三七皂苷类自毒物质降解细菌分离及其降解特性
2023-08-20向维韦小兰曹科鑫李良波黄荣韶
向维 韦小兰 曹科鑫 李良波 黄荣韶
摘 要: 三七是我國的名贵药材,但由于连作障碍发生严重,因此土壤中自毒物质的积累成为导致三七连作障碍发生的主要原因之一。生物降解土壤中的自毒物质是缓解连作障碍的有效措施,为筛选并利用降解菌使土壤中皂苷类自毒物质快速消减,该研究以皂苷类自毒物质为筛选靶标,采用富集和驯化策略,从连作三七根际土壤中分离、筛选三七皂苷类自毒物质降解细菌,结合16S rRNA基因测序对高活性菌株进行分类鉴定,并对筛选得到的高活性菌株SC3的降解特性进行了研究。结果表明:(1)从三七根际土壤中成功分离出8株潜在自毒物质降解细菌,初筛评价结果显示SC3菌株对三七总皂苷的降解率最高,达87.42%。(2)通过16S rRNA基因序列分析,编号SC3的高活性菌株被鉴定为寡养单胞菌属(Stenotrophomonas)细菌。(3)在相同培养条件下,菌株SC3对单体皂苷Rb1的降解效果强于对Rg1的降解。(4)在液体培养条件下,底物浓度、接种量和培养温度均会显著影响SC3菌株对单体皂苷Rb1的降解效果。综上表明,采用富集和驯化策略可以有效筛选自毒物质降解细菌,SC3菌株具有消除连作土壤中皂苷类自毒物质的潜力。该研究结果为连作土壤修复提供了生物资源,并为今后深入研究皂苷降解机制提供了理论依据。
关键词: 三七, 自毒作用, 自毒物质, 皂苷, 生物降解
中图分类号: Q948
文献标识码: A
文章编号: 1000-3142(2023)07-1173-09
收稿日期: 2023-02-28
基金项目: 国家自然科学基金(81860669); 湖南省教育厅科学研究项目(21C0127)。
第一作者: 向维(1990-),博士,讲师,主要从事中药资源及开发研究,(E-mail)weixiang@hunau.edu.cn。
通信作者: 黄荣韶,博士,教授,主要从事药用植物繁育与栽培技术研究,(E-mail)hrshao802@163.com。
Isolation and characterization of autotoxic saponins-degrading
bacterial strains from Panax notoginseng
XIANG Wei1,3, WEI Xiaolan3, CAO Kexin3, LI Liangbo2, HUANG Rongshao2*
( 1. College of Horticulture, Hunan Agricultural University, Changsha 410128, China; 2. College of Pharmacy, Guangxi University
of Chinese Medicine, Nanning 530200, China; 3. College of Agricultural, Guangxi University, Nanning 530004, China )
Abstract: Panax notoginseng is a valuable Chinese herb in China, and the root should be harvested between three and seven years after planting it. However, the growth of P. notoginseng is frequently hindered due to replanting failure. There have been numerous studies proving that the accumulation of allelochemicals in the soil is considered to be one of the reasons for the replanting failure of P. notoginseng. Biodegradation of allelochemical in soil has been shown to be an effective measure to alleviate continuous cropping obstacles, so screening allelochemical-degrading bacteria could provide biological resources for soil remediation. Based on this, this study adopted a research strategy of enrichment and domestication to isolate and screen saponin-degrading bacteria from the rhizosphere soil of P. notoginseng, which had been grown continuously for three years and more. Also, the highly active strains were identified by 16S rRNA gene analysis. In addition, the effect of highly active strain SC3 on degrading allelochemicals under different conditions was studied by HPLC. The results were as follows: (1) Eight strains of potentially degrading bacteria were successfully isolated from the rhizosphere soil of P. notoginseng. The results of the initial screening evaluation showed that strain SC3 had the best biodegradation effect on total saponins with 87.42% degradation rate. (2) Strain SC3 was identified as Stenotrophomonas sp. based on 16S rRNA gene analysis coupled with physiological and biochemical analyses. (3) The biodegradation of ginsenoside Rb1 by strain SC3 was stronger than its biodegradation of ginsenoside Rg1 under the same culture conditions. (4) The degradation of ginsenoside Rb1 by SC3 strain under liquid culture conditions was significantly affected by different factors, such as substrate concentration, inoculum amount and culture temperature. All the results indicate that the enrichment and domestication strategy can effectively screen allelochemical-degrading bacteria, and a possible application of strain SC3 in the bioremediation of saponin contamination in agricultural environments. The results provide biological resources for replanting soil remediation and theoretical basis for further study of saponin degradation mechanism.
