminary study on the molecular mechanism of gonadal development in Whitma- nia pigra [D]. Nanjing: Nanjing Agricultural University.]
doi: 10.27244/d.cnki.gnjnu.2020.002582.
陈淑吟,张志勇,吉红九,李鹏,赵永超,张志伟.2018.黑鲷×
真鲷杂交子代与真鲷的Calmodulin基因克隆与表达分 析[J].海洋渔业,40(4):435-446.[Chen SY,Zhang ZY, Ji H J, Li P, Zhao Y C, Zhao Z W. 2018. Cloning and expression analysis of Calmodulin from the hybrid F, of Acanthopagrus schlegelii malexPagrus major female and P. major[J]. Marine Fisheries, 40 (4) : 435-446.] doi : 10.
3969/j.issn.1004-2490.2018.04.006.
陈兴汉.2014.疣吻沙蚕繁殖生物学探讨[J].海洋与渔业,
(8) : 64-66. [Chen X H. 2014. Study on reproductive biology of Tylorrhynchus heterochaetus [J]. Ocean and Fishery,(8):64-66.]
崔凯,吴伟伟,刁其玉.2019.转录组测序技术的研究和应用 进展[J].生物技术通报,35(7):1-9.[Cui K,Wu W W, Diao Q Y. 2019. Application and research progress on tran- scriptomics[J]. Biotechnology Bulletin,35(7) :1-9.] doi: 10.13560/j.cnki.biotech.bull.1985.2019-0374.
崔晓羽.2021.三角帆蚌3个性腺发育相关基因的鉴定和功 能研究[D].上海:上海海洋大学.[CuiXY.2021.Identi- fication and functional studies of three genes related to gonadal development in Hyriopsis cumingii[D]. Shanghai: Shanghai Ocean University. ] doi : 10.27314/d.cnki.gsscu.
2021.000532.
邓丽秋.2023.海月水母雌雄性腺的转录组学分析[D].厦
门:集美大学.[Deng L Q.2023.Transcriptome analysis of male and female gonads of moon jellyfish Aurelia aurita [ D ]. Xiamen : Jimei University. ] doi : 10.27720/d.cnki.
gjmdx.2023.000040.
邓泱泱,荔建琦,吴松锋,朱云平,陈耀文,贺福初.2006.nr数
据库分析及其本地化[J].计算机工程,32(5):71-76.
[Deng Y Y, Li J Q, Wu S F, Zhu Y P, Chen Y W,He F C.
2006. Integrated nr database in protein annotation system and its localization[J]. Computer Engineering,32(5): 7176.] doi: 10.3969/j.issn.1000-3428.2006.05.026.
胡园,陈然,胡利华,闫茂仓,李敏,唐明,朱洁,龚洋洋,曾国 权,陆荣茂.2018.不同地区养殖与野生沙蚕营养成分分 析与比较[J].水产科学,37(1):93-99.[Hu Y,Chen R, Hu L H,Yan M C,Li M,Tang M,Zhu J, Gong Y Y,Zeng G Q, Lu R M. 2018. Comparative analysis of nutrient com- position between wild and cultured clamworm Perinereis aibuhitensis from different areas [J]. Fisheries Science,37
(1):93-99.] doi:10.16378/j.cnki.1003-1111.2018.01.014.
霍蔚然.2019.泥鳅Sox4、Daxl基因的克隆和功能研究及孕
酮对其表达的影响[D].新乡:河南师范大学.[Huo W
R. 2019. Molecular cloning, expression analysis of Sox4 and Daxl and its response to progestrone in Misgurnus anguillicaudatus[D]. Xinxiang:Henan Normal University.]
doi:10.7666/d.Y3436620.
江红霞.2017.日本沼虾雌性性早熟相关基因的筛选、克隆、 表达与功能分析[D].杨凌:西北农林科技大学.[Jiang H X. 2017. Screening, cloning, expression and functional analysis of sexual precocity related genes in female Macro- brachium nipponense[D]. Yangling:Northwest Aamp;F Univer- sity.]
