APP下载

1种双配副摩擦试验机及其在多孔聚酰亚胺摩擦磨损测试方面的应用

2023-08-01李锦棒夏仁良华李成胡旭东周宁宁所新坤

摩擦学学报 2023年7期
关键词:保持架试验机钢球

李锦棒,夏仁良,华李成,胡旭东,周宁宁,所新坤

(1. 宁波大学 机械工程与力学学院,浙江 宁波 315211;2. 北京控制工程研究所 精密转动和传动机构长寿命技术北京市重点实验室,北京 100094)

多孔聚酰亚胺(PPI)具有密度低、孔隙可控、自润滑性能好和耐疲劳等优点[1-4]. 浸渍润滑油后可制作成多孔含油聚酰亚胺(Oil-impregnated porous polyimide,iPPI),具有优异的摩擦学性能,经过高速离心仍有较高的含油率,可实现零部件的微油润滑[5-7],已广泛应用于空间微油润滑轴承的保持架[8-11].

微孔中的润滑油大大提高了iPPI的摩擦性能,使其具有较低的摩擦系数和磨损率[12-14],但在空间微油润滑轴承的实际应用中经常发现iPPI保持架表面发生磨损发黑的现象[15],而在实验室中采用标准试验机难以重现该现象,无法准确揭示iPPI材料表面的发黑现象,制约着iPPI材料性能的进一步改进.

目前多孔含油聚合物摩擦学特性的测试方法主要有采用标准试验机和实际轴承测试2种[9,12-15]. 采用实际轴承的测试方法虽然更接近实际工况,但载荷和滑动速度均不能精确控制,难以准确揭示多孔材料的摩擦磨损规律,且耗时长成本高. 采用标准试验机能够准确控制载荷和滑动速度等参数,但与实际工况存在一定差异,不能反映轴承内部多配副的摩擦状态.

众所周知,在轴承内部,存在滚动体与保持架以及滚动体与沟道2类摩擦副,这2类摩擦副是相互影响的. 当采用金属保持架时,2类摩擦副的性质接近,相互影响可以忽略,但是采用多孔含油聚酰亚胺保持架时,2类摩擦副性质相差甚远,这种相互影响是不可忽略的.

针对此问题,本文中研制了双配副摩擦试验机,并对其进行了校准,然后采用该试验机研究了iPPI的摩擦磨损特性,重现iPPI保持架材料磨损表面的发黑现象,探讨其发黑机理.

1 双配副摩擦试验机的研制

1.1 试验机原理与结构

试验机的原理如图1所示,试验机及双配副的实物如图2所示. 试验机主体包括3个功能模块:上部摩擦力测试模块、旋转驱动模块以及下部摩擦力测试部分,其摩擦配副从上到下依次为圆柱销-钢球(旋转)-钢盘. 上部摩擦力测试部分由刚性梁、柔性梁、连接块和拉压传感器组成. 刚性梁和柔性梁固定在连接块两侧,拉压传感器固定在刚性梁和柔性梁之间. 上摩擦副的载荷由砝码加载,样品规格为直径6.5 mm、长度7 mm的圆柱销. 旋转驱动模块由电机、轴承座及钢球主轴组成,钢球规格为直径19.05 mm,中间有直径为4 mm的通孔,固定在钢球主轴末端的球窝中. 钢球最大直径处回转误差小于±2 μm,所选轴承极限转速大于5 000 r/min. 下部摩擦力测试模块由三维力传感器、精密升降平台和钢盘夹具组成. 三维力传感器固定在精密升降平台上,钢盘夹具固定在三维力传感器上方,要求升降台加载时具有一定的弹性.

试验机上下2个摩擦力测试模块相互独立,可避免发生耦合和干扰. 传感器参数列于表1中,其中F.S.为满量程.

1.2 试验机的标定与调试

上部摩擦力测试模块中,拉压传感器安装位置与摩擦点之间有一定距离,传感器的测试结果与真实值之间存在线性关系,需要进行标定. 将精密砝码放置于柔性臂夹具孔位置,记录传感器读数,标定示意图如图3(a)所示. 砝码依次放置10、20、100、200和500 g,重复测试3次,结果如图3(b)所示. 可以看出,所加载荷与传感器读数的线性度较好,且拉向和压向的测试值极为接近. 传感器压向的线性方程为P=0.01073 m,传感器拉向线性方程为P=-0.01075 m,P为传感器示数(N),m为砝码质量(g).m与真实值R(N)之间的关系是m=1000×R/g,平均拉向与压向的系数,取P=0.01074 m,那么真实值R可以表示为R=P/1.096.

