APP下载

慢性阻塞性肺疾病生物学标志物的研究进展

2023-07-18肖心儒施宇佳

关键词:吸烟者肺泡蛋白酶

肖心儒,施宇佳,张 倩

南京医科大学附属常州第二人民医院呼吸与危重症医学科,江苏 常州 213003

慢性阻塞性肺疾病(chronic obstructive pulmonary diseases,COPD)是一种以不完全可逆的气流受限为特征的慢性气道疾病,伴有咳嗽、咳痰、喘息等呼吸道症状。然而,这些症状在疾病早期缺乏特异性,难以引起重视,这给COPD 患者的早期诊断带来了困难。目前COPD的诊断和严重程度分级主要依靠肺功能检查,吸入支气管扩张剂后1 秒钟用力呼气量(forced expiratory volume in one second,FEV1)/用力肺活量(forced vital capacity,FVC)<0.7确定为持续气流受限的界限,但肺功能的下降在症状明显之前就已发生,一旦因症状明显就诊,多已发展至疾病中晚期,疾病进展迅速且难以逆转[1]。此外,肺功能难以很好地反映患者的恶化状态,而生物学标志物能更好地反映疾病活动并随疾病状态波动,与疾病的发生、发展密切相关。因此在COPD 患者和高危人群中寻找分子生物学标志物,有助于COPD 的早期防治、病情评估和风险预测。COPD 的发病机制目前尚未完全阐明,现有研究认为与异常炎症、免疫失衡、氧化应激、蛋白酶/抗蛋白酶系统失衡等有关[2]。本文对参与COPD 发病机制的相关生物学标志物进行综述,探讨其潜在临床应用前景。

1 炎性标志物

COPD 的气道局部炎症是一个复杂的过程,其特征是炎症细胞在气道浸润,同时伴有细胞因子、趋化因子、酶、生长因子和黏附分子的表达增加,炎症程度与中性粒细胞、巨噬细胞增加直接相关,在香烟烟雾或其他有害物质的刺激下,炎症细胞(包括结构细胞如呼吸道上皮细胞)分泌炎症细胞因子和趋化因子,形成了复杂的网络,促进气道上皮细胞杯状化生和气道黏液高分泌,气道周围平滑肌和成纤维细胞增生,进而导致小气道损伤与肺泡组织的破坏[3]。

1.1 急性期蛋白

在炎症、感染和组织损伤后的几个小时内,急性期蛋白的合成迅速增加,参与宿主防御。C 反应蛋白(C reactive protein,CRP)作为炎性疾病的敏感标志物,受各种细胞因子和转录因子复合物的转录控制。高CRP是COPD未来发病率和死亡率的一个强有力的独立预测因子,CRP 水平较高者早期死亡风险增加[4]。同时,CRP 水平对于评估COPD 患者急性加重与严重程度有积极意义[5]。此外,血清淀粉样蛋白A(serum amyloid A,SAA)是近年来新发现的一种炎性标志物,SAA和CRP都可在慢性阻塞性肺疾病急性加重(acute exacerbation of chronic obstructive pulmonary disease,AECOPD)期升高,但SAA 更敏感,且SAA是影响AECOPD的独立危险因素[6],提示其有可能成为临床诊断和治疗AECOPD 最有价值的标志物。

1.2 细胞因子

促炎细胞因子主要由巨噬细胞和上皮细胞等分泌,其促进和维持导致组织损伤和重塑的各种促炎介质的表达和释放。在COPD 中,肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)和白细胞介素-6(interleukin-6,IL-6)是关键的促炎细胞因子。TNF-α在维持COPD 气道和肺实质局部的中性粒细胞炎症中起主要作用,其已被证明与COPD 患者的体重指数(body mass index,BMI)、香烟烟雾暴露相关,与非COPD 吸烟者相比,COPD 吸烟者的TNF-α水平显著升高,表明吸烟可以进一步提高TNF-α水平[7]。研究表明TNF-α基因多态性与COPD 患者预后不良有关,但与吸烟者对COPD 的易感性无相关性[8]。TNF-α和IL-6 均与肺功能和疾病的严重程度相关,且IL-6 的激活与COPD 患者更高的恶化风险、症状负担和死亡率有关[4]。此外,IL-6 与COPD患者近1年的急性加重期次数、CAT评分、MMRC评分呈正相关,与FEV1%pred、FEV1/FVC 呈负相关[9],表明IL-6水平升高与COPD预后不良有关。IL-6水平结合CAT评分能更准确地评估COPD急性加重的风险[10]。

