不同种源银杏同质园幼苗生长与叶片药用成分含量比较
2023-11-13张孟楠顾剑涛邓辉洪宋鹏
张孟楠,顾剑涛,邓辉洪,宋鹏*
1.四川省林业科学研究院,四川 成都 610000;2.四川丹佛信息技术服务有限公司,四川 成都 610066;3.开江县林业科研所,四川 开江 635250
银杏(Ginkgo bilobaL.)是中国特有的珍贵孑遗植物,具有很高的经济价值和药用价值。银杏叶片主要含黄酮类和萜类内酯类等药用成分,对心血管、神经系统均具有较强的药理活性[1-2],其中银杏萜类内酯主要包括银杏内酯A、银杏内酯B、银杏内酯C和白果内酯[3],具有抗氧化、抗炎、抗血小板聚集、保护神经等药理活性[4-9],其中银杏内酯B是在自然界中迄今为止发现的活性最强的血小板活化因子拮抗剂[10]。
目前,关于银杏黄酮和萜类内酯含量在不同品种、不同区域和不同环境间的差异性研究较多[11-15]。已有研究表明,黄酮和萜类内酯含量受遗传、立地条件和环境因子等多方面因素的影响,不同种源间其含量也存在一定差异[13,14]。而这些差异究竟是受遗传的影响还是环境因素长期综合作用所致,尚不明确。同质园试验是近几年用来研究遗传和环境因素对植物初生生长和次生代谢的影响的一种直接有效的方法[16],而同质园条件下银杏不同种源幼苗生长及药用成分含量差异方面的研究未见报道。因此,以4 个不同种源地泸定(LDS)、青川(QCS)、苍溪(CXS)和开江(MCS)银杏种子为试验材料,进行同质园栽培,分析银杏对环境的适应性,研究同质园条件下银杏药用成分含量的差异,探讨遗传和环境长期作用对这些差异性的影响,为高效选育叶片药用含量高的种源和品种等提供依据。
1 材料与方法
1.1 试验材料
自2017 年以来,通过对四川银杏种资源调查和叶用银杏产业发展的调研,在前期对银杏叶片黄酮含量的研究基础上,于2020 年10 月在泸定、青川、苍溪和开江四个区域(见表1),分别选取15 株长势旺盛,无明显病虫害,结实量大的银杏雌株收集种子混匀,2020 月12 份进行同质园种植栽培,2021 年8 月对其一年生苗表型性状和叶片药用成分进行测定。
表1 银杏种子种源收集地概况Tab.1 General situation of Ginkgo biloba seed provenance collection sites
1.2 试验方法
不同种源采用相同的种植技术,均采用人工点播种植方式,其株行距为30 cm×10 cm。每个种源种植三个小区,小区面积为6 m×9 m,小区采用随机区组排列,小区间设保护行。
1.3 测定方法
种子横径、纵径、侧径采用电子游标卡尺测定,精确到小数点后2 位,每个种源各测定种子数量50 粒,重复3 次。百粒重选用电子天平测定,精确到小数点后2 位,随机选取100 粒种子,重复3 次。
采取等距抽样法每个小区抽取30 株,每个种源三个小区共计90 株。分别测定各样株的地径、株高、冠幅、单株叶片数量,随机摘取银杏苗上、中、下部位不同方向的叶片50 片,测量其平均质量以及计算出单株叶重。
总黄酮醇苷和萜类内酯含量测定参照2020 版《中国药典》一部银杏叶含量测定,高效液相色谱法(通则0512)测定,计算公式为:
总黄酮醇苷含量=(槲皮素含量+山柰酚含量+异鼠李素含量)×2.51,
含萜类内酯=银杏内酯A 含量+银杏内酯B 含量+银杏内酯C 含量+白果内酯含量
其计算结果精确到小数点后2 位,重复3 次。
1.4 数据处理和分析方法
利用Excel 对银杏表型性状、叶片总黄酮醇苷和萜类内酯类含量进行整理分析及相关计算,采用SPSS 27 软件进行多重比较和方差分析。
2 结果与分析
2.1 不同种源间银杏种子和幼苗生长差异分析
不同种源银杏种子表型性状结果表明,除侧径(F侧径=2.602,P=0.124)外,不同种源间种子表型性状均存在极显著差异(F横径=70.041,P<0.01;F纵径=214.937,P<0.01;F百粒重=94.167,P<0.01)(见图1)。种源间种子百粒重平均值为206.17 g,LDS 最低(148.96 g),显著低于其他种源,MCS 最高(276.34 g),同时MCS 种子横径和纵径均显著高于其他种源,分别为26.34 mm,17.90 mm,QCS种子纵径显著低于其他种源(15.34 mm)。