Fig. 1 Principle of double-contact friction tester图 1 双配副摩擦试验机的原理图

Fig. 2 Photo of the double-contact friction tester: (a) overall view and (b) partial view of double contacts图 2 双配副摩擦试验机照片:(a) 整体图;(b) 双配副局部图

表 1 传感器的参数Table 1 Parameters of sensors

随着砝码质量的增加,传感器示数的差值逐渐变大. 加载500 g砝码时,传感器拉向示数最大差值为0.03 N,压向示数最大差值为0.025 N,拉向和压向示数最大差值为0.05 N. 多次重复发现,差值均位于上述范围内,因此,可得上部摩擦力测试模块的重复性精度不低于±0.025 N.

Fig. 3 Calibration of upper contact of the tester: (a) diagram of calibration; (b) results of calibration图 3 试验机上配副的标定:(a) 标定示意图;(b) 标定结果

上述标定为静态加载,为了验证实际动态测试时拉压向摩擦力测试的一致性,采用钢球-含油PI销进行摩擦试验,转速为500 r/min,电机正转(压向)15 s,反转15 s,摩擦力测试曲线如图4所示. 可以看出,电机正转和反转时摩擦力大小几乎不变,整个上部摩擦力测试模块具有较好的测试精度和重复性.

Fig. 4 Friction force test of upper contact in forward and reverse directions图 4 上配副正反转的摩擦力测试

Fig. 5 Friction force test of lower contact: (a) error test of forward and reverse direction; (b) Stribeck curves test of forward and reverse direction图 5 下配副摩擦力测试:(a)正反转误差测试;(b)正反转Stribeck曲线测试

上配副摩擦力标定后,可以用上配副标定下配副.在上配副样品夹具上安装直径为6 mm的钢球,下配副样品台上安装钢盘,通过移动上部摩擦力测试模块的XY移动平台,使钢球在钢盘表面往复滑动,读取上部拉压传感器和下部三维力传感器的示数,进行标定.下部摩擦力测试值的误差随压力的变化如图5(a)所示.可以发现,下部摩擦力的测试误差相对较大,在±0.05 N以内. 分析误差较大的原因是手动移动XY平台,速度难以控制,导致数据波动较大. 考虑到下部载荷一般设置为数十牛,摩擦系数的测试精度约为±0.002,基本满足测试要求.

采用下部摩擦力测试模块测试了电机正反转下钢球-钢盘配副的Stribeck曲线,润滑条件为微油润滑,电机转速范围为10~2 800 r/min,每个速度下保持15 s,取摩擦系数平均值,曲线如图5(b)所示. 可以看出,正反转所测试的Stribeck曲线基本一致,重复性良好.

1.3 试验机参数与测试条件

基于上述标定结果,试验机技术参数汇总如下:

(1) 载荷范围:上配副载荷100~5 000 g (0.98~49 N);下配副载荷0~50 N;

(2) 摩擦力测试范围:上配副摩擦力0~20 N;下配副摩擦力0~50 N;

(3) 电机转速:10~3 000 r/min;

(4) 摩擦力分辨率:0.001 N;

(5) 上配副摩擦力测试精度:±0.015 N;

(6) 上配副摩擦力重复性精度:≤±0.025 N;

(7) 下配副摩擦力测试精度:±0.05 N;

(8) 下配副摩擦力重复性精度:±0.05 N;

(9) 最高采样频率:30 Hz.

测试条件:下配副微油润滑和浸油润滑,浸油深度为1.5 mm,上配副无加油装置,由下配副黏附的油或脂实现润滑. 下配副也可采用干摩擦,用于检测固体润滑材料在双配副中的摩擦磨损特性.

