APP下载

未置氢及置氢TC21钛合金六角头螺栓冷镦成形及其成形后的显微组织与显微维氏硬度

2023-10-18张小雪宗胜杰马志远袁宝国

精密成形工程 2023年10期
关键词:冷镦紧固件氏硬度

张小雪,宗胜杰,马志远,袁宝国*

未置氢及置氢TC21钛合金六角头螺栓冷镦成形及其成形后的显微组织与显微维氏硬度

张小雪1,宗胜杰2,马志远2,袁宝国2*

(1.安徽三联学院 机械工程学院,合肥 230601; 2.合肥工业大学 材料科学与工程学院,合肥 230009)

解决TC21钛合金六角头螺栓冷镦成形困难的难题。利用置氢处理改善TC21钛合金的冷镦成形性能,利用电子万能材料试验机对未置氢和置氢TC21钛合金六角头螺栓进行冷镦成形,利用金相显微镜、X射线衍射仪、透射电子显微镜和显微维氏硬度计等设备对未置氢和置氢TC21钛合金冷镦六角头螺栓的显微组织和显微维氏硬度进行分析。在冷镦成形过程中,置氢TC21钛合金六角头螺栓未出现缺陷,而未置氢TC21钛合金六角头螺栓则出现了裂纹。未置氢和置氢TC21钛合金冷镦六角头螺栓的头部均呈现出“一字双岔状变形带”,在未置氢TC21钛合金冷镦六角头螺栓头部变形带的分岔处出现了裂纹。与未置氢TC21钛合金冷镦六角头螺栓相比,置氢TC21钛合金冷镦六角头螺栓的显微组织发生了显著变化。在置氢TC21钛合金冷镦六角头螺栓中,α相和β相的光学对比度与未置氢合金的相反,α相含量减少,β相含量增加,β相成为合金的主要相,并发现了较多的位错。置氢TC21钛合金冷镦六角头螺栓各区的显微维氏硬度均低于未置氢TC21钛合金冷镦六角头螺栓各区的显微维氏硬度。置氢处理有利于TC21钛合金六角头螺栓的冷镦成形。

钛合金;六角头螺栓;冷镦;显微组织;显微维氏硬度

随着我国航空、航天、船舶等领域的迅速发展,对钛合金紧固件的需求日益增加。20世纪50年代,美国首次将钛合金紧固件应用于B-52型轰炸机上,并取得了显著的减重效果,自此以后世界各国纷纷开始开展钛合金紧固件的研究[1]。国内外飞机上都需要大量的钛合金紧固件[2]。因此,亟须开展钛合金紧固件成形研究。

冷镦工艺具有生产率高、材料利用率高、表面质量和内在综合性能好等优点,是紧固件成形的首选工艺[3-4],但大多数难变形钛合金的室温塑性较差[5-6],这使得难变形钛合金紧固件不得不采用热镦工艺进行成形,从而限制了其应用。相关研究表明[7-9],氢处理技术可以提高钛合金的室温塑性。Mal'kov等[10]研究了氢处理对VT30等β型钛合金室温塑性的影响,发现当氢的质量分数为0.1%时,在室温下将试样镦粗压扁至薄饼,其侧面也未出现任何裂纹。Yuan等[11-12]研究了氢处理对TC4和TC21钛合金室温塑性的影响,发现经氢处理后,TC4和TC21钛合金的室温塑性较原始合金的分别提高了83.83%和244.33%。因此,利用氢处理技术有望克服难变形钛合金紧固件冷镦成形困难的难题,对促进钛合金紧固件在我国航空、航天、船舶等领域的应用具有重要意义。然而,目前关于置氢钛合金紧固件的研究报道较少。

本文利用置氢处理技术向TC21钛合金中置入适量的氢,以提高TC21钛合金的冷镦成形性能,利用电子万能材料试验机对置氢TC21钛合金六角头螺栓进行冷镦成形,并对其显微组织和显微维氏硬度进行分析研究。

1 实验

使用的材料是TC21钛合金,其显微组织如图1所示,圆柱形试样尺寸为6 mm×9 mm,按照文献[13]对试样进行处理。采用高温气相充氢法在自制的氢处理装置中对TC21钛合金试样进行置氢处理,置氢温度为850 ℃,保温时间为2 h。为了消除置氢处理过程中热处理对TC21钛合金试样组织与性能的影响,对TC21钛合金试样进行了与置氢处理相同的热处理,即在850 ℃下保温2 h。利用METTLER TOLEDO ME55精密电子天平称取置氢前后TC21钛合金试样的质量。经过置氢处理后,获得了氢含量为0.69%(质量分数)的置氢TC21钛合金试样。