Key words: Panax notoginseng, autotoxicity, allelochemical, saponins, biodegradation
三七(Panax notoginseng)为五加科(Araliaceae)人参属(Panax L.)植物,是治疗和预防心脑血管疾病的中药原料药材。三七分布范围狭窄,主要分布于云南文山和广西百色一带(黄荣韶等,2007)。由于市场上的三七主要依靠人工栽培,加之有限的土地资源,因此导致同一地块连续复种,并且面积不断增加。而三七等人参属植物是一种忌连作植物,连作往往引起烂根、病害频发等诸多问题,进而导致产量下降甚至绝收(孙雪婷等,2015)。因此,连作障碍严重已成为制约三七产业可持续发展的重大问题。导致三七连作障碍的主要因素包括由生物、非生物因素引起的土壤理化性状恶化、土传病害加重、自毒物质产生的自毒作用和环境压力等(Liu et al., 2019)。其中,自毒作用是导致三七连作障碍的主要原因之一(谭勇等,2017;Ren et al., 2017;Zhang et al., 2018)。
自毒作用是化感作用的一种表现形式,是植物通过淋溶、挥发、根系分泌和植物残体降解等途径释放某些生物活性物质到环境中,并对自身的生长发育产生抑制作用。引起三七自毒作用的物质主要有糖类、氨基酸、有机酸、皂苷类和黄酮类物质(游佩进,2009;向维,2016)。这些物质可由植株通过淋溶、根系分泌等途径释放,并在土壤中累积,直接或间接抑制三七的生长(林娟等,2007)。越来越多的研究表明,皂苷类物质对三七生长具有较强的自毒活性。Yang等(2015)在三七连续耕作的土壤和根系分泌物中鉴定出多种皂苷,并随着种植年限的增加部分皂苷会在土壤中积累。Qiao等(2019)的研究表明,三七连作土壤中分离出的多种三萜类皂苷成分,对三七生长会产生自毒作用。Yang等(2018)研究表明,单体皂苷Rg1可以通过抑制三七根系抗坏血酸过氧化物酶和参与谷胱甘肽酶活性增加活性氧的积累,从而破坏根细胞膜和细胞壁。由此可见,皂苷类物质可以通过根系分泌等途径释放到土壤中并积累,从而加重连作障碍的发生。
目前,缓解三七连作障碍问题大多采用轮作、土壤高温消毒和化学防治等措施(Liu et al., 2019)。这些措施,一方面耗时耗力,另一方面过多的化学试剂影响药材的品质,更造成生态的破坏。因此,开发绿色防控技术是当务之急。通常情况下,土壤中微生物降解或转化自毒物质决定其自毒作用的存在方式与表达。因此,找到自毒物质高效降解菌将为缓解连作障碍提供一种新的途径。土壤微生物是土壤微生态中最重要的功能组分,其在物质与能量循环、土壤结构、自毒物质降解、病原微生物调控及土壤微生态平衡保持等方面发挥重要作用(Berendsen et al., 2018;Lundberg & Teixeira, 2018)。已有大量研究证明,微生物对降解土壤中积累的自毒物质有较好的效果(李茹和陈鹏,2011;李敏等,2019;Liu et al., 2019)。目前,研究人员已经筛选到了一些能降解自毒物质的细菌,主要是针对酚酸类物质,这些微生物主要来源于土壤等外界环境,如假单胞菌(Pseudomonas)、根瘤菌(Rhizobia)、芽孢杆菌(Bacillus)、链霉菌(Streptomyces)等(李敏等,2019)。但是,目前对于总皂苷类物质降解菌株的报道却较少。因此,筛选并利用降解菌使土壤中皂苷类自毒物质快速消减,对后续开展连作土壤生物修复的研究具有重要意义。
本研究以皂苷类自毒物质为筛选靶标,采用富集和驯化策略从三七根际土壤中分离降解细菌,同时结合16S rRNA基因测序分析对活性菌株进行分类鉴定,并综合利用化学法、色谱法评价分离菌株的降解能力。拟探讨:(1)从连作三七根际土壤筛选皂苷类自毒物质降解细菌的可行性;(2)菌株对三醇型和二醇型皂苷降解能力的差异;(3)液体培养条件下,不同因素对降解菌降解能力的影响。
1 材料与方法