Fig. 6 Bearing and worn surfaces of porous polyimide retainer: (a) disassembled bearing; (b) iPPI retainer;(c) blackening of cross section of retainer图 6 轴承及iPPI保持架的磨损表面:(a)轴承拆解图;(b)多孔含油聚酰亚胺保持架;(c)保持架截面的发黑现象

试验样品规格:上试件为Φ6~8 mm圆柱销,中间试件为Φ19.05 mm的带孔圆球,下试件为厚度3 mm、Φ10 mm的圆盘. 本试验机可单独使用上配副或下配副.

2 双配副摩擦试验机的试验验证

2.1 轴承保持架材料表面的发黑现象

多孔含油PI (iPPI)材料常用于空间微油润滑轴承的保持架,图6(a)所示为控制力矩陀螺使用的角接触微油润滑轴承的拆解图. 在地面试验中发现保持架表面会有发黑现象,如图6(b)所示. 发黑位置位于在轴承旋转方向上保持架兜孔与钢球接触处. 将保持架沿径向切开,观察发黑的影响深度,如图6(c)所示. 可以发现,不仅iPPI表面发黑,材料内部也发生了发黑现象,其影响深度可达毫米级.

iPPI保持架的这种发黑现象在标准单配副摩擦试验机中是难以重现的,其原因就是轴承内部存在多配副摩擦的情况,而标准试验机难以模拟这种多配副的摩擦形式,即使在某些情况下会发生轻微的发黑现象,也难以重复.

分析可知,轴承中的摩擦副有2类,滚动体与保持架以及滚动体与内外沟道兜孔. 针对这种多配副的摩擦,本文中研制了双配副摩擦试验机. 采用研制的双配副摩擦试验机,选择上试样材料为iPPI材料,中试样为带孔GCr15钢球,下试样为GCr15钢盘,分别进行上配副摩擦试验、下配副摩擦试验和双配副摩擦试验. 试验所采用的材料如图7所示,材料的参数列于表2中. PPI材料由定容烧结制备而来[14],含油率为11.51%,中值孔径为1.04 μm.

测试参数为上配副压力19.6 N (2.0 kg),下配副载荷30 N,钢球转速2 000 r/min. 上配副单独摩擦时不额外添加润滑油,由iPPI材料中所含的微量油提供润滑.下配副参与摩擦时,为保证钢球与钢盘润滑不发生严重磨损,试验开始前在金属盘上添加20 μL润滑油,试验中不再额外添加润滑油. 在微油润滑轴承的实际使用中也会事先在沟道上涂抹少量润滑油,因此,本文中的测试条件与实际工况是相符的.

Fig. 7 Materials used: steel disc,drilled steel ball and iPPI pin图 7 试验材料:钢盘、带孔钢球和iPPI销

2.2 测试结果

2.2.1 摩擦系数

分别采用上配副、下配副和双配副测试iPPI-钢球、钢球-钢盘以及iPPI-钢球-钢盘的摩擦磨损特性. 为观察单配副下磨损表面是否会发生发黑现象,iPPI-钢球和钢球-钢盘配副连续摩擦20 h. iPPI-钢球-钢盘双配副的摩擦时间由iPPI表面的发黑程度决定,在摩擦1、5和10 h停机观察iPPI磨损表面. 经过观察发现,经过10 h的摩擦,iPPI表面有明显发黑,采用扫描电子显微镜(SEM)观察发黑表面形貌的详细信息,观察前需要将iPPI浸入石油醚中24 h,以去除润滑油,因此双配副摩擦持续10 h.

表 2 材料参数Table 2 Parameters of materials

摩擦系数测试曲线如图8所示. 从图8中可以看出,iPPI-钢球单配副的摩擦系数较大,为0.1左右. 钢球-钢盘单配副的摩擦系数较小,在20 h测试时间内,摩擦系数缓慢下降,这说明20 μL润滑油足够充分润滑钢球-钢盘配副. 双配副摩擦时,由于需要停机观察iPPI磨损表面,摩擦系数有一定的波动,重新测试后经过20 min左右可以达到稳定状态. 由于iPPI-钢球配副对钢球-钢盘配副的影响,双配副中的钢球-钢盘配副的摩擦系数比单配副的摩擦系数稍大. 在额外添加润滑油的作用下,双配副中iPPI-钢球配副的摩擦系数明显下降,为0.03左右.