图1 原始TC21钛合金的金相显微组织

利用MTS Landmark电子万能材料试验机对TC21钛合金六角头螺栓进行冷镦成形,成形速度为200 mm/min,采用凡士林润滑。利用YUESHI YM710R光学显微镜对六角头螺栓的显微组织进行观察。利用Rigaku D/MAX2500VL/PC X射线衍射仪对冷镦六角头螺栓中的相组成进行检测,工作电流为40 mA,加速电压为40 kV,扫描速度为6 (°)/min,射线源为Cu kα。利用FEI Tecnai G2 F20透射电子显微镜对冷镦六角头螺栓中的微观组织及相结构进行研究,加速电压为200 kV。利用HVS1000A-XYT显微维氏硬度计对冷镦六角头螺栓的显微维氏硬度进行测量,每个区域各测5次,取平均值作为该区的显微维氏硬度值,加载载荷为4.9 N,保压时间为30 s。

2 结果与分析

2.1 六角头螺栓冷镦成形

未置氢和置氢TC21钛合金冷镦成形的六角头螺栓如图2所示。由图2a可知,未置氢TC21钛合金六角头螺栓在冷镦成形过程中在45°方向上出现了裂纹。这是因为在冷镦成形过程中,TC21钛合金六角头螺栓的剪应力沿45°方向上的值最大,导致TC21钛合金六角头螺栓易于沿着45°方向断裂。由图2b可知,置氢TC21钛合金六角头螺栓在冷镦成形过程中未出现缺陷,表明置氢处理有利于改善TC21钛合金六角头螺栓的冷镦成形性能。

图2 未置氢(a)和置氢(b)TC21钛合金冷镦成形的六角头螺栓实物图及成形前试样的实物图(c)

2.2 六角头螺栓冷镦成形后的微观组织

2.2.1 金相显微组织分析

根据螺栓冷镦成形过程中的受力及变形情况,可将冷镦六角头螺栓剖面的变形区域分成4个区,其示意图如图3所示。其中,Ⅰ区为难变形区,变形量较小;Ⅱ区为大变形区,变形量较大;Ⅲ区为小变形区,其变形量介于大变形区的与难变形区的之间;Ⅳ区为不变形区。

图3 冷镦六角头螺栓剖面的变形区域示意图

将冷镦六角头螺栓沿轴线切开,对六角头螺栓剖面整体及Ⅰ区、Ⅱ区、Ⅲ区、Ⅳ区等变形区域的显微组织进行观察和分析。未置氢和置氢TC21钛合金冷镦六角头螺栓剖面的金相显微组织分别如图4和图5所示。可以看出,未置氢和置氢TC21钛合金冷镦六角头螺栓的头部均呈现出“一字双岔状变形带”,文献[14-15]中也报道了类似现象。在变形带的“一”字部位,TC21钛合金的组织被压扁,表明在冷镦成形过程中,在TC21钛合金六角头螺栓头部的中心区域发生了较大的变形。在未置氢TC21钛合金冷镦六角头螺栓头部变形带的分岔处出现了裂纹,这是由于在冷镦成形过程中,六角头螺栓头部中心区域的“一”字处仅受到压缩应力的作用,而在分岔处不仅受到压缩应力的作用,还受到剪切应力的作用[16-17]。因此,在分岔处易产生裂纹。而在置氢TC21钛合金冷镦六角头螺栓头部变形带的分岔处没有发现裂纹,表明置氢TC21钛合金的冷镦成形性能高于未置氢TC21钛合金的冷镦成形性能。

