APP下载

浙江遂昌马尾松林物种和谱系β多样性驱动因子分析

2023-08-20李大标钟毓萍龚笑飞仲磊韦博良吴初平刘金亮江波余水生于明坚

广西植物 2023年7期
关键词:多样性

李大标 钟毓萍 龚笑飞 仲磊 韦博良 吴初平 刘金亮 江波 余水生 于明坚

摘 要:  生境過滤和扩散限制是影响森林群落间物种组成差异(β多样性)的主要生态过程。为了探究生境过滤和扩散限制对亚热带马尾松(Pinus massoniana)群落物种和谱系β多样性的相对贡献,该文以浙江省遂昌县37个马尾松林样地为研究对象,结合物种和谱系β多样性分析,探讨了影响群落间物种组成差异主要生态机制;通过计算群落内物种β多样性指数(Bray-Curtis指数)和谱系β多样性指数(Dnn指数和Dpw指数),分析土壤、地形等生境因子和地理距离与物种和谱系β多样性之间的相关性,并通过方差分解分析生境因子和地理距离对物种和谱系β多样性的相对作用大小;此外,还进行了不同径级和生长型的上述相关性分析和方差分解。结果表明:(1)Bray-Curtis指数与土壤、地形因子和地理距离均显著正相关,Dnn指数仅与地理距离显著正相关,Dpw指数与土壤因子和地理距离均显著正相关。(2)环境因子对Bray-Curtis指数和Dpw指数的解释度均高于地理距离的解释度。(3)从物种多样性角度来说,生境因子对不同生长阶段Bray-Curtis指数的解释度均高于地理距离的解释度;从谱系多样性角度来说,地理距离对幼树阶段的Dnn指数和Dpw指数的解释度更高,生境因子则对成树阶段的Dpw指数的解释度更高。由此可以推论,生境过滤是驱动该地区马尾松林物种和谱系β多样性的主要生态机制,扩散限制仅在幼树阶段对马尾松林谱系β多样性起主导作用。

关键词: 马尾松林, 扩散限制, β多样性, 谱系结构, 物种组成

中图分类号:  Q948.15

文献标识码:  A

文章编号:  1000-3142(2023)07-1258-10

收稿日期:  2022-11-18

基金项目:  国家重点研发计划政府间国际科技创新合作专项(2018YFE0112800); 浙江省‘尖兵‘领雁研发攻关计划项目(2022C02053); 遂昌县科技局项目(2018-hz02)。

第一作者: 李大标(1973),高级工程师,主要从事森林培育、林技推广、生态保护与修复研究,(E-mail)530907441@qq.com。

通信作者:  余水生,高级工程师,研究方向为林业生态保护和技术推广,(E-mail)schhc@sina.com。

Analysis of species and phylogenetic β diversity drivers in

the Masson pine forests in Suichang, Zhejiang Province

LI Dabiao1, ZHONG Yuping2, GONG Xiaofei3, ZHONG Lei2,4, WEI Boliang2,

WU Chuping5 , LIU Jinliang6, JIANG Bo5, YU Shuisheng3*, YU Mingjian2

( 1. Natural Resources and Planning Bureau of Suichang, Lishui 323300, Zhejiang , China; 2. College of Life Sciences, Zhejiang University,

Hangzhou 310058, China; 3. Suichang Ecological Forestry Development Center, Lishui 323300, Zhejiang, China; 4. Wuyanling National

Nature Reserve Administration of Zhejiang, Wenzhou 325500, Zhejiang , China; 5. Zhejiang Academy of Forestry, Hangzhou 310023,

China; 6. College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang , China )