姜虎成.2015.克氏原螯虾转录组测序数据发掘和性腺发 育相关基因功能初步研究[D].上海:上海海洋大学.
[Jiang H C. 2015. Transcriptome data mining of Procambarus clarkii and preliminary functional study of its gonadal development related genes [D]. Shanghai: Shanghai Ocean University.]
刘芳芳.2023.不同性别红螯螯虾性腺组织结构及性腺转录 组分析[D].舟山:浙江海洋大学.[Liu F F.2023.Analy- sis of gonad tissue structure and gonad transcriptome in Cherax quadricarinatus of different sexes [D]. Zhoushan: Zhejiang Ocean University. ] doi : 10.27747/d.cnki.gzjhy.2023.000255.
刘静.2015.中国大鲵Sox4a、Sox4b、Sox4c及Sox7基因cDNA序列的克隆和组织表达分析[D].雅安:四川农业大学.
[Liu J. 2015. Cloning and tissue expression analysis of cDNA encoding Sox4 isoforms and Sox7 gene in Chinese giant salamander (Andrias davidianus) [D]. Ya'an: Sichuan Agricultural University.]
刘顺,陈军,沈海钰,陈飞,丁理法,陈逸.2023.多齿围沙蚕规 模化苗种繁育与全人工养殖技术研究[J].水产科技情报,50(6):349-352.[Liu S,Chen J,Shen HY,Chen F, Ding L F,Chen Y. 2013. Study on the technology of large- scale breeding and artificial culture of Perinereis muntia [J]. Fisheries Science amp; Technology Information,50(6):349-352.] doi:10.16446/j.fsti.20221100105.
彭杨,陈卓,朱振潮,张弛,邱前辉.2017.原发性纤毛不动综 合征诊断方法的应用进展[J].解放军医学杂志,42(10): 854-859. [Peng Y, Chen Z, Zhu Z C, Zhang C, Qiu Q H.
2017. Research progress of diagnostic approaches in primary ciliary dyskinesia[J]. Medical Journal of Chinese People's Liberation Army,42(10):854-859.] doi:10. 11855/
j.issn.0577-7402.2017.10.03.
饶琳洁,张危红,魏岳,黎观红,谢金防,韦启鹏,黄江南.
2023.绍兴鸭血清生殖激素及下丘脑开产相关基因的 鉴定分析[J].南方农业学报,54(3):755-763.[RaoLJ, Zhang W H, Wei Y, Li G H,Xie J F,Wei Q P,Huang J N. 2023. Identification and analysis of serum reproductive hormones and genes related to laying in hypothalamus of Shaoxing ducks[J]. Journal of Southern Agriculture, 54
(3):755-763.] doi:10.3969/j.issn.2095-1191.2023.03.011.
宋静静,刘天红,刘洪军,迟雯丹,刘凯凯,于道德.2021.双齿 围沙蚕(Perinereis aibuhitensis)主要器官的组织学观察及其生理功能研究[J].海洋与湖沼,52(3):786-796.[Song J J, Liu T H,Liu H J, Chi W D,Liu K K, Yu D D. 2021. Histological observation on physiologic function of Perine- reis aibuhitensis[J]. Oceanologia et Limnologia Sinica,52
(3):786-796.] doi:10.11693/hyhz20200700223.
王茂元,周洪磊.2020.疣吻沙蚕苗种繁育关键技术[J].科学
养鱼,(2):61-62.[Wang M Y,Zhou HL.2020.Key tech- niques of Tylorrhynchus heterochaetus seedling breeding [J]. Scientific Fish Farming, (2) : 61-62.] doi: 10.3969/j.issn.1004-843X.2020.02.035.
王忠新.2022.不同饵料对双齿围沙蚕生长和营养组成的 影响研究[D].大连:大连海洋大学.[WangZX.2022.
Effects of different diets on growth and nutrient composition of polychaete Perinereis aibuhitensis [D]. Dalian: Dalian Ocean University.] doi: 10.27821/d.cnki. gdlhy.2022.000082.