由图4和图5可以看出,Ⅱ区的显微组织被压扁,发生的变形最大,Ⅲ区发生的变形次之,Ⅰ区发生的变形最小,Ⅳ区没有发生变形。由图4可以看出,未置氢TC21钛合金冷镦六角头螺栓的组织具有典型的两相结构,包括α相和β相,其中较亮的是α相,含量较多,较暗的是β相,分布在α相周围,含量较少。与未置氢TC21钛合金冷镦六角头螺栓相比,置氢TC21钛合金冷镦六角头螺栓的显微组织发生了显著变化。由图5可以看出,在置氢TC21钛合金冷镦六角头螺栓中,α相和β相的光学对比度与未置氢合金的相反,这是由于氢的加入改变了α相和β相的电化学电位[18-19]。与未置氢TC21钛合金冷镦六角头螺栓相比,置氢TC21钛合金冷镦六角头螺栓中α相的含量减少,β相的含量增加,β相成为合金的主要相,这是由于氢是一种β相稳定元素,氢的加入会增强TC21钛合金中β相的稳定性,降低β相的转变温度,从而使更多的β相保留至室温[20-22]。另外,在置氢TC21钛合金冷镦六角头螺栓中发现α相发生了球化现象,这是因为在氢渗入TC21钛合金的过程中,氢原子会腐蚀α相的相界,进而导致α相发生球化现象[23]。

由图4和图5可以看出,在置氢TC21钛合金冷镦六角头螺栓的显微组织中发现了较多的位错,表明在冷镦成形过程中,置氢TC21钛合金六角头螺栓主要是以位错滑移的方式发生塑性变形。而在未置氢TC21钛合金冷镦六角头螺栓的显微组织中未发现明显的位错,这是由于未置氢TC21钛合金的室温塑性较差,导致六角头螺栓在发生较大的变形前已断裂,表明置氢处理有利于促进钛合金中位错的运动。

图5 置氢TC21钛合金冷镦六角头螺栓剖面的金相显微组织

2.2.2 X射线衍射结果分析

未置氢和置氢TC21钛合金冷镦六角头螺栓的XRD图谱如图6所示。由图6a可以看出,未置氢TC21钛合金冷镦六角头螺栓由α相和β相组成,α相的衍射峰强度高于β相的衍射峰强度,表明α相的含量高于β相的含量。与未置氢TC21钛合金冷镦六角头螺栓的XRD图谱相比,置氢TC21钛合金冷镦六角头螺栓的XRD图谱发生了明显的变化,如图6b所示。在置氢TC21钛合金冷镦六角头螺栓的XRD图谱中,β相的衍射峰强度明显增强,表明β相的含量增加,这与金相显微组织分析结果一致。由图6b可以看出,在置氢TC21钛合金冷镦六角头螺栓的XRD图谱中发现了面心立方晶格结构δ氢化物的衍射峰(其成分为TiH,1.5≤≤2),其点阵常数为=== 0.444 nm[24-25],在随后的TEM分析中确定了合金中存在δ氢化物。

2.2.3 透射电镜组织分析

2.3 六角头螺栓冷镦成形后的显微维氏硬度

未置氢和置氢TC21钛合金冷镦六角头螺栓的显微维氏硬度如图8所示。可以看出,置氢TC21钛合金冷镦六角头螺栓各区的显微维氏硬度均低于未置氢TC21钛合金冷镦六角头螺栓各区的显微维氏硬度,这是由置氢合金中β相的含量增加导致的,与未置氢TC21钛合金冷镦六角头螺栓相比,置氢TC21钛合金冷镦六角头螺栓的Ⅰ区、Ⅱ区、Ⅲ区和Ⅳ区的显微维氏硬度分别降低了20.89%、17.52%、19.82%和24.96%,表明置氢处理可以软化TC21钛合金,有利于TC21钛合金六角头螺栓的冷镦成形。

未置氢和置氢TC21钛合金冷镦六角头螺栓4个区的显微维氏硬度变化规律相似,均为:Ⅱ区硬度>Ⅲ区硬度>Ⅰ区硬度>Ⅳ区硬度,这是因为未置氢和置氢TC21钛合金六角头螺栓在冷镦成形过程中均发生了不均匀变形,变形量越大的区域,加工硬化程度越大,显微维氏硬度值也越大。