Abstract:  Habitat filtering and dispersal limitation are the main ecological processes affecting species composition variation (β diversity) in forest communities, but their relative importance in subtropical Masson pine (Pinus massoniana) forests remains unclear. Jointly analysis of how phylogenetic and species β diversity varies with habitat factors and geographic distance is critical to understand the roles played by historical and current ecological processes in shaping the regional biodiversity. In this study, 37 Masson pine forest plots in Suichang County, Zhejiang Province were selected to analyze the species and phylogenetic β diversities, and the main ecological mechanisms driving the differences of species composition among communities were explored. Species β diversity index (Bray-Curtis) and phylogenetic β diversity index (the mean phylogenetic dissimilarity, Dnn; the mean nearest taxon distance, Dpw) were calculated, and their correlation with habitat factors including soil and topography, as well as geographical distance were analyzed. The relative importance of habitat factors and geographical distance on species and phylogenetic β diversity was analyzed by variance partitioning. In addition, two life stages (divided by diameter class) and growth form were for the same analyses. The results were as follows: (1) Bray-Curtis index significantly correlated with soil factors, topographic factors and geographical distance. Dnn correlated with geographical distance only. Dpw correlated with soil factors and geographical distance. (2) The explanatory degree of habitat factors to Bray-Curtis and Dpw was higher than that of geographical distance. (3) For species diversity, habitat factors could better explain Bray-Curtis of both life stages than geographical distance. For phylogenetic diversity, geographical distance could better explain Dnn and Dpw of sapling stage, while habitat factors were more likely to explain Dpw of adult stage. To conclude, The results show that habitat filtering is the main ecological mechanism driving species and phylogenetic β diversity of Masson pine forests in this region. Dispersal limitation plays a dominant role in the β diversity of Masson pine forests only at the sapling stage. The most important finding of this research is that the main mechanism drives for species and phylogenetic β diversity in Masson pine forests are different, which highlights the necessity of joint analysis of species and phylogenetic β diversity. This research also suggests that the main ecological mechanism drives β diversity may change as plants shift across different growth stages.

Key words: Masson pine forest, dispersal limitation, beta diversity, phylogenetic structure, species composition

β多样性是指沿着某一环境梯度的物种替代程度,反映了群落物种组成的周转情况,它连接了局域(α多样性)和区域(γ多样性)尺度上的物种多样性,对其形成和维持机制进行分析可以揭示推动群落构建的生态过程(Whittaker, 2019)。当前,主要有两种理论解释群落β多样性形成和维持机制:一种认为某种生境对具有适应该生境性状相似的一类物种进行了选择,即生境因子在空间上的变异驱动,这一过程被称为生境过滤;另一种则认为物种本身,尤其是扩散限制的作用驱动了群落β多样性格局。扩散限制即种子在离开母体后,因传播距离有限等原因而无法到达合适的萌发地点的过程(李宁等,2011)。然而,最近的研究表明,群落β多样性格局不是由生境过滤或扩散限制单独解释,而是由二者共同驱动形成(Qian, et al., 2013;Shi et al, 2021)。只不过,随着群落和尺度的变化,两种生态机制对群落β多样性形成和维持的相对重要性存在差异。因地理距离而造成的扩散限制和生境因子塑造的生态位稳定性共同影响了物种分化和形成的过程,进而塑造了群落的多样性格局(Swenson et al., 2007; Graham & Fine, 2008; Swenson, 2013)。因此,通过分解各种因子的贡献,可以阐明生境过滤和扩散限制两种机制在群落构建过程中的相对影响(Shi et al., 2021)。

群落的物种组成实际上是长期进化与短期生态过程共同作用的结果(Whittaker et al., 2001; Ricklefs, 2004)。以往许多关于群落β多样性的研究往往基于物种分类数据,但不同物种之间在进化上并非完全独立的,传统的物种β多样性无法揭示群落的进化历史对群落构建的影响。而结合了物种亲缘关系远近的谱系多样性可以反映不同群落间系统发育上的相异程度,有利于从历史角度了解群落物种多样性的格局及其形成机制。此外,相同的生态机制可能导致不一致的物种β多样性和谱系β多样性。例如,Oliveira等(2013)发现亲缘关系非常相近的物种可能占据不同的生境,从而导致群落间的谱系多样性低而物种多样性高。因此,联合分析物种和谱系β多样性如何随生境因子和地理距离变动,可以更全面地推断生境过滤和扩散限制在群落构建过程中的相对重要性。例如,中国南方天然林的物种和谱系β多样性主要由生境过滤过程塑造,并且群落间的物种周转主要由近缘种的周转形成(Shi et al., 2021);Guevara等(2021)的研究发现,亚马逊森林的物种和谱系β多样性的驱动因素在不同尺度上存在差异。此外,土壤性质是植物物种组成差异的主要驱动因素。然而,关于土壤因子对马尾松群落物种和谱系β多样性的影响,目前尚缺乏相关的研究。