1.1 供试土壤
在广西百色市那坡县三七人工种植基地(A,105°55′56″ E、23°34′11″ N)、广西百色市田林县三七人工种植基地(B,106°3′1″ E、24°11′28″ N)、那坡县某农户家半野生三七地(C,105°54′29″ E、23°21′51″ N)、云南文山市三七人工种植基地(D,103°50′33″ E、23°57′38″ N)采集样品。从每个采样地随机选取5个点,选择3年生及以上的健康三七,用铁铲小心地将植株连根挖出,抖落根周围土壤,用刷子轻刷根系收集根际土壤。
1.2 仪器和试剂
Ezup柱式细菌基因组DNA抽提试剂盒购自生工生物工程(上海)股份有限公司,Biolog GenIII鉴定微孔板购自美国BIOLOG公司。紫外分光光度计(UV1800,日本岛津公司)、菌种鉴定仪(GEN III,美国BIOLOG公司)、PCR仪(impliAmp,赛默飞世尔科技有限公司)。
Luria-Bertani培养基(LB,pH 7.0): 含胰蛋白胨10.0 g·L-1、酵母提取物5.0 g·L-1和NaCl 10.0 g·L-1。无机盐离子培养基(MSM,pH 7.0): 含(NH4)2SO4 1.0 g·L-1、KH2PO4 0.5 g·L-1、K2HPO4 1.5 g·L-1、NaCl 1.0 g·L-1和MgSO4·7H2O 0.1 g·L-1。 TSA培養基(pH 7.0): 胰蛋白胨15 g·L-1、大豆蛋白胨5 g·L-1、氯化钠5 g·L-1。
1.3 降解菌的富集和驯化
将土壤样品中的杂物清理干净,取不同采样点的土壤样品5 g,分别添加到100 mL含有50 mg·mL-1总皂苷的MSM液体培养基中,置于30 ℃、180 r·min-1的恒温培养振荡器中培养7 d。此后,每7 d取上一次培养液10 mL转接到新的MSM培养液中,并提高总皂苷的底物浓度至100 mg·mL-1,于相同条件下培养。重复此操作,并提高底物浓度(2倍法)直至总皂苷最高浓度达到400 mg·mL-1为止。每个处理均设3次重复,以加入无菌水为空白对照(刁硕等,2017)。
1.4 降解菌的分离及纯化
取最后一次富集菌液,将菌液10倍比稀释,吸取一定量的稀释液分别涂布至LB固体培养基上,以无菌水为对照,置于30 ℃的恒温培养箱中培养,观察并记录菌落形状、大小、透明度及颜色等。将同一平板上不同形态的菌落分别接种至含400 mg·mL-1三七总皂苷的MSM固体培养基上划线培养,直至长出单菌落。继续挑选单菌落划线培养,重复此步骤,至平板上所有菌落的外部形态一致。将分离纯化后的菌株分别用甘油超低温和真空冻干2种保存方法保存,备用。
1.5 降解能力初筛
将纯化后的菌种接种于LB培养基中培养24 h,用无菌水重悬菌液;取5 mL菌液接种到含有200 mg·mL-1总皂苷的100 mL MSM液体培养基中,在30 ℃、180 r·min-1条件下培养,所有处理重复3次,以接种无菌水为对照。96 h后,对培养物离心且收集上清液,用氯仿萃取上清液,保留氯仿层、挥干,用乙醇定量溶解后基于香草醛法测定培养液中总皂苷含量(丁永丽等,2013)。精密配制分别含50、100、150、200、250 mg·mL-1浓度的总皂苷供试溶液,以MSM培养基为校正空白,测量总皂苷含量。以总皂苷浓度为横坐标,吸光值为纵坐标绘制标准曲线,计算校正方程和R2值。
1.6 降解菌16S rRNA基因序列分析
使用基因組DNA抽提试剂盒提取细菌基因组,使用通用引物27F和1492R从基因组扩增16S rRNA基因(Xiang et al., 2020)。PCR产物委托给上海生工进行测序。所得的16S rRNA基因序列提交给EzBioCloud在线鉴定,并将序列上传至GenBank数据库,通过MEGA X软件使用邻位算法(neighbor-joining method)构建系统发育树,采用Bootstrap=1 000检验各分支的置信度(Sudhir et al., 2018)。