图6 未置氢(a)和置氢(b)TC21钛合金冷镦六角头螺栓的XRD图谱

图7 置氢TC21钛合金冷镦六角头螺栓头部的TEM图像

图8 未置氢和置氢TC21钛合金冷镦六角头螺栓的显微维氏硬度

3 结论

置氢处理有利于TC21钛合金六角头螺栓的冷镦成形。置氢处理后TC21钛合金六角头螺栓在冷镦成形过程中未出现缺陷,而未置氢TC21钛合金六角头螺栓在冷镦成形过程中出现了裂纹。与未置氢TC21钛合金冷镦六角头螺栓相比,置氢TC21钛合金冷镦六角头螺栓的显微组织发生了显著变化。在置氢TC21钛合金冷镦六角头螺栓的显微组织中,α相的含量减少,β相的含量增加,且发现了较多的位错。置氢处理可以软化TC21钛合金,有利于TC21钛合金六角头螺栓的冷镦成形。

[1] 董瑞峰, 李金山, 唐斌, 等. 航空紧固件用钛合金材料发展现状[J]. 航空制造技术, 2018, 61(4): 86-91. DONG Rui-feng, LI Jin-shan, TANG Bin, et al. Research Development of Titanium for Fastener Application in Aerospace[J]. Aeronautical Manufacturing Technology, 2018, 61(4): 86-91.

[2] 刘全明, 张朝晖, 刘世锋, 等. 航空紧固件用钛合金TC16研究与发展[J]. 热加工工艺, 2014, 43(4): 17-19. LIU Quan-ming, ZHANG Zhao-hui, LIU Shi-feng, et al. Research and Development of Aerospace Fasteners Made with TC16 Alloy[J]. Hot Working Technology, 2014, 43(4): 17-19.

[3] 刘帮平, 谌曲平, 严国荣, 等. 航空螺栓冷镦的Deform 3D模拟与生产实践[J]. 精密成形工程, 2012, 4(3): 22-26. LIU Bang-ping, CHEN Qu-ping, YAN Guo-rong, et al. Simulation Using Deform 3D and Production Practice on Cold Heading Process of Aviation Bolts[J]. Journal of Netshape Forming Engineering, 2012, 4(3): 22-26.

[4] 王晓伟. 基于有限元分析的汽车十二角半轴螺母冷镦工艺开发与应用[J]. 塑性工程学报, 2023, 30(7): 62-70. WANG Xiao-wei. Development and Application of Cold Upsetting Process for Automobile Twelve Corner Half Axle Nut Based on Finite Element Analysis[J]. Journal of Plasticity Engineering, 2023, 30(7): 62-70.

[5] 武小茜, 赵洪川, 岳婷婷, 等. Ti-6Mo-5V-3Al-2Fe-2Zr合金热变形行为及热加工图[J]. 精密成形工程, 2023, 15(1): 34-40. WU Xiao-xi, ZHAO Hong-chuan, YUE Ting-ting, et al. Thermal Deformation Behavior and Processing Map of Ti-6Mo-5V-3Al-2Fe-2Zr Alloy[J]. Journal of Netshape Forming Engineering, 2023, 15(1): 34-40.

[6] 刘斌, 武川, 周宇杰. Ti6554钛合金脉冲电流辅助压缩本构模型的建立及应用[J]. 精密成形工程, 2022, 14(5): 27-35. LIU Bin, WU Chuan, ZHOU Yu-jie. Establishment and Application of Ti6554 Titanium Alloy Pulse Current Assisted Compression Constitutive Model[J]. Journal of Netshape Forming Engineering, 2022, 14(5): 27-35.

[7] YUAN B G, ZHANG X X, WANG Y J, et al. Effects of Cyclic Thermo-hydrogen Processing on Microstructural and Mechanical Properties of Ti6Al4V Alloy at Room Temperature[J]. Vacuum, 2020, 171: 109015.

[8] MA T F, CHEN R R, ZHENG D S, et al. Hydrogen Enhanced the Room-temperature Compressive Properties of Ti44Al6Nb Alloy[J]. Materials Letters, 2018, 213: 170-173.

[9] SUN Z G, CHEN G Q, WANG Y Q, et al. Investigations on Cold Deformation Mechanisms of the Hydrogenated Ti-6Al-4V Alloys[J]. Materials Science and Engineering A, 2010, 527: 1003-1007.

[10] MAL'KOV A V, KOLACHEV B A. Favorable Effect of Hydrogen on the Plasticity of β Titanium Alloys[J]. Soviet Materials Science, 1977, 13(1): 1-4.

[11] YUAN B G, TANG A C, QIAN D G, et al. Room-te­m­perature Compressive Properties of TC21 Alloy Processed by Thermohydrogen Treatment at 1123 K[J]. International Journal of Hydrogen Energy, 2022, 47(59): 25066-25079.