图1 不同种源银杏种子表型性状Fig.1 Phenotypic characters of Ginkgo biloba L.seeds from different provenances
不同种源银杏幼苗生长结果表明,除地径(F地径=0.92,P>0.05)外,不同种源间幼苗生长存在显著差异(F苗高=12.79,P<0.01;F冠幅=3.73,P=0.02;F单株叶数=10.401,P<0.01;F单叶重=6.91,P<0.01;F单株叶重=8.084,P=0.01)(见图2)。MCS 和LDS 的苗高分别为28.45 cm 和 25.56 cm,显著高于QCS 和CXS;冠幅平均值为15.37 cm,LDS 和MCS显著高于QCS,CXS 与各种源间差异不显著;单叶重各种源的平均值为3.99 g、单株叶数各种源的平均值为9.93 片、单株叶重各种源的平均值为44.58 g,均表现为LDS 和MCS 显著高于QCS 和CXS,单叶重LDS 最大4.91 g,单株叶数和单株叶重MCS 最大为28.45 cm,12.6 片。
图2 不同种源银杏苗表型差异Fig.2 Comparison of Ginkgo biloba L.seedings from different provenances
2.2 不同种源间黄酮和萜类内酯成分含量差异分析
对不同种源地的银杏叶片黄酮和萜类内酯成分含量测定,结果表明:除银杏内酯C(F银杏内酯C=0.970,P=0.453)外,各种源间黄酮和萜类内酯含量存在显著差异(F黄酮=13.518,P=0.02;F总萜类内酯=31.751,P<0.01;F白果内酯=23.641,P<0.01;F银杏内酯A=11.190,P=0.03;F银杏内酯B=19.347,P=0.01;)。由图3 可知,各种源黄酮平均含量为1.89%,最低的QCS 种源为1.57%,显著低于其他3 个种源,而其他3 个种源间并无显著差异,最高的CXS 为2.04 %;各种源萜类内酯平均含量为1.00%,含量最高LDS 为1.14%,显著高于其他种源,含量最低的MCS 为0.86%,显著低于其他种源,QCS 和CXS 间无显著差异;
图3 不同种源黄酮和萜类内酯成分含量差异Fig.3 Contents of flavonoids and terpene lactones were different in Ginkgo biloba L.from different provenances
各种源白果内酯平均含量为0.32%,最高的LDS 为0.38%,显著高于其他3 个种源,其他3 个种源间无显著差异;CXS 和LDS 的银杏内酯A 含量均为0.10%,显著高于QCS 和MCS,而QCS 和MCS间无显著差异;各种源银杏内酯B 平均含量为0.41%,最高的LDS 为0.47%,显著高于其他种源,最低的MCS 为0.35%,显著低于其他种源,QCS 和CXS 间无显著差异;银杏内酯C 含量各种源间无明显差异,各种源含量表现为LDS>QCS>MCS>CXS。
2.3 不同种源间各性状相关性分析
不同种源的种子及幼苗生长和叶片药用成分含量与种源地环境相关性分析结果(见图4)表明:苗高与单株叶重呈极显著正相关(0.912);百粒重与白果内酯、银杏内酯B、萜类内酯均显著负相关,相关系数分别为(-0.867)、(-0.803)和(-0.849);萜类内酯与白果内酯、银杏内酯A 和银杏内酯B 均呈极显著正相关,相关系数分别为(0.928)、(0.756)和(0.962);白果内酯与银杏内酯A 和银杏内酯B 呈显著正相关,相关系数分别为(0.615)和(0.849);银杏内酯A 与银杏内酯B 呈显著正相关(0.763)。总的来说幼苗生长特征与叶片药用成分含量间的相关性不高。
图4 银杏各性状间相关性分析Fig.4 Correlation analysis of various characters of Ginkgo biloba L.