马尾松林是我国主要的森林类型之一,属于森林群落演替的早期阶段,广泛分布于我国的亚热带地区(周政贤, 2001)。亚热带地带性植被常绿阔叶林遭受破坏、形成裸地后,马尾松以其适应性强、耐干旱瘠薄的优势,成为优势先锋植物,逐渐形成次生马尾松林。一般而言,随着演替的进行,马尾松林将朝着常绿阔叶林演替,但这个过程往往很长,Yu等(2010)的研究表明,浙江古田山自然保护区的马尾松林年龄可在150 a以上。对马尾松林群落的β多样性研究,国内多基于物种分类数据进行群落β多样性及其影响因素的分析,少部分研究虽然分析了物种和谱系两个方面的群落组成格局,但未深入探究其形成机制(冯广等, 2020)。因此,探究生境过滤和扩散限制对马尾松群落β多样性格局的影响,有助于了解马尾松次生林群落构建过程中的主要驱动因素,从而加深对我国马尾松林群落空间格局形成和维持机制的理解,为次生林的管理提供科学依据。

本研究于2019—2020年以浙江省丽水市遂昌县的37个马尾松群落样地为对象,从物种和谱系两个维度出发,探究生境过滤和扩散限制对该地区马尾松次生林群落β多样性形成和维持的作用,拟探讨:(1)驱动马尾松群落β多样性形成和维持的主要生态机制;(2)对于马尾松群落内个体的不同生长阶段,驱动群落β多样性的主要生态机制有何不同。

1 研究区域与研究方法

1.1 研究区域

浙江省遂昌县(118°41′—119°30′ E、28°13′—28°49′ N)属于中亚热带湿润季风区,年平均降水量1 510 mm,日平均气温16.9 ℃,极端最低气温-9.7 ℃,极端最高气温40.1 ℃,年平均无霜期250 d。该县土地总面积25.4万hm2,林地面积22.1万hm2,森林覆盖率83.47%,松林面积4.3万hm2,占林地总面积的19.43%,以马尾松林为主。

1.2 研究方法

1.2.1 群落调查 在浙江省遂昌县内选取37个群落生境相似的马尾松林样点,根据森林资源二类调查数据,尽量保证所选群落各马尾松林的林龄相近,进行样地设置与群落调查。每个样点分别设置1个30 m × 30 m的固定样地,并且每2个样地之间直线距离不少于300 m。对样地内所有胸径(DBH) ≥ 1 cm的木本植物个体进行每木调查,记录物种名称,测定胸径等参数。

1.2.2 地形和土壤因子测量 记录37个样地的经纬度和海拔。将每个30 m × 30 m样地划分为9个10 m × 10 m的小样方,在每个小样方中心分别记录一个坡向和坡度数据;去除凋落物层后,在每个小样方中心周围随机采集3个0 ~ 10 cm深的土芯,充分混合过2 mm目筛后为一个土样。共采集土壤样品222个(6个样方 × 37个样方)。本研究测定了土壤全氮(soil total nitrogen, TN)、全碳(soil total carbon, TC)、全磷(soil total phosphorus, TP)、有效磷(soil available phosphorus, AP)、氨态氮(NH3-N)和硝态氮(NO3-N)的含量,共6个土壤化学性质指标。TC和TN浓度由元素分析仪(Vario MACRO Cube, Elementar,德國)测定。NH3-N和NO3-N通过氯化钾萃取后,采用连续流动分析仪(San++, Skalar, Holland)定量测定。采用电感耦合等离子体光谱法(Optima8300, PerkinElmer, Waltham, MA, USA)定量测定TP和AP。

1.2.3 数据分析

1.2.3.1 谱系树构建 物种定名参考FOC中国植物志网站(http://www.iplant.cn/foc),并对照TPL(The Plant List)规范物种名录。谱系树采用Qian和Jin(2016)编写的“S. PhyloMaker”函数中的“Scenario 3”进行构建。

1.2.3.2 土壤因子、地形因子和地理距离 本研究测量了TN、TC、TP、AP、NH3-N和NO3-N共6个土壤因子数据,以及海拔、坡向、坡度共3个地形因子数据。参考Vincenty(1975)的球面坐标转换原理,使用SoDA包中的geoXY函数将样地经纬度信息转换为笛卡尔平面坐标信息,通过邻体矩阵主坐标分析(principal components of neighbor matrices, PCNM)和变量筛选,得到具有显著正特征值的3个主成分轴,经欧几里得转化得到地理距离矩阵(geographical distance, geoDist),作为空间特征解释变量。

1.2.3.3 β多样性指数 Bray-Curtis相异性指数是一种根据两个群落出现的物种量化其物种组成差异的方法,是衡量物种β多样性的指数之一(Bray & Curtis, 1957)。其优点是在计算时,不仅考虑了样本中物种的有无,而且考虑了不同物种的相对丰度。