[12] YUAN B G, DU J F, ZHANG X X, et al. Microstructures and Room-temperature Compressive Properties of Ti6Al4V Alloy Processed by Continuous Multistep Hydrogenation Treatment[J]. International Journal of Hydrogen Energy, 2020, 45(46): 25567-25579.

[13] 张小雪, 项运良, 陈文杰, 等. 氢对TC21钛合金热物理性能的影响[J]. 精密成形工程, 2022, 14(1): 109-113. ZHANG Xiao-xue, XIANG Yun-liang, CHEN Wen-jie, et al. Effects of Hydrogen on Thermophysical Properties of TC21 Titanium Alloy[J]. Journal of Netshape Forming Engineering, 2022, 14(1): 109-113.

[14] 王富强, 沙春鹏, 孙小岚. TC16钛合金的冷镦组织与性能[J]. 材料与冶金学报, 2013, 12(3): 218-221. WANG Fu-qiang, SHA Chun-peng, SUN Xiao-lan. The Cold Upset Microstructure and Properties of TC16 Titanium Alloy[J]. Journal of Materials and Metallurgy, 2013, 12(3): 218-221.

[15] 杨万博, 霍元明, 何涛, 等. TC16钛合金航空紧固件冷镦成形实验研究[J]. 塑性工程学报, 2020, 27(10): 7-12. YANG Wan-bo, HUO Yuan-ming, HE Tao, et al. Experimental Study on Cold Heading Forming of TC16 Titanium Alloy Aerospace Fastener[J]. Journal of Plasticity Engineering, 2020, 27(10): 7-12.

[16] 吴崇周, 李兴无. TC16钛合金室温变形特性研究[J]. 钛工业进展, 2006, 23(6): 17-19. WU Chong-zhou, LI Xing-wu. Study of Deformation Characters of TC16 Titanium Alloys under Room Temperature[J]. Titanium Industry Progress, 2006, 23(6): 17-19.

[17] 李康, 付雪松, 胡建军, 等. TC16钛合金冷镦变形的特征[J]. 稀有金属材料与工程, 2017, 46(6): 1608- 1611. LI Kang, FU Xue-song, HU Jian-jun, et al. Deformation Features of TC16 Alloy Treated by Cold Upset Process[J]. Rare Metal Materials and Engineering, 2017, 46(6): 1608-1611.

[18] YUAN B G, CHEN W J, TANG A C, et al. Non- Isothermal Phase Transformation Behavior and Thermal Expansion Characteristics of TC21 Alloy[J]. Journal of Materials Engineering and Performance, 2021, 30(11): 7926-7934.

[19] ZHANG X X, DU J F, PENG F F, et al. Phase Transformations and Thermodynamics Analysis of Hydrogen Absorption of Ti6Al4V Alloy[J]. Rare Metal Materials and Engineering, 2021, 50(9): 3043-3049.

[20] YUAN B G, LIU X, DU J F, et al. Effects of Hydrogenation Temperature on Room-temperature Compressive Properties of CMHT-treated Ti6Al4V Alloy[J]. Journal of Materials Science & Technology, 2021, 72: 132-143.

[21] ZONG Y Y, HUANG S H, GUO B, et al. In Situ Study of Phase Transformations in Ti-6Al-4V-H Alloys[J]. Transactions of Nonferrous Metals Society of China, 2015, 25: 2901-2911.

[22] CHEN X L, LIANG Z L, GUO Y H, et al. A Study on the Grain Refinement Mechanism of Ti-6Al-4V Alloy Produced by Wire Arc Additive Manufacturing Using Hydrogenation Treatment Processes[J]. Journal of Alloys and Compounds, 2021, 890: 161634.

[23] YUAN B G, ZHENG Y B, GONG L Q, et al. Effect of Hydrogen Content on Microstructures and Room-tem­perature Compressive Properties of TC21 Alloy[J]. Materials & Design, 2016, 94: 330-337.

[24] ZHANG Z H, LIU Q M, LIU S F, et al. Effect of 0.12wt% Hydrogen Addition on Microstructural Evolution of Ti-0.3Mo-0.8Ni Alloy Argon-arc Welded Joints[J]. Rare Metal Materials and Engineering, 2019, 48(1): 104-110.

