APP下载

丛枝菌根真菌和根瘤菌对白三叶氮同化的影响

2023-08-20吴会会刘瑞成江道菊谢苗苗邹英宁

广西植物 2023年7期
关键词:白三叶根瘤菌氨基酸

吴会会 刘瑞成 江道菊 谢苗苗 邹英宁

摘 要:  為揭示丛枝菌根真菌(AMF)和根瘤菌在白三叶氮(N)同化中的作用,该研究对白三叶进行单一或联合接种隐类球囊霉(Paraglomus occultum)和三叶草根瘤菌(Rhizobium trifolii),分析其对白三叶的生长、光合作用、叶片N和氨基酸含量以及N同化相关酶活性的影响。结果表明:(1)单一接种AMF或根瘤菌以及联合接种AMF和根瘤菌均显著增加了白三叶的株高、匍匐茎长度、叶片数、地上部生物量、总生物量、叶绿素b和总叶绿素含量、稳态光量子效率和叶片N含量,这种增强效应是联合接种>单一AMF>单一根瘤菌>未接种处理。(2)联合接种AMF和根瘤菌显著增加了白三叶叶片中丙氨酸、精氨酸、天冬酰胺、天冬氨酸、谷氨酰胺、谷氨酸和组氨酸的含量,显著提升了叶片N同化相关酶如硝酸还原酶、亚硝酸还原酶、谷氨酰胺合成酶、谷氨酸合成酶、谷氨酸脱氢酶、天冬酰胺合成酶和天冬氨酸转氨酶的活性,显著促进AMF对白三叶根系的侵染。综上认为,联合接种AMF和根瘤菌通过激活N同化相关酶活性有效促进N同化,产生更多氨基酸,进一步促进白三叶植株生长;联合接种AMF和根瘤菌具有协同作用,有效促进了白三叶的N同化。

关键词: 丛枝菌根真菌, 根瘤菌, 白三叶, 氮(N)同化, 氨基酸

中图分类号:  Q946

文献标识码:  A

文章编号:  1000-3142(2023)07-1213-09

收稿日期:  2023-04-11

基金项目:  湖北省农业科技创新行动项目(鄂农发〔2018〕1号)。

第一作者: 吴会会(1984-),博士,实验师,主要从事植物菌根生理研究,(E-mail)360148224@qq.com。

通信作者:  邹英宁,教授,主要从事植物菌根生物技术研究,(E-mail)zouyingning@163.com。

Effects of arbuscular mycorrhizal fungi and rhizobia

on nitrogen assimilation of white clover

WU Huihui1, LIU Ruicheng1, JIANG Daoju2, XIE Miaomiao1, ZOU Yingning1*

( 1. College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China; 2. Shashi Substation,

Jingzhou Municipal Bureau of Natural Resources and Planning, Jingzhou 434000, Hubei , China )

Abstract:  Symbiotic microorganisms such as arbuscular mycorrhizal fungi (AMF) and rhizobia (Rh) both promote host plant N acquisition, but whether and how the combination affects host plant nitrogen (N) assimilation remains unclear. To clarify the role of AMF and rhizobia on N assimilation in white clover (Trifolium repens), the effect of single or combined inoculation with an arbuscular mycorrhizal fungus Paraglomus occultum and a rhizobium Rhizobium trifolii on plant growth, photosynthesis, leaf N and amino acid contents, and the activities of N assimilation-related enzymes were analyzed in white clover  under potted conditions. The results obtained were as follows: (1) The plant height, stolon length, leaf number, shoot biomass, total biomass, chlorophyll b and total chlorophyll contents, steady-state light quantum efficiency, and leaf N contents of white clover were significantly increased by single inoculation with Paraglomus occultum, single Rhizobium trifolii, and combined inoculations of Paraglomus occultum and Rhizobium trifolii, along with the order of combined inoculations of Paraglomus occultum and Rhizobium trifolii > single Paraglomus occultum > single Rhizobium trifolii > non-inoculation control. (2) Combined inoculations of Paraglomus occultum and Rhizobium trifolii significantly increased the contents of various amino acids including alanine, arginine, asparagine, aspartate, glutamine, glutamic acid and histidine in leaves of white clover, and distinctly improved the activities of nitroreductase, nitrite reductase, glutamine synthetase, glutamate synthetase, glutamate dehydrogenase, asparagine synthetase, and aspartate aminotransferase. In addition, the introduction of Rhizobium trifolii significantly promoted the colonization of Paraglomus occultum to roots of white clover, suggesting the partnership between the two. Therefore, it is concluded that combined inoculations of AMF and rhizobia promote N assimilation, generate more amino acids, and further promote the growth of white clover by activating the activities of N assimilation-related enzymes. It is further demonstrated that AMF and rhizobia have synergistic effects on promoting N assimilation of white clover.