1.7 菌株SC3的降解特性
1.7.1 菌株SC3对单体皂苷的降解 配制含人参皂苷Rb1质量浓度分别为25、50、100、200、400 mg·mL-1的MSM液体培养基,pH 7.0,含人参皂苷Rg1的MSM培养基配置浓度同上。在无菌条件下,将SC3供试菌液以5%(V/V)接种量接入培养基中,以不接种菌株为对照,培养基置于30 ℃、180 r·min-1条件下的摇床中培养,所有试验重复3次。96 h后,每瓶培养基取3 mL菌液在9 500 r·min-1条件下离心2 min,取上清液过0.22 μm有机滤膜,参考Zhou等(2008)的方法通过HPLC检测样品含量。
1.7.2 接种量对降解效果的影响 以含400 mg·mL-1人参皂苷Rb1的液体MSM培养基(pH 7.0)为基础,控制SC3供试菌液以5%、10%、15%、20%(V/V)的接种量接入培养基中,于30 ℃、180 r·min-1条件下振荡培养,以不接种降解菌的培养基为对照。3次重复,在培养120 h后,通过HPLC分析样品。
1.7.3 培养温度对降解效果的影响 以含400 mg·mL-1人参皂苷Rb1的液体MSM培养基(pH 7.0)为基础,控制SC3供试菌液以5%、10%、15%、20%(V/V)的接种量接入培养基中,于30 ℃、180 r·min-1条件下振荡培养,以不接种降解菌的培养基为对照。3次重复,在培养120 h后,通过HPLC分析样品。
1.7.4 pH对降解效果的影响 将SC3供试菌液以5%(V/V)的接种量接种到含400 mg·mL-1人参皂苷Rb1的液体MSM培养基中,控制培养基pH为4.0、5.0、6.0、7.0和8.0,于30 ℃、180 r·min-1条件下振荡培养,以不接种降解菌的培养基为对照。3次重复,在培养120 h后,通过HPLC分析样品。
1.7.5 人参皂苷Rb1降解过程跟踪 根据单因素试验结果,在优化条件下测量SC3菌株对人参皂苷Rb1的降解曲线。以400 mg·mL-1人参皂苷Rb1的液体MSM培养基为基础,调pH至7.0左右,将SC3供试菌液以5%(V/V)的接种量接入培养基中,以未接种菌株为对照组,于30 ℃、180 r·min-1条件下振荡培养,设3次重复。培养期间每隔12 h取样10 mL,通过HPLC分析Rb1残留量。
1.8 数据处理分析
数据处理分析均使用SPSS v24.0软件进行,统计学差异显著性通过Duncan和LSD检验进行评估。
2 结果与分析
2.1 三七皂苷类自毒物质降解菌的分离及筛选
基于光学显微镜形态鉴定,从LB培养基上挑选颜色或形态特征具有差异的微生物,经划线纯化后获得细菌分离物8株,编号分别为SAZ3、PSCZ2、SCZ1、SC2、SC3、SBZ1、PSBZ1和SDZ1。基于香草醛法初步测定了潜在三七皂苷降解菌的降解能力,结果如表1所示。通过检测方法线性考察的结果显示,在三七总皂苷浓度为50~250 mg·mL-1时吸光度与浓度线性关系良好,可用于目标范围内含量的计算。在以三七总皂苷为唯一碳源的MSM液体培养基中,其自然降解率约为15%。这些菌株对三总皂苷的相对降解率范围在3.31%~87.42%之间,其中菌株SC3对三七总皂苷的降解率最大。
2.2 降解菌的16S rRNA基因鉴定
提取降解菌的基因组DNA,并完成16S rRNA基因测序,将得到的序列与数据库已知序列进行BLAST比对,结果见表2;图1为高效降解菌株SC3与相似度较高对照菌的系统进化树。菌株SC3与Stenotrophomonas nitritireducens同源性最近,序列相似度达98.07%。通过上述的综合分析,将这株菌鉴定为寡养单胞菌属(Stenotrophomonas)细菌,菌株序列已提交至GenBank数据库,登录号为MW 045205。
2.3 菌株SC3对单体皂苷的降解特性