1.3 可溶性晚期糖基化终末产物受体(soluble receptor for advanced glycation end products,sRAGE)

sRAGE 是晚期糖基化终末产物受体(receptor for advanced glycation end products,RAGE)的异构体,主要由Ⅰ型肺泡上皮细胞表达。RAGE 激活诱导NF-κB(nuclear factor kappa-B)介导的促炎反应,并参与肺泡组织损伤,引起气道炎症和肺气肿,而sRAGE 通过充当RAGE 的诱饵受体而具有抗炎特性,在COPD 的发展中起着重要作用。sRAGE 与中性粒细胞气道炎症密切相关,COPD 患者血清sRAGE 水平较低,其水平能反映肺功能和疾病的严重程度[11]。此外,sRAGE 与肺气肿的关联性很强[12],被认为是肺气肿的一个潜在标志物。然而,吸烟会严重降低血清sRAGE 水平[13],这可能会影响sRAGE作为COPD生物学标志物的判别价值。

慢性炎症在COPD的发生及发展中起着关键性的作用,其不仅与免疫反应密切相关,同时氧化与抗氧化失衡以及蛋白酶和抗蛋白酶失衡也会进一步放大气道及肺部炎症。我们对本文所述COPD发病机制相关生物学标志物之间的相互作用进行了总结(图1)。尽管炎症相关标志物在组间的统计上存在显著差异,但它与其他并存疾病,特别是与全身炎症相关的并存疾病有很高的混淆性,这降低了生物学标志物作为一种诊断工具的敏感性和特异性。所以炎症相关标志物可能在疾病诊断方面价值有限,然而,其在判断COPD 严重程度、监测疾病进展、预测风险、指导治疗等方面仍具有重要作用。

图1 COPD生物学标志物相互作用机制Figure 1 Mechanisms of interaction between COPD biomarkers

2 免疫相关标志物

免疫因素与气道及肺部炎症反应相互作用,免疫功能失调可导致促炎因子分泌增多,弱化机体抑炎作用,使炎症反应持续存在,导致免疫应答及免疫损伤。免疫因素与炎症反应使细胞外基质(extracellular matrix,ECM)降解,破坏肺的支撑组织,并参与气道及肺组织的重构,最终导致肺气肿的发生和发展[14]。因此,检测机体免疫功能对评估COPD 患者病情严重程度、治疗效果和预后等具有重要意义。

2.1 肺泡表面活性蛋白D(surfactant protein D,SP-D)

SP-D是集蛋白家族的成员,主要由Ⅱ型肺泡上皮细胞分泌。SP-D 在肺固有免疫防御中起重要作用,它是一种模式识别受体,与多种呼吸道病原体结合,增强其清除能力。它还参与调节过敏反应、氧化应激和肺部炎症。与健康对照组相比,COPD患者中SP-D水平升高,且与肺功能呈负相关[15]。慢性阻塞性肺疾病全球倡议(GOLD)报道Ⅲ~Ⅳ级COPD 患者血清SP-D 水平明显增高,且与急性加重呈正相关,提示血清SP-D水平可用于预测COPD急性加重,反映病情的严重程度。有研究发现,与哮喘患者相比,COPD患者循环中SP-D水平升高,提示SP-D 可用于区分哮喘和COPD[16]。然而,这项研究并没有排除吸烟的影响。吸烟是全身SP-D 水平的影响因素之一,血清SP-D 与吸烟者肺功能降低之间存在相关性,SP-D可作为吸烟所致肺损伤的标志物[17],因此当其作为鉴别哮喘和COPD的标志物时,应排除吸烟所致干扰。

2.2 Clara细胞分泌蛋白16(Clara cell secretory protein 16,CC-16)

CC-16 是一种主要由Clara 细胞分泌的肺特异性分泌蛋白,通过抑制肺NF-κB炎症通路活化来抵御香烟烟雾诱导的气道及肺部损伤,具有抗炎、调节免疫和抗氧化作用。它在肺和气管的表达水平远高于其他组织和器官,肺血管完整性的破坏可引起CC-16水平变化。该蛋白水平与疾病的严重程度有关,GOLDⅢ~Ⅳ级COPD 患者的气道CC-16 表达远低于GOLDⅠ~Ⅱ级COPD患者[18]。血清中CC-16水平低也与肺功能下降有关,CC-16 的表达与气流受限的严重程度成反比。此外,支气管上皮细胞在香烟烟雾提取物的刺激下,CC-16 相关的mRNA 和蛋白表达均减少,提示血清CC-16 水平可以作为早期预测吸烟者肺功能下降的敏感指标[19]。急性肺损伤可导致血清CC-16 的短暂升高,而慢性肺损伤(如COPD)引起的气道上皮损伤却导致CC-16 持续下降,这提示CC-16 可能是COPD 的一种潜在生物学标志物。但是CC-16 水平和COPD 风险、死亡率之间的相关性不强,表明CC-16 总体上与肺部炎症有关,但与COPD 发病机制无明确相关,这使CC-16作为COPD的生物学标志物存在局限。