Key words: arbuscular mycorrhizal fungi (AMF), rhizobia, white clover, nitrogen (N) assimilation, amino acids

丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)是土壤中广泛存在的有益真菌,与植物共生后在根系表面形成根外菌丝,促进植物对氮(N)、磷(P)等元素的吸收。AMF帮助宿主植物吸收土壤中不同形态的N素,铵态氮(NH4+)是AMF根外菌丝主要的吸收形式(Xie et al., 2022)。AMF增加宿主植物游离氨基酸等氮源的积累,其菌丝对植物N的贡献率达74%(张良和杨春雪,2018)。因此,AMF对宿主植物N的吸收至关重要。根瘤菌(rhizobia)是土壤中常见的革兰氏阴性细菌,在豆科作物根毛中定殖形成根瘤,从而建立共生体系,进行生物固氮,帮助植物获取N(Masson-Boivin & Sachs, 2018)。Ren等(2019)研究表明,与单一接种相比,联合接种AMF和根瘤菌更能促进豆科作物生物固氮,提高N的水平,同时提高土壤铀清除率,呈现出更高的植物修复效率。而AMF和根瘤菌联合接种则抑制了豌豆和绿豆对N的吸收(Saxena et al., 1997; Blilou et al., 1999)。上述研究结果表明AMF和根瘤菌联合接种对宿主N的吸收是非常复杂的,尚需要进一步研究,特别是两者结合能否促进豆科作物如白三叶(Trifolium repens)的N同化,目前还不清楚。

植株从土壤中获取的主要是硝态氮(NO3-)和铵态氮(NH4+)等无机氮,只有将这些无机氮同化成如氨基酸、蛋白质等有机氮后才能为植物所利用,而同化过程需要多种酶的参与。植物吸收的NO3-在硝酸还原酶(NR)作用下首先被还原成亚硝态氮(NO2-),之后在亚硝酸还原酶(NiR)作用下转化为NH4+(Serralta et al., 2020)。NH4+在谷氨酰胺合成酶(GS)和ATP的共同作用下,生成谷氨酰胺(Gln),再通过谷氨酸合成酶(GOGAT)催化成谷氨酸(Glu)。通过GS/GOGAT途径同化生成有机氮,此途径同化植株内NH4+量达95%(Hirel & Gadal, 1980)。谷氨酸脱氢酶(GDH)是GS/GOGAT途径的补充途径,只有当植株中NH4+浓度过高时GDH才进行作用,催化合成Glu(Hodges, 2002)。而天冬氨酸转氨酶(AST)和丙氨酸转氨酶(ALT)是将GS/GOGAT途径形成的Glu转化成天冬氨酸(Asp)和丙氨酸(Ala)。天冬酰胺(Asn)是植株韧皮部运输的主要有机N形式之一,其合成受天冬酰胺合成酶(AS)的影响(薛迎斌,2018)。目前,还不清楚AMF和根瘤菌联合接种对宿主N同化产物水平的影响。

白三叶为多年生豆科牧草,对根瘤菌和AMF有良好亲和性,具有匍匐生长、扩张能力强、再生速度快和粗蛋白含量较高等特点,是绿地建设的主要草种,也是廉价优质的牧草(赵桂琴等,2004)。本研究通过对白三叶进行单一或联合接种AMF和根瘤菌,分析其对白三叶生长、光合作用、N含量、氨基酸组分及N同化相关酶活性的影响。