吴文静,张昕,谭霞,解道豪,杨明华,李亚辉.2021.SRC激酶和磷酸酶PP1y2/PP2A的相互作用对小鼠附睾精子成熟及运动的调控[J].中国实验动物学报,29(2):183-189.
[Wu W J,Zhang X,Tan X,Xie D H,Yang M H,Li Y H.
2021. Regulation of the maturation and motility of mouse epididymal sperm by interaction of SRC kinase and phosphatase PP1y2/PP2A[J]. Acta Laboratorium Animalis Scientia Sinica,29(2) : 183-189.] doi: 10.3969/j.issn. 1005-4847.2021.02.007.
宿丽丽.2016.2,2’,4,4’-四溴联苯醚对双齿围沙蚕毒性效应 的研究[D].厦门:集美大学.[Su LL.2016.A study on the toxic effect of 2,2',4,4'-tetra-bromodiphenyl ether on Perinereis aibuhitensis[D]. Xiamen:Jimei University.]
杨娜.2022.菲胁迫下泥鳅卵黄蛋白原及性腺转录组学分 析研究[D].延安:延安大学.[Yang N.2022.Changes of vitellogenin and transcriptomic analysis of gonads of Mis- gurnu anguillicaudatus under PHE stress[D]. Yan' an:
Yan'an University.] doi: 10.27438/d.cnki.gyadu.2022.000154.
杨威,陈康,李活,黄翔鹄,李长玲.2012.以江蓠为栖息环境 养殖的双齿围沙蚕性腺发育[J].广东海洋大学学报,32
(1):17-23. [Yang W,Chen K,Li H,Huang X H,Li C L.
2012. Gonad development of Perinereis aibuhitensis inhabited by Gracilaria tenmuistipitata under artificial culture condition[J]. Journal of Guangdong Ocean University,32(1):
17-23.] doi:10.3969/j.issn.1673-9159.2012.01.003.
杨尉,陈兴汉.2022.疣吻沙蚕一水稻生态复合种养技术要点 及效益分析[J].南方农业,16(20):17-20.[Yang W,Chen X H. 2022. Technical points and benefit analysis of eco- logical complex cultivation of Tylorrhynchus heterochae- tus and rice [J]. South China Agriculture, 16(20) : 17-20.]
doi:10.19415/j.cnki.1673-890x.2022.20.006.
袁建,敖政,曾素梅,王智伟,赵中龙,季全,张勇.2023.基于 转录组测序的摘除卵巢藏姜母猪背最长肌脂代谢相关 基因筛选与分析[J].南方农业学报,54(3):669-680. [Yuan J, Ao Z,Zeng S M, Wang Z W,Zhao Z L,Ji Q, Zhang Y. 2023. Screening and analysis of genes related to lipid metabolism of longissimus dorsi muscle of ovary- removed Zangjiang sows based on transcriptome sequen-cing[J]. Journal of Southern Agriculture,54(3):669-680.]
doi: 10.3969/j.issn.2095-1191.2023.03.003.
张建,黄科慧,刘洋,唐恬,吴银环,王于栋,陶建波,王艺钢, 姜澳华,刘佳琦,方小梅,易泽林.2022.基于转录组测序 挖掘甜荞自交不亲和相关功能基因[J].西南大学学报
(自然科学版),44(11):99-113.[ZhangJ,Huang KH, Liu Y,Tang T,Wu Y H,Wang Y D,Tao J B,Wang Y G, Jiang A H, Liu J Q, Fang X M, Yi Z L. 2022. Mining of common buckwheat self-incompatibility related gene based on RNA-Seq [J]. Journal of Southwest University (Natu- ral Science) , 44 (11) : 99-113.] doi: 10.13718/j.cnki.xdzk.2022.11.010.
张鹏展,付婧,周进.2022.三沙湾养殖衍生有机物沉降对多 毛类优势种营养生态特征的影响[J].海洋渔业,44(6):
689-699. [Zhang P Z, Fu J, Zhou J. 2022. Impacts of aquaculture-derived organic matter sedimentation on the trophic characteristics of dominant polychaetes in Sansha Bay[J]. Marine Fisheries,44(6):689-699.] doi:10.3969/j.issn.1004-2490.2022.06.004.