2.2.2 Stribeck曲线的测试

测试iPPI-钢球、钢球-钢盘以及iPPI-钢球-钢盘的Stribeck曲线,如图9所示. iPPI-钢球单配副摩擦系数随速度的增加先急速下降,后缓慢上升,钢球-钢盘配副的摩擦系数先快速下降,后缓慢下降,双配副中钢球-钢盘配副的曲线与钢球-钢盘单配副的曲线趋势相同,但数值稍大. 双配副中iPPI-钢球配副的摩擦系数随滑动速度的增加急剧降低,0.2 m/s后基本保持不变.

Fig. 8 Test results of friction coefficient图 8 摩擦系数曲线测试结果

从Stribeck曲线的形态上看,钢球-钢盘单配副和iPPI-钢球-钢双配副均能达到弹流润滑状态,在不额外加油的情况下,iPPI-钢球配副难以实现弹流润滑.这说明iPPI中微量润滑油的量不足以使摩擦副达到弹流润滑状态,但添加额外少量的润滑油即可极大降低摩擦副的摩擦系数,实现摩擦副的弹流润滑. 同时在双配副中,2个摩擦副相互影响,润滑剂会在2个配副中循环,例如在本文中设置的双配副中,润滑油加在钢盘表面,但iPPI-钢球配副也得到了有效润滑.

2.2.3 单配副与双配副磨损表面的对比

采用光学显微镜(KH-8 700,HIROX)观察单配副和双配副的磨损表面. iPPI-钢球的磨损表面如图10所示. 从图10中可以看出,经过iPPI-钢球单配副摩擦后的iPPI表面没有明显的发黑现象,磨斑内部光亮,钢球表面的磨痕轻微. 钢球-钢盘的磨损表面如图11所示. 可以发现,钢盘表面的磨斑颜色较深,钢球表面的磨痕颜色较浅.

Fig. 9 Test results of Stribeck curves: (a) upper contact (iPPI-ball single contact); (b) lower contact (ball-disc single contact);(c) double contacts图 9 Stribeck曲线测试结果:(a)上配副(iPPI-钢球单配副);(b)下配副(钢球-钢盘单配副);(c)双配副

Fig. 10 Optical micrographs of worn surface of iPPI-steel ball single contact: (a) worn surface of iPPI; (b) worn surface of steel ball图 10 iPPI-钢球单配副磨损表面的光学显微镜照片:(a) iPPI磨损表面;(b) 钢球磨损表面

Fig. 11 Optical micrographs of worn surfaces of ball-disc single contact: (a) worn surface of steel disc;(b) worn surface of steel ball图 11 钢盘-钢球单配副磨损表面的光学显微镜照片:(a) 钢盘磨损表面;(b) 钢球磨损表面

图12 所示为iPPI-钢球-钢盘双配副的磨损表面,从图12中可以看出,iPPI表面有明显的发黑现象,钢盘表面与钢球表面磨痕的颜色也较深,与单配副下的磨损表面有很大差异,这说明双配副之间的相互影响导致了iPPI表面的发黑现象. 这也是标准摩擦试验机难以重现iPPI表面发黑现象的原因.

放大图12(e)中红色框内的发黑部位,如图12(f)所示. 可以发现,黑色物质成絮状,不仅位于磨损表面,还渗入到iPPI材料内部,这说明黑色物质的粒度微小,可以通过iPPI的孔隙渗入材料内部,这与图6所示的轴承保持架发黑现象一致.

为了进一步观察iPPI表面的发黑细节,需要对iPPI样品进行除油处理(在石油醚中浸泡20 h),采用SEM(SU5000,Hitachi)分别观察单配副和双配副下iPPI的磨损表面形貌,如图13所示. 从图13中可以看出,单配副下iPPI的磨损表面除了孔隙处有微小的碎屑产生,其他区域比较光滑,无磨屑黏着. 而双配副下的iPPI磨损表面有大量微小的白色颗粒黏着. 对图13中方框内的表面进行能谱(EDS)分析,结果列于表3中. 单配副下iPPI的磨损表面并未检测出铁元素,而在双配副下的iPPI的磨损表面检测出微量的铁元素. 这说明,图13(b)中的白色颗粒为含铁的磨屑.