1 材料与方法

1.1 试验材料

白三叶种子购自湖北省种子站。根据Xie等(2020)的前期研究结果,选用 AMF菌种为隐类球囊霉(Paraglomus occultum),由中国丛枝菌根真菌种质资源库(BGC)提供;经白三叶盆栽扩繁3个月后,由长江大学根系生物学研究所通过孢子密度测定,确定每克AMF菌种内含20个孢子。供试三叶草根瘤菌(Rhizobium trifolii)由中国农业微生物菌种保藏管理中心提供,经酵母甘露醇液体培养基活化、单菌落培养。挑取单菌落置于40 mL液体培养基中,在220 r·min-1、28 ℃下培养18 h。取1 mL菌液置于20 mL液体培养基中,在220 r·min-1、28 ℃下继续培养3 h,随后8 000 ×g 离心2 min,弃上清液,用无菌水制菌悬液至浓度为4.27×108 CFU·mL-1(OD600為0.3)。

栽培基质为土和沙,比例为3/1(V/V),经过高温灭菌(0.11 MPa,121 ℃,2 h)使沙和土中的土著真菌孢子失活。试验用土采自长江大学落叶果树基地,试验用沙为直径< 4 mm的河沙。试验用塑料盆的规格为上口径15 cm、下口径10 cm、高12 cm,装1.3 kg基质。

1.2 试验设计

共设置4个处理,分别为未接种对照(control)、接种根瘤菌(inoculation with Rh)、接种AMF(inoculation with AMF)、联合接种AMF和根瘤菌(inoculation with AMF and Rh)。每个处理有8个重复,随机排列,共32盆。

1.3 植物培养

在将白三叶播种前,用95%乙醇和0.525%次氯酸钠分别对种子进行表面消毒5 min,用无菌水清洗5次,之后按照30粒种子/盆,播种在装有栽培基质的塑料盆中,3周后间苗至12棵/盆。播种的时候进行接种处理,其中单接种根瘤菌处理是每盆接种10 mL三叶草根瘤菌菌悬液,并且所播种子预先在三叶草根瘤菌菌悬液浸泡30 min;单接种AMF处理是将100 g隐类球囊霉菌种混于栽培基质中;联合接种AMF和根瘤菌处理是将100 g隐类球囊霉菌种混于栽培基质,并且所播种子预先在三叶草根瘤菌菌悬液浸泡30 min,之后将10 mL 三叶草根瘤菌菌悬液接种到栽培基质中;未接种对照是混入等量灭菌的隐类球囊霉菌种和三叶草根瘤菌菌悬液,并且种子同样浸泡在灭菌后的三叶草根瘤菌菌悬液中30 min。处理后的植物生长在一个环境可控的生长室内培养,光照强度为900 lx,温度为28 ℃/23 ℃(白天/黑夜),空气相对湿度为68%。定期更换塑料盆位置以避免环境差异影响试验结果。植物培养期间未添加其他养分,每日17:00浇水100 mL,培养12周后结束试验。

1.4 植株生长及生理指标测定

收获时植株分成地上部与地下部,人工测定生长指标,即植株株高、叶片数、匍匐茎长度和生物量。采用FluorCam叶绿素荧光成像仪进行活体測定叶绿素荧光参数。

根系菌根真菌侵染测定采取Phillips和Hayman(1970)的方法,菌根真菌侵染率为AMF侵染的根段长度与观察的总根段长度的百分比。叶绿素含量测定采用王学奎(2016)的方法。叶片N含量测定,将叶片消化后采用间断化学分析仪(Autochem 1200)分析。叶片氨基酸组分经过乙腈水超声提取、离心和微孔滤膜过滤(Liyanaarachichi et al., 2018),之后在高效液相色谱-质谱联用(Shimadzu LC-20ADXR和Applied Biosystems Sciex Q-trap 5500质谱仪)上分析。