赵旺生,李柯锐,张婷婷,潘美兰,王鹏,李春海,张鹏,张永德.2023.基于高通量转录组测序的牦牛和犏牛附睾尾部差异表达基因分析[J].南方农业学报,54(5):1273-1282. [Zhao W S, Li K R,Zhang T T, Pan M L,WangP, Li C H, Zhang P, Zhang Y D. 2023. Differentiallyexpressed genes between epididymal cauda of yak and cat-tleyak based on high-throughput transcriptome sequencing[J]. Journal of Southern Agriculture, 54 (5) : 1273-1282.]doi: 10.3969/j.issn.2095-1191.2023.05.001.
赵园园,孟金柱,伍春亚,潘春威.2022.牛卵巢黄体细胞增殖和孕酮分泌相关基因的筛选及其表达研究[J].河南农业科学,51(10):125-133.[Zhao YY,MengJZ,Wu C Y,Pan C W. 2022. Screening and expression analysis of genesrelated to proliferation and progesterone secretion of lutealcells in bovine ovary [J]. Journal of Henan AgriculturalSciences,51(10):125-133.] doi:10.15933/j.cnki.1004-3268.2022.10.014.
周丽青,赵丹,吴宙,吴磊,杨金龙.2020.主要经济双壳贝类性别分化的分子机制概述[J].渔业科学进展,41(5):194-202. [Zhou L Q, Zhao D, Wu Z, Wu L, Yang J L.2020. Review: Molecular mechanism of sex differentiationin major economic bivalves [J]. Progress in Fishery Scien-ces,41(5):194-202.] doi:10.19663/j.issn2095-9869.20191213001.
周明帅.2023.COL1A1调控卵巢颗粒细胞生物学功能影响
贵州黑山羊产羔性状的研究[D].贵阳:贵州大学.[Zhou
M S. 2023. COL1Al regulates the biological function of ovarian granulosa cells and affects the kidding traits of Guizhou black goats [D]. Guiyang: Guizhou University.]
doi: 10.27047/d.cnki.ggudu.2023.000878.
Apweiler R, Bairoch A, Wu C H, Barker W C, Boeckmann B, Ferro S, Gasteiger E, Huang H Z, Lopez R, Magrane M, Martin M J,Natale D A, O'Donovan C, Redaschi N, Yeh L S L. 2004. UniProt: The universal protein knowledgebase [J]. Nucleic Acids Research,32:D115-D119. doi: 10.1093/ nar/gkh131.
Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M,Davis A P,Dolinski K, Dwight S S, Eppig J T, Harris M A, Hill D P, Issel-Tarver L, Kasarskis A, Lewis S, Matese J C, Richardson J E, Ringwald M, Rubin G M, Sherlock G. 2000. Gene ontology: Tool for the unification of biology. The gene ontology consortium[J]. Nature Genetics,25(1):25-29. doi: 10.1038/75556.
Bei M Y, Wang Q, Yu W S,Han L, Yu J. 2020. Effects of heat stress on ovarian development and the expression of HSP genes in mice [J]. Journal of Thermal Biology, 89: 102532.
doi: 10.1016/j.jtherbio.2020.102532.
Buchfink B, Xie C, Huson D H. 2014. Fast and sensitive protein alignment using DIAMOND[J]. Nature Methods, 12
(1):59-60. doi:10.1038/nmeth.3176.
Chatelain E H, Breton S, Lemieux H, Blier P U. 2008. Epitoky in Nereis (Neanthes) virens (Polychaeta: Nereididae) : A story about sex and death [J]. Comparative Biochemistry and Physiology. Part B: Biochemistry and Molecular Biology,149(1):202-208. doi:10.1016/J.CBPB.2007.09.006.