双配副磨损表面的白色颗粒为导致光学显微镜下iPPI表面发黑的原因. 为了进一步确认发黑物质的成分,采用拉曼光谱仪(inVia confocal Raman microscope,Renishaw)检测双配副下钢球和钢盘表面,iPPI表面的荧光较强,无法用拉曼光谱测试. 拉曼光谱测试结果如图14所示,其中1 328、415、295和229 cm-1为α-Fe2O3的特征峰,而660 cm-1为Fe3O4的特征峰,这说明导致iPPI表面发黑的物质为α-Fe2O3和Fe3O4.

Fig. 12 Optical micrographs of worn surfaces of double contacts: (a) worn surface of steel disc-10 h; (b) worn surface of steel ball-10 h; (c) worn surface of iPPI surface-1 h; (d) worn surface of iPPI surface-5 h; (e) worn surface of iPPI surface-10 h; (f) details of worn surface of iPPI surface图 12 双配副磨损表面的光学显微镜照片:(a) 钢盘磨损表面-10 h;(b) 钢球磨损表面-10 h;(c) iPPI磨损表面-1 h;(d) iPPI磨损表面-5 h;(e) iPPI磨损表面-10 h;(f) iPPI磨损表面局部放大图

Fig. 13 Worn surface of iPPI in single-contact and double-contact: (a) single-contact; (b) double-contact图 13 单配副和双配副下iPPI的磨损表面:(a) 单配副;(b) 双配副

表 3 图13中iPPI磨损表面的EDS分析Table 3 EDS analysis of iPPI worn surface in Fig. 13

Fig. 14 Raman spectrum of steel disc and steel ball in double-contact图 14 双配副下钢球和钢盘表面的拉曼光谱分析

在双配副中,钢球-钢盘金属配副在微油润滑下发生轻微磨损,产生微小的磨屑,同时iPPI-钢球配副也会产生少量磨屑,这些磨屑在摩擦过程中被反复研磨和剪切,形成微小颗粒,铁元素被氧化,生成褐色和黑色的α-Fe2O3和Fe3O4颗粒. 这些颗粒随着润滑油不断地挤出和回收,渗入iPPI材料内部,产生发黑现象.发黑现象证明了iPPI材料良好的潜藏性,可以嵌入微小磨屑,有利于摩擦副摩擦和磨损的降低,对摩擦副有一定的保护作用.

同时,iPPI表面的发黑现象也是摩擦副磨损状态的“指示器”,发黑越严重说明磨损情况越恶劣,摩擦副没有被良好地润滑,反之亦然. 因此,多孔保持架材料既要保证存储足量的润滑油,润滑摩擦表面,降低发黑现象,又要有良好的潜藏性,在润滑不良的情况下潜藏磨屑. 这也是多孔含油保持架材料的设计原则.

3 结论

本文中针对轴承内部多配副的摩擦形式,研制了1种新型的双配副摩擦试验机,该摩擦试验机测试结果稳定、可靠以及重复性好,能够较为真实地模拟轴承内部的摩擦,可用于研究自润滑轴承保持架的摩擦磨损特性,还可将上配副或下配副单独使用,用作单配副摩擦试验机.

相比单配副的摩擦形式,在双配副摩擦下多孔含油聚酰亚胺材料表面发生了明显的发黑现象,与轴承中保持架的磨损表面相似. 通过分析发现,导致iPPI表面发黑的物质为α-Fe2O3和Fe3O4. 轴承中iPPI保持架磨损表面的发黑机理是钢球与沟道以及钢球与保持架摩擦产生微小磨屑,磨屑在摩擦中被反复剪切成微小颗粒,随着润滑油的析出与回收渗入iPPI材料内部,引起发黑现象.

本文中研制的双配副摩擦试验机可用于研究多孔含油轴承保持架材料表面的磨损发黑现象,为保持架材料的评价提供有效工具. 同时,本研究还为材料摩擦学性能的测试提供了1种新方法.

猜你喜欢

保持架试验机钢球
昆钢球团生产降事故率降消耗的生产实践
计算法在圆锥保持架收缩模组合冲头设计中的应用
角接触球轴承保持架引导间隙的优化调整
铁路轴承试验机
接触疲劳试验机伺服电动缸加载系统设计
8Cr4Mo4V钢球压碎载荷不合格的原因及返修
自动控制的钢球分离器设计与实现
橡胶整体式履带动态啮合试验机的设计
圆柱滚子轴承保持架的结构改进
水泥电动抗折试验机的应用研究