叶片硝酸还原酶活性测定采用磺胺比色法(Cervilla et al., 2009)。亚硝酸还原酶活性测定参照Ogawa等(1999)的方法。谷氨酸合成酶测定依据Singh和Srivastava(1986)的方法。采用刘淑云等(2007)的方法测定谷氨酸脱氢酶活性。天冬酰胺合成酶活性测定参照Shifrin等(1974)的方法。丙氨酸转氨酶和天冬氨酸转氨酶活性测定依据梁成刚等(2013)的方法。谷氨酰胺合成酶测定参照Husted等(2002)的方法稍作修改,即称取0.2 g新鲜样品,加入3 mL 50 mmol·L-1  Tris-HCl缓冲液(0.1 mol·L-1  Tris、2 mmol·L-1 MgSO4、2 mmol·L-1 二硫苏糖醇和40 mmol·L-1 蔗糖)研磨成浆,4 ℃下10 000 ×g离心15 min;取0.7 mL上清液,加入1.6 mL反应液(80 mmol·L-1 MgSO4、20 mmol·L-1 L-Na-谷氨酸盐和20 mmol·L-1 L-半胱氨酸)以及0.7 mL ATP溶液,混匀后置于37 ℃下保温30 min,加入1 mL显色剂(0.2 mol·L-1三氯乙酸、0.37 mol·L-1 FeCl3和0.6 mol·L-1 HCl),摇匀,显色10 min后,于5 000 ×g 离心10 min后取其上清液,在540 nm下测定吸光值。

1.5 数据统计分析

使用SAS软件(9.1.3v)(SAS Institute Inc., Cary, NC, USA)进行方差分析,采用邓肯新复极差法进行多重比较。

2 结果与分析

2.1 单一或联合接种AMF和根瘤菌对AMF侵染白三叶根系的影响

未接种AMF的植株根系未发现菌根真菌侵染,而接种AMF的植株根系可见菌根结构(图1),其中单接种AMF的白三叶菌根真菌侵染率为(77.9±7.9)%,联合接种AMF和根瘤菌的植株根系菌根真菌侵染率为(92.8±5.8)%,表明接种根瘤菌促进了AMF对白三叶根系的侵染。

2.2 单一或联合接种AMF和根瘤菌对白三叶生长的影响

接种处理均促进了白三叶的生长(表1)。与不接种对照相比,单接种根瘤菌显著提高了株高、匍匐茎长度、叶片数、地上部生物量以及总生物量,分别提高了9.3%、49.4%、14.5%、19.9%和18.2%,而对地下部生物量无显著影响;单接种AMF与联合接种AMF和根瘤菌均显著提高了白三叶的株高、匍匐茎长度、叶片数、地上部生物量、地下部生物量和总生物量,单接种AMF分别提高了12.1%、48.7%、34.7%、32.9%、22.6%和31.0%,联合接种AMF和根瘤菌分别提高了22.5%、202.6%、54.9%、74.1%、30.2%和66.3%。可见,联合接种对植株生长的促进作用明显优于单接种,单接种AMF对植株生长的促进效果在叶片数和生物量上要优于单接种根瘤菌。

2.3 单一或联合接种AMF和根瘤菌对白三叶叶绿素含量的影响

如图2所示,与不接种处理相比,单接种根瘤菌处理显著提高了叶绿素b和总叶绿素含量,分别提高了42.5%和20.8%,而对叶绿素a无显著影响。单接种AMF与联合接种AMF和根瘤菌均显著提高了叶绿素a、叶绿素b和总叶绿素的含量,单接种AMF分别提高了30.4%、72.6%、38.3%,联合接种AMF和根瘤菌分别提高了41.6%、102.6%、53.1%。可见,联合接种对叶绿素含量的促进效应明显优于单接种根瘤菌或AMF。

2.4 单一或联合接种AMF和根瘤菌对白三叶叶绿素荧光参数的影响

由图3:A-C可知,与不接种对照相比,单接种AMF或根瘤菌对叶片最大光量子效率(QY_max)均无显著影响,而联合接种AMF和根瘤菌的处理中QY_max显著提高了31.4%。可见,单接种根瘤菌、单接种AMF与联合接种AMF和根瘤菌均显著提高了叶片稳态光量子效率(QY_Lss),显著降低了叶片稳态非光化荧光淬灭(NPQ_Lss)。

2.5 单一或联合接种AMF和根瘤菌对白三叶叶片N含量的影响

与不接种相比,单接种根瘤菌、单接种AMF以及联合接种AMF和根瘤菌的白三叶叶片N含量分别显著提高了9.6%、18.8%和30.3%(图4)。可见,联合接种对叶片N含量的增强效果要显著高于单一接种根瘤菌或AMF。