Chen H, Chan H C. 2017. Amplification of FSH signaling by CFTR and nuclear soluble adenylyl cyclase in the ovary [J]. Clinical and Experimental Pharmacology amp; Physio-
logy,44(S1):78-85. doi:10.1111/1440-1681.12756.
Chen X,Yang S,Yang W,Si Y Y,Xu R W,Fan B,Wang L, Meng Z N. 2020. First genetic assessment of brackish water polychaete Tylorrhynchus heterochaetus: Mitochondrial COI sequences reveal strong genetic differentiation and population expansion in samples collected from southeast China and north Vietnam[J]. Zoological Research,41
(1):61-69. doi:10.24272/j.issn.2095-8137.2020.006.
Cong Y,Lou Y D,Zhao H,Li Z C,Zhang M X,Jin F,Wang Y, Wang J Y. 2022. Polystyrene microplastics alter bioaccumulation, and physiological and histopathological toxicities of cadmium in the polychaete Perinereis aibuhitensis [J]. Frontiers in Marine Science, 9: 939530. doi: 10.3389/ fmars.2022.939530.
Dzyuba B, Bondarenko O, Fedorov P, Gazo I,Prokopchuk G, Cosson J. 2017. Energetics of fish spermatozoa: The proven and the possible[J]. Aquaculture, 472:60-72. doi: 10.1016/ j.aquaculture.2016.05.038.
Finn R D, Bateman A, Clements J, Coggill P C, Eberhardt R Y, Eddy S R, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer E L L, Tate J,Punta M. 2013. Pfam: The protein families database[J]. Nucleic Acids Researchnucleic, 42(D1):D222-D230. doi:10.1093/nar/gkt1223.
García-Alonso J, Ayoola J A O, Crompton J, Rebscher N, Har- dege J D. 2011. Development and maturation in the nerei- did polychaetes Platynereis dumerilii and Nereis succinea exposed to xenoestrogens [J]. Comparative Biochemistry and Physiology. Part C: Toxicology amp; Pharmacology,154
(3):196-203. doi:10.1016/j.cbpc.2011.05.007.
Golding D W. 1974. A survey of neuroendocrine phenomena in non-arthropod invertebrates[J]. Biological Reviews,49(2):
161-224. doi:10.1111/j.1469-185x.1974.tb01573.x.
Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D
A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q
D, Chen Z H, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome [J]. Nature Biotechnology, 29 (7) : 644-652. doi: 10.1038/ nbt.1883.
Guo C G, Zhang G L, Lin X, Zhao D, Zhang C Q, Mi Y L.
2019. Reciprocal stimulating effects of bFGF and FSH on chicken primordial follicle activation through AKT and ERK pathway[J]. Theriogenology,132:27-35. doi:10.1016/ j.theriogenology.2019.04.005.
Guo Y P, Cheng H H, Huang X, Gao S, Yu H S, Zhou R J.
2005. Gene structure, multiple alternative splicing, and expression in gonads of zebrafish Dmrtl[J]. Biochemical and Biophysical Research Communications, 330 (3) : 950957. doi: 10.1016/j.bbrc.2005.03.066.
Heenan P, Zondag L, Wilson M J. 2016. Evolution of the Sox gene family within the chordate phylum[J]. Gene,575(2) : 385-392. doi: 10.1016/j.gene.2015.09.013.
Heuer C M, Loesel R. 2008. Immunofluorescence analysis of the internal brain anatomy of Nereis diversicolor (Polychaeta, Annelida)[J]. Cell amp; Tissue Research,331(3): 713-724. doi:10.1007/s00441-007-0535-y.
Holyoake A J, Sin I L,Benny P S, Sin F Y T. 2015. Association of a novel human mtDNA ATPase6 mutation with immature sperm cells[J]. Andrologia, 31 (6) : 339-345. doi: 10.
1046/j.1439-0272.1999.00150.×.
Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H V, Heller
D, Walter M C, Rattei T, Mende D R, Sunagawa S, Kuhn
M, Jensen L J, Mering C V, Bork P. 2015. eggNOG 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences [J]. Nucleic Acids Research, 44 (D1) : D286D293. doi: 10.1093/nar/gkv1248.