3 结论与讨论
3.1 不同种源间种子及一年生苗和叶药用成分含量差异性
植物的表型可塑性被认为是植物发生生物进化和适应环境的基本条件,在植物适应生境中有着重要的作用[18-20]。在本研究中不同种源银杏种子的表型性状有显著的差异,说明银杏种子在不同环境中表型有较大的可塑性。
有研究表明植物经过环境的长期干扰后,其生长环境对子代生长和次生代谢物的表达具有强烈的影响[21]。在不同的生长环境中银杏的生长有明显的差异,因为银杏具有较强的适应环境变化的能力[22],而本研究中不同种源银杏在相同环境条件下幼苗生长性状除冠幅和地径外其他均呈显著差异,这些差异可能是亲代受种源地环境的影响导致子代幼苗部分生长存在遗传变异。Groot 等的研究表明,子代性状差异变化依赖于亲本生存环境[23]。虽然各种源银杏地径和冠幅相差较多,但各种源间并不存在显著差异,这可能是不同种源银杏幼苗地径和冠幅遗传变异较小,随着银杏苗龄的增长其地径和冠幅可能会逐渐出现显著差异。
植物为适应环境,经过长期的进化与环境相互作用产生了次生代谢物,植物的次生代谢产物的积累有助于抵御环境的胁迫[24],银杏的次生代谢物中黄酮类和萜类内酯类是银杏叶发挥独特药理作用的主要化学成分[25]。有研究表明不同地区银杏的黄酮和萜类内酯含量与经纬度、年均温、年降水量、无霜期、年均日照时数等气候因子的相关性均不显著,认为这种差异极有可能是由单株自身的遗传特性决定的[13,15]。也有研究表明温度、水分、光照等环境条件对黄酮和萜类内酯含量积累有着重要影响[26-28]。在本研究中,不同种源银杏在相同环境条件下黄酮和萜类内酯含量也呈显著性差异。这可能与不同银杏种源地的气候和土壤环境有关,在不同环境的长期影响下遗传物质发生了一定的改变,这与刘芙蓉等对四川不同种源银杏叶片黄酮含量的研究结果相似,银杏在适宜的环境条件下遗传物质有利于黄酮类化合物的积累[29]。不同种源银杏萜类内酯中银杏内酯A、银杏内酯B 和白果内酯含量均呈显著差异,只有银杏内酯C 含量差异不显著,可能控制银杏内酯C 含量的遗传物质在不同地理环境条件下影响较小。结果表明,不同种源的银杏在黄酮和萜类内酯类含量差异可能是亲代受环境的影响导致子代黄酮和萜类内酯的遗传物质存在变异。由于不清楚黄酮和萜类内酯的差异有多大程度上是由遗传物质主导的,有多大程度是因为抵御环境胁迫代谢物积累导致的差异,以及这些差异性在相同环境条件下能否继续保持相关性状,需进一步观察研究。
3.2 不同种源间银杏各性状相关性
本研究中通过各性状间的相关性比较,发现幼苗生长特征与药用成分含量间的相关性不高,证明银杏一年生苗表型性状不能对药用优良种源进行间接选择。同时本研究发现银杏内酯C 含量与其他内酯间和总萜类内酯无显著相关关系,而其他内酯间以及与总萜类内酯间均显著正相关,表明在萜类内酯的提取和利用时,银杏内酯A、银杏内酯B 和白果内酯含量在提取过程中可以相互参考。苗高与单株叶产量呈极显著正相关,说明苗高对叶产量大小具有参考性,但是相关系数不能完全说明苗高对叶产量的重要性,因为叶产量性状的表现是由叶大小、单叶重量和数量等一系列因子共同作用的结果。
综上所述,本研究将4 个不同种源的银杏种子,经同质园栽培后,子代幼苗的生长性状以及药用成分含量具有显著差异。发现这种差异是银杏在经过环境的长期干扰后,其生长环境对子代生长特性的表达产生了影响,并认为这些差异可传递到子代是因为不同种源地环境的影响导致遗传物质发生改变主导的。通过相关性分析发现幼苗生长特征与药用成分含量间的相关性不高。而不同种源地环境因子对子代的表现性状有什么样的相关性和银杏的这些差异性在消除不同种源地环境影响后是否能继续保持相关性状,有待继续观察研究。