2.6 单一或联合接种AMF和根瘤菌对白三叶叶片氨基酸含量的影响

与未接种相比,单接种根瘤菌显著提高了叶片的Ala、Gln含量,分别提高了27.5%、38.8%,显著降低了Orn含量(降低了48.3%),而对Arg、Asn、Asp、Glu和His含量无显著影响;单接种AMF以及联合接种AMF和根瘤菌均显著提高了白三叶叶片的Ala、Arg、Asn、Asp、Gln、Glu、His含量,单接种AMF分别提高了80.8%、104.5%、115.4%、34.1%、99.5%、64.7%、103.1%,联合接种AMF和根瘤菌分别提高了98.9%、227.0%、114.4%、56.8%、101.4%、45.5%、154.7%,均显著降低了Orn含量,分别降低了28.6%、39.5%(表2)。可见,联合接种AMF和根瘤菌对白三叶叶片氨基酸含量的促进效果更显著。

2.7 单一或联合接种AMF和根瘤菌对白三叶叶片N同化相关酶活性的影响

与未接种处理相比,单接种根瘤菌显著提高了叶片的GS、GOGAT、GDH、AS、AST活性,分別提高25.0%、13.6%、25.5%、26.9%、36.0%;单接种AMF显著提高了叶片的NR、NiR、GOGAT、GDH、AS、AST活性,分别提高了29.3%、33.6%、33.7%、26.0%、44.1%、36.8%;联合接种AMF和根瘤菌处理显著提高了叶片的NR、NiR、GS、GOGAT、GDH、AS、AST活性,分别提高了64.3%、85.5%、39.8%、58.1%、51.7%、68.2%、57.1%(表3)。可见,联合接种对N同化相关酶活性的提升效果要明显高于单一接种。

3 讨论与结论

本研究中, 根瘤菌的接种显著促进了AMF对白三叶根系的侵染,表明根瘤菌引入有利于根系丛枝菌根的形成,其原因是根瘤菌通过固氮满足AMF对N的需求,有利于根系AMF的建立(Xavier & Germida, 2003)。此外,根瘤菌提高了豆科植物体内的N水平,为了其维持体内N和P的平衡,豆科植物的固N效率在很大程度上取决于P的供应,而AMF有利于促进植株对P的吸收。因此,豆科植物会提供给AMF足够多的C供应,促进根系菌根的形成(Liu et al., 2020),进而有利于P的吸收。

本研究中,联合接种AMF和根瘤菌对白三叶生长的促进效果显著高于单一接种, 表明AMF和根瘤菌产生了协同效应共同促进植物生长,这与Talaat和Abdallah(2008)在蚕豆上的研究结果一致。根瘤菌和AMF对白三叶生长的协同作用原因是根瘤菌的引入既促进了植株固N效率和固N总量,又促进了白三叶根系中AMF的侵染率,促使白三叶植株根系和AMF的生长更好,进一步扩大植株根系和根外菌丝对水分和养分的吸收面积。

本研究中,单一接种AMF和根瘤菌均显著增加了叶绿素b及总叶绿素的含量,并且联合接种AMF和根瘤菌进一步增强了这种效应。此外,联合接种的白三叶植株的QY_max和QY_Lss参数显著高于未接种植株,而NPQ_Lss参数显著低于未接种植株。QY_max和QY_Lss是光合性能的敏感指标,NPQ_Lss是过多的激发能以热能形式散发的参数(黄小辉等,2022)。联合接种AMF和根瘤菌,一方面提高植株叶片光能转化的效率以及反应中心电子传递活性, 另一方面抑制植株光能以热量散失,保障了白三叶植株光合产物最大效率的积累。因此,联合接种AMF和根瘤菌的植株拥有较高的光合能力,而植株积累大量的光合产物为植物根系、AMF和根瘤菌生长提供了保障。