计算谱系β多样性的指数有很多,大致上可分为两类:一类强调谱系树根部的分支情况,更多地反映了历史上发生的进化事件,如Dpw、Raos D和Raos H指数;另一类强调在谱系树末端附近的分支情况,反映了最近的进化事件,如PhyloSor、UniFrac、Dnn指数。本研究选取最近邻体指数(Dnn指数)和平均成对指数(Dpw指数),分别从谱系的历史与最近进化事件两方面度量谱系β多样性。

Dnn、Dpw指数分别用picante包(Kembel et al., 2010)中的comdist和comdistnt函数计算,基于群落物种丰度的Bray-Curtis相异性矩阵用dist函数计算。

1.2.3.4 Mantel多元分析 分别以6种土壤因子的欧几里得距离、3种地形因子的欧几里得距离和地理距离作为解释变量,将Bray-Curtis、Dpw和Dnn作为响应变量,用Partial Mantel检验(ecodist包中的mantel函数)来分析土壤因子(soil distance, soilDist)、地形(topographic distance, topoDist)和地理距离(geographic distance, geoDist)与β多样性之间的相关关系(Goslee & Urban, 2007)。

1.2.3.5 方差分解(variance partitioning) 方差分解是探索生境过滤和扩散限制相对重要性的重要手段。用样方之间的地理距离指示扩散限制的作用,用环境因子指示生境异质性的作用,经方差分解即可得到二者的相对贡献(Shi et al., 2021)。将土壤与地形共9个因子合并为总的生境变量(habitat distance, habDist),之后进行基于距离的冗余分析(distance-based redundancy analysis, dbRDA),将β多样性分解为由生境变量解释的部分和地理距离解释的部分以及尚未解释的部分。为避免对解释方差的过度估计,使用向前选择法(forward selection)筛选出8个显著的主成分轴作为生境解释变量。将生境因子和地理距离作为自变量,Bray-Curtis、Dpw和Dnn作为响应变量进行方差分解。向前选择使用了vegan包的ordistep函数,方差分解使用了vegan包的varpart函数(Oksanen et al., 2020)。

此外,将所有木本植物按照生长型和径级划分为幼树和成树2个生长阶段,其中成树定义为灌木胸径≥2 cm,小乔木胸径≥5 cm,乔木胸径≥10 cm,小于此径级定义为幼树(Miller et al., 2017)。同样,使用如上所述的Mantel多元分析和方差分解法,分别对样地中的幼树和成树的β多样性进行分析。为避免群落个体数差异对计算结果产生影响,在进行多样性指数计算前对群落多度数据均进行了稀疏化处理。

以上所有分析均在R 4.0.4软件中完成。

2 结果与分析

2.1 Mantel相关性检验

由图1可知,Bray-Curtis指数与土壤因子、地形因子和地理距离均呈显著正相关;Dnn指数仅与地理距离呈显著正相关;Dpw指数与土壤因子和地理距离均呈显著正相关。

2.2 方差分解

由图2可知,对于物种β多样性而言,生境因子(habDist)和地理距离(geoDist)共同解释了48%的Bray-Curtis指数,其余52%无法被现有变量所解释,生境因子的单独解释度(23%)高于地理距离的单独解释度(15%);对于谱系β多样性而言,生境和地理距离共同解释了3%的Dnn指数和57%的Dpw指数;Dpw的生境因子解释度为27%,高于地理距离的解释度23%。

2.3 不同生长阶段的β多样性

由表1可知, 划分生长阶段后,在29个样地中,共有成树7 122棵、幼苗9 298棵。幼树和成树的物种Bray-Curtis指数与土壤因子之间的相关性均不再显著,而与地形因子和地理距离的相关性仍然显著;幼树和成树的谱系多样性指数Dnn和Dpw均与地理距离显著相关。值得注意的是,成树的Dpw与土壤因子显著相关,但幼树与土壤因子之间却无显著相关性。

同样地, 将幼树和成树的β多样性指数依据生境和地理距离变量进行方差分解(图3)。由图3可知,对于成树和幼树的物种β多样性而言,生境因子的解釋度仍然高于地理距离的解释度,但相对而言,地理距离对幼树的解释度比成树更高。对于幼树的谱系β多样性而言,无论是Dnn还是Dpw,地理距离的解释度均高于生境因子的解释度,但对于成树而言,地理距离与生境因子对Dnn的解释度相当,生境因子对Dpw的解释度比地理距离解释度高。