2.3.1 菌株SC3对单体皂苷Rg1和Rb1的降解 标准曲线结果显示,当人参皂苷Rg1检测浓度为3.125~400 mg·mL-1、Rb1检测浓度为25~400 mg·mL-1时,浓度与峰面积线性关系良好。将SC3菌株分别接种至以这两种单体皂苷为唯一碳源的MSM培养基中,结果如表3所示。在接種96 h后,菌株SC3对不同浓度Rb1降解量均高于对Rg1的降解,对400 mg·mL-1的Rb1降解率接近90%。因此,接下来研究菌株SC3对Rb1的降解,并优化培养条件。
2.3.2 不同因素对菌株SC3降解人参皂苷Rb1的影响 在以400 mg·mL-1人参皂苷Rb1为唯一碳源的MSM培养基中,不同接种量、培养温度和pH对菌株SC3降解人参皂苷Rb1的影响。图2、图3、图4结果均表明,不同因素对降解率影响存在显著差异。不同菌液接种量条件下,人参皂苷Rb1的降解率均较高,当接种量为10%时降解效果最好,并显著高于另外3组(P<0.05),即使是最低降解组(20%接种量)其降解率均值也达到86%(图2)。菌株SC3对培养温度具有良好的耐受力,在25~40 ℃之间,对人参皂苷Rb1的降解率均大于80%。而在培养温度为30 ℃和35 ℃时,降解效果显著好于其他组(P<0.05)(图3)。菌株SC3对培养基pH较为敏感,在pH为4、5时,降解率低于60%。在pH为7、8时,降解率均超过90%,显著高于其他pH处理组(图4)。
2.3.3 菌株SC3降解人参皂苷Rb1的过程跟踪 选用底物浓度400 mg·mL-1、培养基pH 7.0、培养温度30 ℃和接种量10%(V/V)的条件,对菌株SC3降解人参皂苷Rb1的过程进行跟踪监测,96 h内结果如图5、图6所示。从图5、图6可以观察到,人参皂苷Rb1在前12 h降解较少,第48 h时人参皂苷Rb1降解超过62%,60 h后降解速率明显放缓,在96 h后接近完全降解。
3 讨论与结论
利用从植物根际筛选的微生物来降解自毒物质,是行之有效的方法。王罗涛等(2020)从三七根际土壤筛选出一株对皂苷具有较好降效效果的蒙氏假单胞菌菌株PM-41,并对毁灭柱孢菌具有明显拮抗活性。本研究采用类似策略,从三七根际土壤中成功分离出8株潜在降解细菌,它们均能在以皂苷为唯一碳源的无机盐培养基中生长,其中菌株SC3菌株对皂苷的降解效果最好。该策略是利用了细菌的趋化性,利用自毒物质对目标微生物进行富集。朱晓艳等(2019)研究表明细菌能在化学物质的影响下移动,要么靠近要么远离异源物质,这有助于细菌找到生长和生存的最佳条件。这些化学物质作为微生物吸引剂,既是引起土壤微生物群落动态变化或组成的主要驱动因素,又为土壤微生物提供了主要碳和能源(Lundberg & Teixeira, 2018)。例如,糖、氨基酸和糖醇等是普遍的微生物吸引剂,酚类和黄酮类化合物是某些特定微生物的信号分子(李茹等,2011)。三七是多年生植物,其根系分泌物积聚在根际中,并且为微生物生长提供底物,久而久之,不能适应环境变化的菌种被淘汰(Zhang et al., 2019)。
本研究结果表明,从根际土壤中筛选的菌株具有高效降解自毒物质的能力。但是,这些菌株在连作土壤生态修复中的作用还有待进一步研究。
由于三七连作根际土壤中人参皂苷Rb1和Rg1的含量占比最高(Yang et al., 2015),因此本研究针对这两种单体皂苷进行了降解研究。本研究发现,菌株SC3在以Rg1为唯一碳源时,生长速率明显缓于以Rb1为唯一碳源时的生长,菌株SC3对人参皂苷Rb1的降解率显著大于对人参皂苷Rg1的降解。微生物分泌的酶可对皂苷C-3、C-6或C-20位上的糖基进行水解,不同微生物或不同特异性的酶决定了皂苷的降解效果和途径。人参皂苷Rg1和Rb1分别属于三醇型和二醇型皂苷,它们在结构上具有明显的差异。人参皂苷Rb1的C-20位是以β-(1,6)糖苷键相连接的二个葡萄糖,Rg1的C-20位是以α-(1,6)糖苷键相连接2个不同类型糖(Bi et al., 2019)。