本研究中,单接种根瘤菌或AMF均显著增加白三叶叶片N含量,联合接种植株叶片N含量显著高于单接种。事实上,豆科植物的固N效率与P的供应密切相关,P是根瘤菌固N反应所需ATP酶合成的重要元素, 豆科植物根瘤的形成也需要P,而AMF庞大的根外菌丝结构有利于P的获取。因此,AMF在根瘤菌与植株建立友好共生过程中提供根瘤形成所需的P,共同提高植株共生固氮水平(Xie et al., 2022)。Arg是AMF菌丝中氨基酸运输的主要类型,其含量占菌丝氨基酸总量的90%(金海如,2008)。因此,Arg对菌根N的转移起到重要作用。本研究证实接种AMF显著提高了Arg含量。Arg是生成信使分子如多胺的前体,可以促进细胞分裂(杨洪强和高华军,2007)。联合接种植株中的Arg含量显著高于单接种和未接种的植株,这与刁亚南等(2014)在绿豆上接种AM真菌和根瘤菌的结果一致。这表明AMF和根瘤菌的协同作用显著增加了Arg含量,共同促进植株地上部细胞分裂,进一步促进植株生长。Asn是根瘤向共生植株输送N化合物的主要形式(薛迎斌,2018)。因此,单接种根瘤菌比单接种AMF更加显著提高Asn的含量;联合接种AMF和根瘤处理具有协同作用,显著提高了白三叶叶片氨基酸的含量,说明此处理方式有利于促进N的同化。

本研究中,接种AMF显著增加白三叶叶片NR和NiR的活性,而接种根瘤菌对NR和NiR的活性无影响,表明AMF接种有利于白三叶由NO3-向NH4+转变,这与田超等(2020)在苜蓿上的研究结果一致。此外,联合接种根瘤菌和AMF的处理进一步增强了单一接种AMF对NR和NiR活性的刺激效果,表明两种微生物协同地增强了菌根植物叶片NO3-向NH4+ 转变的速率。单一或联合接种根瘤菌和AMF均提高了白三叶叶片的GOGAT、GDH、GS活性,这说明单一或联合接种根瘤菌和AMF通过调控GS/GOGAT和GDH途径中的酶活性不同程度地促进N同化合成氨基酸,其中联合接种的作用效果更明显,而接种根瘤菌在促进NH4+转化为Gln上比接种AMF效果显著。本研究中单一和联合接种根瘤菌和AMF均显著促进白三叶叶片的AS和AST活性,从而促进Asn和Asp的积累。这表明联合接种AMF和根瘤菌有效地激活了N同化相关酶的活性,提升了生成氨基酸的含量。

联合接种AMF和根瘤菌具有协同效应,有效促进白三叶的植株生长、显著提高植株光合作用水平、叶片N含量,同时显著增加了白三叶叶片中丙氨酸、精氨酸、天冬酰胺、天冬氨酸、谷氨酰胺、谷氨酸和组氨酸的含量,显著提升了叶片N同化相关酶,如硝酸还原酶、亚硝酸还原酶、谷氨酰胺合成酶、谷氨酸合成酶、谷氨酸脱氢酶、天冬酰胺合成酶和天冬氨酸转氨酶的活性,并显著促进AMF对白三叶根系的侵染。这说明AMF和根瘤菌的协同作用有效地促进了白三叶的N同化。

参考文献:

BLILOU I, OCAMPO JA, GARCíA-GARRIDO JM, 1999. Resistance of pea roots to endomycorrhiza fungus or Rhizobium correlates with enhanced levels of endogenous salicylic acid [J]. J Exp Bot, 50(340): 1663-1668.

CERVILLA LM, BLASCO B, RIOS JJ, et al., 2009. Response of nitrogen metabolism to boron toxicity in tomato plants [J]. Plant Biol, 11(5): 671-677.

DIAO YN, ZHAO LM, JIN HR,et al., 2014. Growth and physical indexes of leguminous plant inoculated with AM and rhizobium under Cd stress [J]. Guizhou Agric Sci, 42(12): 74-78.  [刁亚南, 赵腊梅, 金海如, 2014. 镉胁迫下豆科植物接种AM真菌和根瘤菌的生长及生理指标变化 [J]. 贵州农业科学, 42(12): 74-78.]

HIREL B, GADAL P, 1980. Glutamine synthetase in rice: a comparative study of the enzymes from roots and leaves [J]. Plant Physiol, 66(4): 619-623.