3 讨论与结论

本研究从物种和谱系2个维度出发,探究了亚热带马尾松林群落β多样性格局的形成机制。以往的许多研究往往从分类学角度出发,探究物种β多样性随生境梯度的变化。然而,在物种β多样性中,由于所有物种都被视为进化上独立且生态上等效,因此仅仅对物种多样性一个维度进行分析,有时可能导致物种-生境关系被错误地解读。本研究中,对于塑造物种β多样性和谱系β多样性而言,生境过滤和扩散限制所发挥的相对重要性存在一定程度上的差别。其一,由Mantel相关性分析可知,生境因子与物种多样性之间的相关性系数更高,而与谱系多样性之间相关系数则较低。其二,当把物种按照生长阶段区分开后发现,驱动幼树物种多样性和谱系多样性的主导机制是不同的。这印证了联合分析物种和谱系β多样性的必要性。

3.1 生境过滤对马尾松林物种和谱系β多样性均起主导作用

从Mantel相关性分析可以看出,Bray-Curtis指数与土壤因子、地形因子和地理距离的正相关均十分显著,这说明马尾松群落的物种β多样性格局可能同时受到生境过滤和地理距离的影响,并且物种β多样性随距离增大而衰减。对于谱系β多样性而言:一方面,Dnn和Dpw指数均与地理距离显著正相关,这说明扩散限制在谱系β多样性的形成过程中发挥了显著作用;另一方面,生境因子和地形因子对Dnn均无显著影响,生境因子对Dpw产生了显著影响,这可能说明生境过滤在进化历史上对谱系β多样性未产生显著影响,但在最近进化事件中对谱系β多样性产生了影响。对浙江省古田山亚热带常绿阔叶林的研究发现,群落的物种及系统发育多样性均存在明显的距离衰减格局。

本研究结果表明,生境变量比地理距离变量对物种和谱系β多样性的影响相对更大。由Bray-Curtis指数和Dpw指数方差分解的结果可知,无论是物种还是谱系β多樣性,生境因子的单独解释度均大于地理距离的单独解释度,这说明生境过滤对马尾松群落的物种和谱系β多样性格局的构建均起着主要作用。Dnn指数的方差分解解释度总体很低,仅有3%。这可能是由于马尾松属于较为原始的裸子植物,在进化树上的支长较长,因此相比较而言,马尾松与其他的物种谱系距离更大,而Dnn指数主要反映谱系树基部的周转情况(Swenson, 2011)。因此,对该地区生境和地理距离变量影响的检测能力较弱,解释度较低,相对而言反映最近分支情况的Dpw指数对生境和地理距离变量的影响更为敏感。

3.2 不同生长阶段的马尾松林谱系β多样性驱动因子存在差异

幼苗和幼树是树木的早期阶段,与成树相比,幼树更易受到植食、害虫和病原菌的侵害而死亡。幼树转变为成树是一个重要的瓶颈阶段,能够成功度过此阶段存活下来的个体反映了此物种成树种群的重要特征(Harper, 1977; Green & Harms, 2018)。因此,将群落中的个体划分为幼树与成树2个生活阶段进行对比,有助于揭示影响这一重要阶段的关键因素。按照径级和生长型将群落中的个体分成成树和幼树2个生长阶段后发现,成树或幼树物种β多样性与土壤因子之间不再存在显著相关性,但与地形因子和地理距离之间的相关性仍然显著,这说明地形因子可能在生境过滤中发挥的作用更为重要。与此同时,方差分解的结果显示,在区分生长阶段后,生境过滤对物种β多样性的解释度仍然高于地理距离的解释度,这说明生境过滤作用在木本植物不同生长阶段对物种β多样性的构建均起着主要作用。此外,地理距离对幼树的解释度略高于成树,说明随着幼树向成树逐渐转变,扩散限制的影响可能逐步降低。因此,生境过滤作用可能是决定此马尾松林群落演替方向的主要因素。

成树和幼树的谱系β多样性指数Dnn和Dpw均与地理距离显著相关,Dpw的方差分解结果显示,对幼树来说,地理距离的解释度高于生境因子的解释度,而成树则正好相反。这说明在马尾松群落木本植物的不同生长阶段,起主要作用的生态机制发生了转变,对于早期幼树阶段,扩散限制是驱动其谱系β多样性的主要机制,而到了后期成树阶段,生境过滤却成了驱动其谱系β多样性的主要机制。