这说明Rb1分解的糖苷降解酶能特异性地作用于某个位点,不同的空间结构会对酶的作用产生阻碍作用。张庆锋等(2021)报道菌株分泌的β-葡萄糖苷酶能作用于C-3和C-20位置上的特定糖苷键。刘欣茹等(2018)构建了β-葡萄糖苷酶基因的表达载体且转化至赤酵母中表达,并利用工程菌成功将人参皂苷Rb1进行转化。据报道,人参皂苷Rb1在微生物的作用下可通过Rb1→GXVII→F2→C-K、Rb1→Rd→F2→C-K、Rb1→GXVII→GLXXV→C-K(Shen et al., 2013;赵倩等,2021)等途径进行转化或降解。这些途径除了需要水解β-葡萄糖外,还需要可以水解呋喃阿拉伯糖、吡喃阿拉伯糖或木糖的糖苷酶。
此外,非酶促作用还可导致皂苷的降解。本研究发现,在未加入降解菌的对照组中,特别是培养液pH较低时对照组中皂苷自然降解率更高,这主要是由于存在皂苷酸水解现象。Shen等(2013)研究发现,无微生物作用下,在pH为1.2去离子水中人参皂苷Rb1能在1 h内水解超过50%。二醇型人参皂苷在酸性条件下会发生取代糖基的水解、脱水和加成反应(赵乐凤等,2018)。前述研究表明,皂苷在酸性条件下能有效自然降解。但是,种植土壤很难达到这种酸性条件,并且土壤过度酸化不利于植物的生长(Wang et al., 2020)。
综上所述,采用富集和驯化策略可有效筛选自毒物质降解菌,本研究从三七根际土壤中共分离出8株潜在自毒物降解细菌,但其降解能力存在差异。通过进一步对降解菌的降解特性研究发现,同一菌株对不同类型的皂苷降解能力存在差异,本研究中的菌株SC3可对二醇型皂苷Rb1高效降解,但对三醇型人参皂苷Rg1降解能力较弱。本研究结果可为今后深入研究皂苷降解机制提供理论依据,并为开展三七连作土壤生态修复提供技术参考。
参考文献:
BERENDSEN RL, VISMANS G, YU K, et al., 2018. Disease-induced assemblage of a plant-beneficial bacterial consortium [J]. ISME J, 12(6): 1496-1507.
BI YF, WANG XZ, JIANG S, et al., 2019. Enzymatic transformation of ginsenosides Re, Rg1, and Rf to ginsenosides Rg2 and aglycon ppt by using β-glucosidase from Thermotoga neapolitana [J]. Biotechnol Lett, 41(4): 613-623.
DIAO S, WANG HQ, XU J, et al., 2017. Isolation, identification and analysis of degradation ability of a cold-resistant haloduric pyrene-degrading strains [J]. Chin Environ Sci, 37(2): 677-685. [刁碩, 王红旗, 许洁, 等, 2017. 低温耐盐芘降解菌的筛选鉴定及降解特性研究 [J]. 中国环境科学, 37(2): 677-685.]
DING YL, WANG YZ, ZHANG J, et al., 2013. Application of vanillin sulfuric acid colorimetry-ultraviolet spectrometry on quality evaluation of Panax notoginseng [J]. Spectrosc Spectral Anal, 33(2): 471-475. [丁永丽, 王元忠, 张霁, 等, 2013. 硫酸香草醛显色-紫外吸收光谱法在三七质量评价中的应用 [J]. 光谱学与光谱分析, 33(2): 471-475.]