Jaweesh S M,Hammadeh M E,Dahadhah F W, Al Zoubi M S, Amor H. 2022. Association between the single nucleotide variants of the mitochondrial cytochrome B gene (MT-CYB) and the male infertility[J]. Molecular Biology Reports,49:
3609-3616. doi:10.1007/s11033-022-07200-y.
Jayarajan V, Appukuttan A, Aslam M, Reusch P, RegitzZagrosek V, Ladilov Y. 2019. Regulation of AMPK activity by type 10 adenylyl cyclase:Contribution to the mitochondrial biology, cellular redox and energy homeostasis [J]. Cellular and Molecular Life Sciences, 76: 4945-4959.
doi: 10.1007/s00018-019-03152-y.
Johnsen H, Seppola M, Torgersen J S, Delghandi M, Andersen
0. 2010. Sexually dimorphic expression of dmrtl in immature and mature Atlantic cod (Gadus morhua L.) [J]. Comparative Biochemistry and Physiology. Part B:Biochemistry and Molecular Biology,156(3):197-205. doi: 10.1016/ j.cbpb.2010.03.009.
Kanehisa M, Goto S,Kawashima S, Okuno Y,Hattori M. 2004.
The KEGG resource for deciphering the genome [J]. Nucleic Acids Research,32(S1): D277-D280. doi:10.1093/nar/ gkh063.
Kianann T, Yu J Y, Liao S L, Huang J R, Li M, Wang W M.
2022. Transcriptomic profiling and novel insights into the effect of AG ablation on gonad development in Macrobrachium rosenbergii [J]. Aquaculture, 556: 738224. doi: 10.
1016/j.aquaculture.2022.738224.
Koonin E V,Fedorova N D,Jackson J D,Jacobs A R, Krylov D M, Makarova K S, Mazumder R, Mekhedov S L, Nikolskaya A N,Rao B S, Rogozin I B, Smirnov S,Sorokin A V, Sverdlov A V, Vasudevan S, Wolf Y I, Yin J J,Natale D A.
2004. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes[J]. Genome Biology,5(2):R7. doi:10.1186/gb-2004-5-2-r7.
Langmead B, Trapnell C,Pop M, Salzberg S L. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome [J]. Genome Biology,10: R25. doi: 10.1186/gb-2009-10-3-r25.
Liman N. 2023. Heat shock proteins are differentially expressed in the domestic cat (Felis catus) testis, epididymis, and vas deferens [J]. Microscopy and Microanalysis, 29 (2) :713-738. doi: 10.1093/micmic/ozac054.
Liu B Z, Cong J J, Su W Y, Hao Z L, Sun Z H, Chang Y Q.
2023. Identification and functional analysis of Dmrtl gene and the SoxE gene in the sexual development of sea cucumber,Apostichopus japonicus[J]. Frontiers in Genetics, 14:
1097825. doi:10.3389/fgene.2023.1097825.
Liu Y, Zhai J J, Chen J, Wang X M, Wen T R. 2019. PGC-1a protects against oxidized low-density lipoprotein and luteinizing hormone-induced granulosa cells injury through ROS-p38 pathway [J]. Human Cell, 32(3) : 285-296. doi:
10.1007/s13577-019-00252-6.
Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2 [J]. Genome Biology, 15 (12) : 550. doi: 10.1186/s13059-
014-0550-8.
Mao G H,Wang Y N,Xu M,Wang W L,Tan L,Tao S B. 2015. Polymorphisms in the MT-ATP6 and MT-CYB genes in in vitro fertilization failure [J]. Mitochondrial DNA, 26 (1):
20-24. doi: 10.3109/19401736.2013.840612.
Murphy M W, Lee J K, Rojo S, Gearhart M D, Kurahashi K, Banerjee S, Loeuille G A, Bashamboo A, McElreavey K, Zarkower D, Aihara H, Bardwell V J. 2015. An ancient protein-DNA interaction underlying metazoan sex determination [J]. Nature Structural amp; Molecular Biology, 22(6): 426-442. doi:10.1038/nsmb.3032.