综上所述,生境过滤对此区域的马尾松次生林的群落β多样性起着决定性作用。虽然在幼树生长阶段,扩散限制主导了群落的谱系多样性组成,但随着群落中个体向成树的转变,最终生境过滤作用占据了主导地位。物种和谱系β多样性均与生境因子显著相关,而与地理距离无显著相关,这与本研究结果相似(Kraft et al., 2011)。同样,以马尾松林为研究对象,Zhong等(2021)对千岛湖马尾松次生林群落的研究与本研究结果却不相同,他们发现,地理距离是影响大陆物种组成的主要影响因素,而生境过滤则是岛屿物种组成的主要影响因素。这表明即使是同一类型的群落,在不同的研究区域之间可能存在不同的结果,并且类似生境片段化这样的重大干扰事件可能会改变生境过滤的作用强度。饶米德等(2013)对古田山亚热带常绿阔叶林的研究表明,在较小尺度(20 m × 20 m)上,生境过滤和扩散限制共同作用对群落系统发育β多样性解释度最高,但随尺度增大(40 m × 40 m),生境过滤成为了解释群落系统发育结构的主要过程。虽然在本研究的尺度(30 m × 30 m)上,生境过滤为解释马尾松次生林谱系结构的主要过程,但不排除存在尺度效应的可能。因此,尺度效应和干扰的作用及其机制还有待进一步研究。

参考文献:

ACKERLY DD, 2003. Community assembly, niche conservatism, and adaptive evolution in changing environments[J]. Int J Plant Sci, 164(S3): S165-S184.

BAGCHI R, GALLERY RE, GRIPENBERG S, et al., 2014. Pathogens and insect herbivores drive rainforest plant diversity and composition[J]. Nature, 506: 85-88.

BARTON KE, HANLEY ME, 2013. Seedling herbivore interactions: insights into plant defence and regeneration patterns[J]. Ann Bot, 112(4): 643-650.

BRAY JR, CURTIS JT, 1957. An ordination of the upland forest communities of Southern Wisconsin[J]. Ecol Monogr, 27: 325-349.

BREUGEL M, CRAVEN D, LAI HR, et al., 2019. Soil nutrients and dispersal limitation shape compositional variation in secondary tropical forests across multiple scales[J]. J Ecol, 107(2): 566-581.

CHASE JM, MYERS JA, 2011. Disentangling the importance of ecological niches from stochastic processes across scales[J]. Phil Trans Roy Soc B-Biol SCI, 366 (1576): 2351-2363.

CHEN L, SWENSON NG, JI NN, et al., 2019a. Differential soil fungus accumulation and density dependence of trees in a subtropical forest[J]. Science, 366(6461): 124-128.

CHEN L, WANG YQ, MI XC, et al., 2019b. Neighborhood effects explain increasing asynchronous seedling survival in a subtropical forest[J]. Ecology, 100( 11): e02821.

FENG G, 2020. Study on the diversity of woody plants of natural forest communities in southwest Hubei[D]. Beijing: Beijing Forestry University.  [馮广, 2020. 鄂西南天然林群落木本植被多样性研究[D]. 北京: 北京林业大学.]

FU HM, ZHONG ZL, TANG CY, et al., 2019. Countermeasures and measures to clean up wood infected with pine wood nematode disease[J]. J Heilongjiang Vocat Inst Ecol Eng, 32(5): 20-21. [付红梅,  钟子龙,  唐昌贻,  等, 2019. 清理松材线虫病感染木的对策与措施[J]. 黑龙江生态工程职业学院学报,  32(5): 20-21.]

GONZALEZ-CARO S, NATALIA UMANA M, ALVAREZ E, et al., 2014. Phylogenetic alpha and beta diversity in tropical tree assemblages along regional-scale environmental gradients in northwest South America[J]. J Plant Ecol, 7(2): 145-153.

GOSLEE SC, URBAN DL, 2007. The ecodist Package for Dissimilarity-based Analysis of Ecological Data[J]. J Stat Softw, 22(7): 1-19.

GRAHAM CH, FINE PVA, 2008. Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time[J]. Ecol Lett, 11(12): 1265-1277.

GREEN PT, HARMS KE, 2018. The causes of disproportionate non-random mortality among life-cycle stages[J]. Ecology, 99(1): 36-46.