HODGES M, 2002. Enzyme redundancy and the importance of 2-oxoglutarate in plant ammonium assimilation [J]. J Exp Bot, 53(370): 905-916.

HUANG XH, WU JJ, WANG YS, et al., 2022. Growth and chlorophyll fluorescence characteristics of walnut (Juglans regia) seedling under different nitrogen supply levels [J]. J Nanjing For Univ (Nat Sci Ed), 46(2): 119-126.  [黄小辉, 吴焦焦, 王玉书, 等, 2022. 不同供氮水平的核桃幼苗生长及叶绿素熒光特性 [J]. 南京林业大学学报(自然科学版), 46(2): 119-126.]

HUSTED S, MATTSSON M, MOLLERS C, et al., 2002. Photorespiratory NH4+ production in leaves of wild-type and glutamine synthetase 2 antisense oilseed rape [J]. Plant Physiol, 130(2): 989-998.

JIN HR, 2008. Arbuscular mycorrhizal hyphae arginine two-way run and decomposition of ornithine [J]. Sci Chin Ser C, 38(11): 1048-1055.  [金海如, 2008. 丛枝菌根菌丝精氨酸双向运转并分解为鸟氨酸 [J]. 中国科学: C辑, 38(11): 1048-1055.]

LIANG CG, ZHANG Q, LI J, et al., 2013. Effect of high temperature on aspartate metabolism enzyme activities and aspartate-family amino acids contents at rice grain-filling stage [J]. Chin J Rice Sci, 27(1): 71-76.  [梁成刚, 张青, 李敬, 等, 2013. 水稻灌浆期高温对天冬氨酸代谢酶活性及其家族氨基酸含量的影响 [J]. 中国水稻科学, 27(1): 71-76.]

LIU CY, ZHANG F, ZHANG DJ, et al., 2020. Transcriptome analysis reveals improved root hair growth in trifoliate orange seedlings by arbuscular mycorrhizal fungi [J]. Plant Growth Regul, 92(5): 195-203.

LIU SY, DONG ST, ZHAO BQ, et al., 2007. Effects of long-term fertilization on activities of key enzymes related to nitrogen metabolism (ENM) of maize leaf [J]. Acta Agron Sin, 33(2): 278-283.  [刘淑云, 董树亭, 赵秉强, 等, 2007. 长期施肥对夏玉米叶片氮代谢关键酶活性的影响 [J]. 作物学报, 33(2): 278-283.]

LIYANAARACHCHI GVV, MAHANAMA KRR, SOMASIRI HPPS, et al., 2018. Development and validation of a method for direct, underivatized analysis of free amino acids in rice using liquid chromatography-tandem mass spectrometry [J]. J Chromatogr A, 1568(9): 131-139.

MASSON-BOIVIN C, SACHS JL, 2018. Symbiotic nitrogen fixation by rhizobia—the roots of a success story [J]. Curr Opin Plant Biol, 44(8): 7-15.

OGAWA T, FUKUOKA H, YANO H, et al., 1999. Relationships between nitrite reductase activity and genotype-dependent callus growth in rice cell cultures [J]. Plant Cell Rep, 18(7): 576-581.

PHILLIPS JM, HAYMAN DS, 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection [J]. Trans Br Mycol Soc, 55(1): 158-161.

REN CG, KONG CC, WANG SX, et al., 2019. Enhanced phytoremediation of uranium-contaminated soils by arbuscular mycorrhiza and rhizobium [J]. Chemosphere, 217: 773-779.

SAXENA AK, RATHI SK, TILAK KVBR, 1997.Differential effect of various endomycorrhizal fungi on nodulating ability of green gram by Bradyrhizobium sp. (Vigna) strain S24 [J]. Biol Fert Soils, 24(2): 175-178.

SERRALTA-INTERIAN AA, MIRANDA-HAM M, ECHEVARRIA-MACHADO I, 2020. Stimulation of root growth and enhanced nitrogenous metabolite content in habanero pepper (Capsicum chinense Jacq.) treated with a D-amino acid mixture [J]. Theor Exp Plant Physiol, 32(1): 31-47.

SHIDRIN S, PARROTT CL, 1974. In vitro assembly of L-asparaginase subunits [J]. J Biol Chem, 249(13): 4175-4180.