[25] YUAN B G, QIAN D G, TANG A C, et al. Characteristic and Kinetics of Hydrogen Absorption during the Heat Preservation Stage and the Cooling Stage of TC21 Alloy[J]. International Journal of Hydrogen Energy, 2022, 47(18): 10315-10330.

Cold Heading of Nonhydrogenated and Hydrogenated TC21 Titanium Alloy Hexagonal Bolt and Its Microstructure and Microhardness after Forming

ZHANG Xiao-xue1, ZONG Sheng-jie2, MA Zhi-yuan2, YUAN Bao-guo2*

(1. School of Mechanical Engineering, Anhui Sanlian University, Hefei 230601, China; 2. School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China)

The work aims to address the challenge of TC21 titanium alloy hexagonal bolts formed by cold heading. The cold heading performance of TC21 titanium alloy was enhanced by hydrogenation treatment. The nonhydrogenated and hydrogenated TC21 titanium alloy hexagonal bolts were subject to cold heading with an electronic universal material testing machine. The microstructure and microhardness of nonhydrogenated and hydrogenated TC21 titanium alloy hexagonal bolts were studied with a metallographic microscope, an X-ray diffractometer, a transmission electron microscope, and a microhardness tester. Hydrogenated TC21 titanium alloy hexagonal bolts exhibited no defects during the cold heading, whereas the nonhydrogenated TC21 titanium alloy hexagonal bolt experienced cracking during the cold heading. Both the nonhydrogenated and hydrogenated TC21 titanium alloy cold-headed hexagonal bolts exhibited a "bilateral forked deformation band" in their heads. Cracks appeared at the fork areas of the deformation band in the head of the nonhydrogenated TC21 titanium alloy cold-headed hexagonal bolt. Compared with the nonhydrogenated TC21 titanium alloy cold-headed hexagonal bolt, significant changes were observed in the microstructure of the hydrogenated TC21 titanium alloy cold-headed hexagonal bolt. In the hydrogenated TC21 titanium alloy cold-headed hexagonal bolt, the optical contrast between α phase and β phase was opposite to each other. The amount of α phase decreased while the amount of β phase increased, β phase became the dominant phase in the alloy, and many dislocations were observed. The microhardness in each region of the hydrogenated TC21 titanium alloy cold-headed hexagonal bolt was lower than that of the nonhydrogenated TC21 titanium alloy cold-headed hexagonal bolt in its respective regions. Hydrogenation treatment benefits the cold heading of TC21 titanium alloy hexagonal bolts.

titanium alloy; hexagonal bolt; cold heading; microstructure; microhardness

10.3969/j.issn.1674-6457.2023.10.016

TG146.2+3

A

1674-6457(2023)10-0136-07

2023-08-22

2023-08-22

国家自然科学基金(52275328,51875157);安徽高校优秀拔尖人才培育资助项目(gxyq2021238);安徽高校自然科学重点科研项目(2023AH051703)

The National Natural Science Foundation of China (52275328,51875157); Cultivating Program for Excellent Talent in University of Anhui Province (gxyq2021238); Natural Science Research Key Project of Anhui University (2023AH051703)

张小雪,宗胜杰,马志远, 等. 未置氢及置氢TC21钛合金六角头螺栓冷镦成形及其成形后的显微组织与显微维氏硬度[J]. 精密成形工程, 2023, 15(10): 136-142.

ZHANG Xiao-xue, ZONG Sheng-jie, MA Zhi-yuan, et al. Cold Heading of Nonhydrogenated and Hydrogenated TC21 Titanium Alloy Hexagonal Bolt and Its Microstructure and Microhardness after Forming[J]. Journal of Netshape Forming Engineering, 2023, 15(10): 136-142.

责任编辑:蒋红晨

猜你喜欢

冷镦紧固件氏硬度
紧固件防松类别及试验标准浅析
高硬度区间P91钢的里氏-布氏硬度关系研究
无人值守智能化洛氏硬度测试平台
油密铆钉冷镦过程优化改进
开启窗五金件连接处紧固件的选用及松动原因探究
基于五轴机器人的平板显示器紧固件自动锁紧解决方案
拉铆销冷镦成型工艺研究
拉铆销冷镦成型工艺研究
飞机装配预连接紧固件自动化安装末端执行器设计
钻头冷镦参数建模及成形工艺优化