GUEVARA ANDINO JE, PITMAN NCA, TER STEEGE H, et al., 2021. The contribution of environmental and dispersal filters on phylogenetic and taxonomic beta diversity patterns in Amazonian tree communities[J]. Oecologia, 196(4): 1119-1137.

HARDY OJ, COUTERON P, MUNOZ F, et al., 2012. Phylogenetic turnover in tropical tree communities: impact of environmental filtering, biogeography and mesoclimatic niche conservatism[J]. Glob Ecol Biogeogr, 21(10): 1007-1016.

HARPER JL, 1977. Population biology of plants[M]. London: Academic Press: 842.

HUBBELL STEPHEN P., 2001. The unified neutral theory of biodiversity and biogeography (MPB-32)[M], Princeton: Princeton University Press: i-xiv: 1-375.

KEMBEL SW, COWAN PD, HELMUS MR, et al., 2010. Picante: R tools for integrating phylogenies and ecology[J]. Bioinformatics , 26(11): 1463-1464.

KRAFT NJB, COMITA LS, CHASE JM, et al., 2011. Disentangling the drivers of beta diversity along latitudinal and elevational gradients[J]. Science, 333(6050): 1755-1758.

LEGENDRE P, ANDERSON MJ, 1999. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments[J]. Ecol Monogr, 69(1): 1-24.

LEGENDRE P, DE CACERES M, 2013. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning[J]. Ecol Lett, 16(8): 951-963.

LI DB, 2019. Suichang: managing public forests and protecting natural forests[J]. Zhejiang For, (6): 30-31.  [李大標, 2019. 遂昌: 管好公益林, 护好天然林[J]. 浙江林业, (6): 30-31.]

LI N, BAI B, LU CH, 2011. Recruitment limitation of plant population: from seed production to sapling establishment[J]. Acta Ecol Sin, 31(21): 6624-6632.  [李宁, 白冰, 鲁长虎, 2011. 植物种群更新限制——从种子生产到幼树建成[J]. 生态学报, 31(21): 6624-6632.]

LIN Q, 2020. A study on β-diversity of reconstructed forest community in soil erosion area of changting county, Fujian Province[J]. Bull Soil Water Conser, 40(4): 148-154.  [林强, 2020. 福建省长汀县水土流失区重建森林群落β多样性研究[J]. 水土保持通报, 40(4): 148-154.]

MCFADDEN IR, BARTLETT MK, WIEGAND T, et al., 2019. Disentangling the functional trait correlates of spatial aggregation in tropical forest trees[J]. Ecology, 100(3): e02591.

MILLER ET, FARINE DR, TRISOS CH, 2017. Phylogenetic community structure metrics and null models: a review with new methods and software[J]. Ecography, 40(4): 461-477.

MYERS JA, CHASE JM, CRANDALL RM, et al., 2015. Disturbance alters beta-diversity but not the relative importance of community assembly mechanisms[J]. J Ecol, 103(5): 1291-1299.

MYERS JA, CHASE JM, JIMENEZ I, et al., 2013. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly[J]. Ecol Lett, 16 (2): 151-157.

OKSANEN J, BLANCHET FG, FRIENDLY M, et al., 2020. Vegan: Community Ecology Package. R package version 2.5-7.

OLIVEIRA RC, TONETTO AF, PERES CK, et al., 2013. The influence of landscape on the spatial and temporal distribution of stream macroalgal communities of two types of subtropical biomes[J]. Limnetica, 32(2): 287-302.

PENG SY, HU G, YU MJ, 2014. Beta diversity of vascular plants and its influencing factors on islands in the Thousand Island Lake[J]. Acta Ecol Sin, 34(4): 3866-3872.  [彭思羿, 胡廣, 于明坚, 2014. 千岛湖岛屿维管植物β多样性及其影响因素[J]. 生态学报, 34(4): 3866-3872.]

QIAN H, CHEN SB, MAO LF, et al., 2013. Drivers of beta-diversity along latitudinal gradients revisited[J]. Glob Ecol Biogeogr, 22(5/6): 659-670.

QIAN H, JIN Y, 2016. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure[J]. J Plant Ecol, 9(2): 233-239.

QIAN H, SWENSON NG, ZHANG JL, 2013. Phylogenetic beta diversity of angiosperms in North America[J]. Glob Ecol Biogeogr, 22(10): 1152-1161.