HUANG RS, YANG HJ, HE ZJ, et al., 2007. Textual research on the origin areas of Panax notoginseng [J]. Lishizhen Med Mat Med Res, 18(7): 1610-1611. [黄荣韶, 杨海菊, 贺紫荆, 等, 2007. 三七原产地的再考证 [J]. 时珍国医国药, 18(7): 1610-1611.]
LI M, ZHANG LY, ZHANG YJ, et al., 2019. Review on the microbial biodegradation and metabolism of autotoxic phenolic acids [J]. Asian J Ecotoxicol, 14(3): 72-78. [李敏, 张丽叶, 张艳江, 等, 2019. 酚酸类自毒物质微生物降解转化研究进展 [J]. 生态毒理学报, 14(3): 72-78.]
LI R, CHEN P, 2011.Progress in mechanism of signal transduction and regulation in bacterial chemotaxis [J]. Biotechnol Bull, (11): 54-57. [李茹, 陈鹏, 2011. 细菌趋化性的信号传导及调节机制研究进展 [J]. 生物技术通报, (11): 54-57.]
LIN J, YIN QY, YANG BZ, et al., 2007. Review on allelopathy of plants [J]. Chin Agric Sci Bull, 23(1): 68-72. [林娟, 殷全玉, 杨丙钊, 等, 2007. 植物化感作用研究进展 [J]. 中国农学通报, 23(1): 68-72.]
LIU HJ, YANG M, ZHU SS, 2019. Strategies to solve the problem of soil sickness of Panax notoginseng (Family: Araliaceae) [J]. Allelopathy J, 47(1): 37-56.
LIU XR, LIU CY, XU LQ, et al., 2018, Construction of Ginsenoside-β-glucosidase gene vector and biotransformation in Pichia pastoris [J]. Chem J Chin Univ, 39(11): 2451-2457. [刘欣茹, 刘春莹, 徐龙权, 等, 2018. 人参皂苷β-葡萄糖苷酶基因的毕赤酵母载体构建及生物转化 [J]. 高等学校化学学报, 39(11): 2451-2457.]
LUNDBERG DS, TEIXEIRA PJ, 2018. Root-exuded coumarin shapes the root microbiome [J]. Proc Natl Acad Sci, 115(22): 5629-5631.
QIAO YJ, ZHANG JJ, SHANG JH, et al., 2019. GC-MS-based identification and statistical analysis of liposoluble components in the rhizosphere soils of Panax notoginseng [J]. RSC Adv, 9(36): 20557-20564.
REN X, YAN ZQ, HE XF, et al., 2017. Allelochemicals from rhizosphere soils of Glycyrrhiza uralensis Fisch: Discovery of the autotoxic compounds of a traditional herbal medicine [J]. Ind Crops Prod, 97: 302-307.
SHEN H, LEUNG WI, RUAN JQ, et al. 2013. Biotransformation of ginsenoside Rb1 via the gypenoside pathway by human gut bacteria [J]. Chin Med, 8(1): 1-11.
SUDHIR K, GLEN S, LI M, et al., 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms [J]. Mol Biol Evol, 35(6): 1547-1549.
SUN XT, LI L, LONG GQ, et al., 2015. The progress and prospect on consecutive monoculture problems of Panax notoginseng [J]. Chin J Ecol, 34(3): 885-893. [孙雪婷, 李磊, 龙光强, 等, 2015. 三七连作障碍研究进展 [J]. 生态学杂志, 34(3): 885-893.]
TAN Y, CUI YS, JI XL, et al., 2017. Research progress in microorganism changes of rhizospheric soil and root endogenous and ecology during continuous cropping of Panax notoginseng [J]. Chin Trad Herb Drugs, 48(2): 391-399. [谭勇, 崔尹赡, 季秀玲, 等, 2017. 三七连作的根际、根内微生物变化与生态学研究进展 [J]. 中草药, 48(2): 391-399.]