Sakae Y, Tanaka M. 2021. Metabolism and sex differentiation in animals from a starvation perspective [J]. Sexual Development, 15(1-3):168-178. doi:10.1159/000515281.
Shen P L,Xu J,Wang P,Zhao X,Huang B,Wu F,Wang L L, Chen W L,Feng Y,Guo Z W,Liu X H,Deng Y F,Jiang J R, Shi D S, Lu F H. 2019. A new three-dimensional glass
scaffold increases the in vitro maturation efficiency of buffalo (Bubalus bubalis) oocyte via remodeling the extracellular matrix and cell connection of cumulus cells[J]. Reproduction in Domestic Animals , 55 (2) : 170-180. doi : 10.
1111/rda.13602.
Simão F A, Waterhouse R M, Ioannidis P, Kriventseva E V, Zdobnov E M. 2015. BUSCO: Assessing genome assem- bly and annotation completeness with single-copy ortho- logs[J]. Bioinformatics, 31(19):3210-3212. doi: 10.1093/ bioinformatics/btv351.
Sunil C,Zheng X C,Yang Z Q, Cui K P,Su Y P,Xu B J. 2021. Antifatigue effects of Hechong (Tylorrhynchus heterochaetus) through modulation of Nrf2/ARE- mediated antioxidant signaling pathway[J]. Food and Chemical Toxicology,
157:112589. doi:10.1016/j.fct.2021.112589.
Tatusov R L, Galperin M Y, Natale D A, Koonin E V. 2000. The COG database: A tool for genome-scale analysis of protein functions and evolution[J]. Nucleic Acids Research,
28(1):33-36. doi:10.1093/nar/28.1.33.
Tessmar-Raible K, Raible F, Christodoulou F, Guy K, Rembold M, Hausen H, Arendt D. 2007. Conserved sensoryneurosecretory cell types in annelid and fish forebrain:
Insights into Hypothalamus evolution [J]. Cell, 129 (7) : 1389-1400. doi: 10.1016/j.cell.2007.04.041.
van Blerkom J, Davis P. 2007. Mitochondrial signaling and fertilization [J]. Molecular Human Reproduction, 13 (11) : 759-770. doi: 10.1093/molehr/gam068.
Won E J, Rhee J S,Shin K H,Jung J H,Shim W J,Lee Y M, Lee J S. 2013. Expression of three novel cytochrome P450 (CYP) and antioxidative genes from the polychaete,Perinereis nuntia exposed to water accommodated fraction (WAF) of iranian crude oil and benzo [a]pyrene [J]. Marine Environmental Research, 90: 75-84. doi: 10.1016/j.
aquaculture.2022.738224.
Wu X,Yang Y,Wang T,Zhong C Y, Tao Y H,Chang L Y, Meng Z N, Liu X C. 2023. Transcriptome profiling of the gonad during sex differentiation in hermaphroditic brownmarbled grouper (Epinephelus fuscoguttatus) [J]. Aquaculture Reports, 30: 101542. doi : 10.1016/j.aqrep.2023.10
1542. Yang Z Q, Sunil C,Jayachandran M,Zheng X C, Cui K P, Su Y P, Xu B J. 2020. Anti-fatigue effect of aqueous extract of Hechong (Tylorrhynchus heterochaetus) via AMPK linked pathway[J]. Food and Chemical Toxicology, 135: 111043. doi: 10.1016/j.fct.2019.111043.
Zhong Z W, Wang Y L,Feng Y,Xu Y,Zhao L P, Jiang Y H, Zhang Z P. 2022. The molecular regulation mechanism of Dmrt1—Based on the establishment of the testis cell line derived from two-spot puffer Takifugu bimaculatus[J]. Fish Physiology and Biochemistry, 48 (6) : 1475-1494. doi: 10.
1007/s10695-022-01150-9.
(责任编辑兰宗宝)