SINGH RP, SRIVASTAVA HS, 1986. Increase in glutamate synthase (NADH) activity in maize seedlings in response to nitrate and ammonium nitrogen [J]. Physiol Plant, 66(3): 413-416.

TALAAT NB, ABDALLAH AM, 2008. Response of faba bean (Vicia fava L.) to dual inoculation with Rhizobium and VA mycorrhiza under different levels of N and P fertilization [J]. J Appl Sci Res, 4(9): 1092-1102.

TIAN C, LI Q, XU QF,et al., 2020. Effects of AMF and rhizobium inoculation on the nitrogen and phosphorus of alfalfa and soil in mining areas [J]. J Shanxi Agric Sci, 48(4): 580-583.  [田超, 李倩, 許庆芳, 等, 2020. 矿区土接种AMF和根瘤菌对紫花苜蓿及土壤氮磷的影响 [J]. 山西农业科学, 48(4): 580-583.]

WANG XK, 2016. Principles and techniques of plant physiological biochemical experiment [M]. Beijing: Higher Education Press: 134-136.  [王学奎, 2016. 植物生理生化实验原理和技术 [M]. 北京: 高等教育出版社: 134-136.]

XAVIER LJC, GERMIDA JJ, 2003. Selective interactions between arbuscular mycorrhizal fungi and Rhizobium leguminosarum bv. viceae enhance pea yield and nutrition [J]. Biol Fert Soils, 37(5): 261-267.

XIE K, REN Y, CHEN A,et al., 2022. Plant nitrogen nutrition: The roles of arbuscular mycorrhizal fungi [J]. J Plant Physiol, 269: 153591.

XIE MM, ZOU YN, WU QS, et al., 2020. Single or dual inoculation of arbuscular mycorrhizal fungi and rhizobia regulates plant growth and nitrogen acquisition in white clover [J]. Plant Soil Environ, 66(6): 287-294.

XUE YB, 2018. Transcriptomics analysis of soybean nodules responsive to phosphorus deficiency and GmSPX5 functions in regulating nodule growth [D]. Guangzhou: S China Agric Univ: 36-97.  [薛迎斌, 2018. 大豆根瘤缺磷響应基因的表达谱及GmSPX5调控根瘤生长的研究 [D]. 广州: 华南农业大学: 36-97.]

YANG HQ, GAO HJ, 2007. Physiological function of arginine and its metabolites in plants [J]. J Plant Physiol Mol Biol, 33(1): 1-8.  [杨洪强, 高华军, 2007.  植物精氨酸及其代谢产物的生理功能 [J]. 植物生理与分子生物学学报, 33(1): 1-8.]

ZHANG L, YANG CX, 2018. Enzyme activities and free amino acids of Puccinellia tenuiflora-arbuscular mycorrhizal symbiont under saline alkali stress [J]. J NE For Univ, 46(11): 91-96.  [张良, 杨春雪, 2018. 盐碱胁迫对星星草-丛枝菌根真菌共生体酶活性及游离氨基酸的影响 [J]. 东北林业大学学报, 46(11): 91-96.]

ZHAO GQ, WANG SM, REN JZ, 2004. Research progress on genetic transformation and ecological adaptability in white clover [J]. Acta Ecol Sin, 24(3): 592-598.  [赵桂琴, 王锁民, 任继周, 2004. 白三叶转基因及其生态适应性研究进展 [J]. 生态学报, 24(3): 592-598.]

(责任编辑 蒋巧媛 王登惠)

猜你喜欢

白三叶根瘤菌氨基酸
三叶草属2 种草坪草出苗和幼苗生长阶段的种内与种间关系
9月可以播种白三叶吗?
鲜食大豆根瘤菌应用研究
接种苜蓿根瘤菌对西藏苜蓿生长及土壤理化性质的影响
月桂酰丙氨基酸钠的抑菌性能研究
UFLC-QTRAP-MS/MS法同时测定绞股蓝中11种氨基酸
浅析白三叶的虫害防治
一株Nsp2蛋白自然缺失123个氨基酸的PRRSV分离和鉴定
氨基酸分析仪测定玉米浆中17种游离氨基酸的不确定度评定
白三叶基因工程及逆境生理研究进展