WANG LT, YANG DY, DENG LM, et al., 2020. Isolation and screening of antagonistic autotoxin-degrading bacteria in Panax notoginseng (Burk.)F. H. Chen rhizosphere soil [J] J S Agric, 51(2): 305-312. [王羅涛, 杨冬英, 邓琳梅, 等, 2020. 三七根际土壤中皂苷类自毒物质降解拮抗细菌的分离筛选 [J]. 南方农业学报, 51(2): 305-312.]
WANG WP, WANG ZH, YANG K, et al., 2020. Biochar application alleviated negative plant-soil feedback by modifying soil microbiome [J]. Front Microbiol, 11: 799.
XIANG W, 2016. Autotoxicity in Panax notoginseng of root exudates and their allelochemicals [D]. Nanning: Guangxi University. [向维, 2016. 三七根系分泌物的自毒作用及自毒物质研究 [D]. 南宁: 广西大学.]
XIANG W, WEI XL, TANG H, et al., 2020. Complete genome sequence and biodegradation characteristics of benzoic acid-degrading bacterium Pseudomonas sp. SCB32 [J]. Biol Med Res Int, 2020: e6146104.
YANG M, CHUAN YC, GUO CW, et al., 2018. Panax notoginseng root cell death caused by the autotoxic ginsenoside Rg1 is due to over-accumulation of ROS, as revealed by transcriptomic and cellular approaches [J]. Front Plant Sci, 9: 264.
YANG M, ZHANG XD, XU YG, et al., 2015. Autotoxic ginsenosides in the rhizosphere contribute to the replant failure of Panax notoginseng [J]. PLoS ONE, 10(2): e0118555.
YOU PJ, 2009. Study on autotoxicants in soil of Panax notoginseng after continuous cropping [D]. Beijing: Beijing University of Chinese Medicine. [游佩进, 2009. 连作三七土壤中自毒物质的研究 [D]. 北京: 北京中医药大学.]
ZHANG QF, L SX, JIANG YX, et al., 2021. Screening and identification of microorganisms producing β-glucosidase and their application in transformation of ginsenoside Compound-K [J]. Shandong Agric Sci, 53(11): 63-69. [张庆锋, 吕世鑫, 江雨欣, 等, 2021. 产β-葡萄糖苷酶微生物的筛选鉴定及其在人参皂苷Compound K转化中的应用 [J]. 山东农业科学, 53(11): 63-69.]
ZHANG W, LU LY, HU LY, et al., 2018. Evidence for the involvement of auxin, ethylene and ROS signaling during primary root inhibition of Arabidopsis by the allelochemical benzoic acid [J]. Plant Cell Physiol, 59(9): 1889-1904.
ZHANG Y, ZHENG YJ, XIA PG, et al., 2019. Impact of continuous Panax notoginseng plantation on soil microbial and biochemical properties [J]. Sci Rep, 9(1): 13205.
ZHAO J, WANG P, LIU YN, et al., 2021, Recent advances in biotransformation of ginsenosides [J]. Chem Ind Eng Prog, 40(3): 1238-1247. [赵婧, 王盼, 刘彦楠, 等, 2021. 人参皂苷的定向生物转化研究进展 [J]. 化工进展, 40(3): 1238-1247.]
ZHAO LF, JIAO CX, LI H, et al., 2018. Chemical transformation of protopanaxadiol type ginsenoside Rb1, Rb2 and Rc analyzed by RRLC-Q-TOF-MS [J]. Chem J Chin Univ, 39(4): 667-673. [赵乐凤, 焦传新, 李慧, 等, 2018. RRLC-Q-TOF-MS研究人参二醇型皂苷Rb1, Rb2和Rc的化学转化 [J]. 高等学校化学学报, 39(4): 667-673.]
ZHOU W, LI JY, LI XW, et al., 2008. Development and validation of a reversed-phase HPLC method for quantitative determination of ginsenosides Rb1, Rd, F2, and compound K during the process of biotransformation of ginsenoside Rb1 [J]. J Sep Sci, 31(6/7): 921-925.
ZHU XY, SHEN CY, CHEN GW, et al., 2019. Advancement in research on bacterial chemotaxis in soil [J]. Acta Pedol Sin, 56(2): 259-275. [朱曉艳, 沈重阳, 陈国炜, 等, 2019. 土壤细菌趋化性研究进展 [J]. 土壤学报, 56(2): 259-275.]
(责任编辑 蒋巧媛)