RAO MD, FENG G, ZHANG JL, et al., 2013. Effects of environmental filtering and dispersal limitation on species and phylogenetic beta diversity in Gutianshan National Nature Reserve[J]. Chin Sci Bull, 58(13): 1204-1212.  [饶米德, 冯刚, 张金龙, 等, 2013. 生境过滤和扩散限制作用对古田山森林物种和系统发育β多样性的影响[J]. 科学通报, 58(13): 1204-1212.]

RICKLEFS RE, 2004. A comprehensive framework for global patterns in biodiversity[J]. Ecol Lett, 7(1): 1-15.

SABATINI FM, JIMENEZ-ALFARO B, BURRASCANO S, et al., 2018. Beta-diversity of central European forests decreases along an elevational gradient due to the variation in local community assembly processes[J]. Ecography, 41(6): 1038-1048.

SHI W, WANG YQ, XIANG WS, et al., 2021. Environmental filtering and dispersal limitation jointly shaped the taxonomic and phylogenetic beta diversity of natural forests in southern China[J]. Ecol Evol, 11(13): 8783-8794.

SWENSON NG, ENQUIST BJ, THOMPSON J, et al., 2007. The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities[J]. Ecology, 88(7): 1770-1780.

SWENSON NG, 2011. Phylogenetic beta diversity metrics, trait evolution and inferring the functional beta diversity of communities[J]. PloS ONE, 6 (6): e21264.

SWENSON NG, ANGLADA-CORDERO P, BARONE JA, 2011. Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient[J]. Proc Biol Sci, 278 (1707): 877-884.

SWENSON NG, ERICKSON DL, MI XC, et al., 2012. Phylogenetic and functional alpha and beta diversity in temperate and tropical tree communities[J]. Ecology, 93(sp8): S112-S125.

SWENSON NG, 2013. The assembly of tropical tree communities - the advances and shortcomings of phylogenetic and functional trait analyses[J]. Ecography, 36(3): 264-276.

VINCENTY T, 1975. Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations[J]. Surv Rev, 23(176): 88-94.

WEIHER E, KEDDY PA, 1995. The assembly of experimental wetland plant-communities[J]. Oikos, 73(3): 323-335.

WENG CL, ZHANG TT, WU DH, et al., 2019. Drivers and patterns of α- and β-diversity in ten main forest community types in Gutianshan, eastern China[J].Biodivers Sci, 27(1): 33-41.  [翁昌露, 张田田, 巫东豪, 等, 2019. 古田山10种主要森林群落类型的α和β多样性格局及影响因素[J]. 生物多样性, 27(1): 33-41.]

WHITTAKER RH, 2019. Evolution and measurement of species diversity[J]. Taxon, 21(2/3): 213-251.

WHITTAKER RJ, WILLIS KJ, FIELD R, 2001. Scale and species richness: towards a general, hierarchical theory of species diversity[J]. J Biogeogr, 28(4): 453-470.

WOODWARD FI, DIAMENT AD, 1991. Functional approaches to predicting the ecological effects of global change[J]. Funct Ecol, 5(2): 202-212.

YANG ZL, LIU JA, ZHOU GY, et al., 2012. Community succession characteristics of Pinus massoninana plantation in Hengshan[J]. For Ecol Manag, (1): 42-47.  [楊枝林, 刘君昂, 周国英, 等, 2012. 南方马尾松人工林植被群落演替特征[J]. 林业资源管理, (1): 42-47.]

YU MJ, XU XH, DING P, 2010. Economic loss versus ecological gain: the outbreaks of invaded pinewood nematode in China[J]. Biol Invasions, 13(6): 1283-1290.

ZHONG L, DIDHAM RK, LIU JL, et al., 2021. Community re-assembly and divergence of woody plant traits in an island-mainland system after more than 50 years of regeneration[J]. Divers Distrib, 27(8): 1435-1448.

ZHOU ZX, 2001. Masson pine in China[M]. Beijing: China Forestry Publishing House.  [周政贤, 2001. 中国马尾松[M]. 北京: 中国林业出版社.]

(责任编辑 蒋巧媛)

猜你喜欢

多样性
浅议单元导语教学策略
试论初中体育教学方法多样性研究
论遵循社会规律与坚持包容性发展的内在逻辑
浅谈小学数学作业设计的有效性
浅析阿拉伯语初级阶段听力教学材料的选择
利用网络教学多样性 开展有效教学
由古典戏曲看“代言体”在中国的前世今生
浅谈新时期群文辅导工作的特征
新时期群文辅导工作的特征
海洋微生物次生代谢的生物合成机制