3 氧化应激相关标志物

氧化应激是COPD 发生发展的重要机制,正常人体内氧化-抗氧化系统处于动态平衡状态,香烟烟雾和空气污染等外源性氧化剂和肺内源性产生活性氧(reactive oxygen species,ROS)导致COPD 患者肺内氧化应激增加。氧化应激不仅促进黏液高分泌、炎症因子激活和血浆渗出,还可以导致细胞功能障碍,引起蛋白酶-抗蛋白酶失衡[20]。

3.1 丙二醛(malondialdehyde,MDA)

MDA是一种反应性双醛,是多不饱和脂肪酸过氧化的产物,可以与蛋白质、磷脂和核酸的游离氨基反应,导致免疫系统结构改变以及炎症级联反应。MDA 是脂质过氧化最常用的生物学标志物之一,血浆MDA水平与诱导痰中类似生物学标志物水平呈正相关[21]。一项meta分析显示,与健康对照组相比,CODP 患者外周血中MDA 浓度明显升高[22]。与稳定期COPD 患者相比,急性加重期患者的血清MDA水平升高,这表明MDA可以作为COPD急性加重的标志物。然而,吸烟会影响气道中MDA 水平,且目前大部分研究只对患者进行短期的随访,MDA水平的暂时变化可能不能实时反映患者的肺部状况,因此,需要排除相关干扰去进一步证实。

3.2 抗氧化酶

抗氧化酶如超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)或谷胱甘肽(glutathione,GSH),可抵御肺部内源性多种ROS 和活性氮(reactive nitrogen species,RNS)的有害后果。在这些酶中,GSH被认为是人体气道分泌物的主要抗氧化剂,它在保持气道上皮细胞完整性、抵御肺部损伤与炎症等方面起到重要作用,GSH/GSSG 的比例可作为细胞内氧化应激的标志。Beeh 等[23]的研究表明,中重度COPD 患者的痰中总GSH和氧化GSH均增加,并且氧化GSH水平与痰中性粒细胞呈正相关。而Zeng等[21]研究发现,与健康吸烟者和非吸烟者相比,稳定期COPD 患者痰中的SOD、GSH 和谷胱甘肽过氧化物酶(glutathione peroxidase,GPX)水平较低,并且这些酶水平在急性加重期进一步降低。更有Turgut 等[24]检测了11 例COPD 加重期和10 例稳定期诱导痰中的总GSH,发现加重期无明显升高。因此,关于抗氧化标志物的研究具有争议,而且目前研究较少,在不同生物样本中得到的结果并不一致,这可能与样本量太小有关,需要开展更多的研究来证实。

4 蛋白酶/抗蛋白酶失衡相关标志物

蛋白酶可以消化弹性蛋白以及肺泡壁上的其他结构,其活性增强可加速肺组织结构破坏,加快肺泡及上皮细胞损伤的反复修复进程,同时还可放大炎症反应,是导致肺气肿的重要原因[25]。抗蛋白酶具有对抗蛋白酶的作用,主要有α1-抗胰蛋白酶(α1-antitrypsin,AAT)、组织基质金属蛋白酶抑制剂(tissue inhibitor of metalloproteinase,TIMP)以及分泌性白细胞蛋白酶抑制剂(secretory leukocyte protease inhibitor,SLPI)。蛋白酶/抗蛋白酶失衡是造成COPD气道重塑及气流不可逆受限的重要原因。

4.1 基质金属蛋白酶(matrix metalloproteinase,MMP)

MMP 是一组功能相同、结构高度同源、依赖锌离子的内肽酶,它在形态发生、血管生成、组织重塑、胚胎发育、细胞生长和死亡的调节以及伤口愈合等生理过程中起重要作用。ECM 降解是肺气肿形成的重要环节,而MMP 通过降解ECM 和基底膜在CODP 的发生发展中起重要作用。MMP 的活性主要受到TIMP 和α2-巨球蛋白的抑制,在转录水平上也受到ECM 组分的调控。MMP 作用底物广泛,在COPD 患者的血液、痰液、支气管肺泡灌洗液、肺活检组织中的表达均增高,且检测方便快捷,提示它可能作为COPD的生物学标志物。MMP-9是肺泡组织的主要蛋白酶,由巨噬细胞和中性粒细胞产生,具有凝胶溶解、弹性溶解和胶原溶解活性,因此在众多MMP中受到广泛关注。血浆MMP-9浓度升高可以预测COPD 急性加重的风险,而且MMP-9 水平升高在当前吸烟者中的发生频率更高,与肺功能、吸烟史或存在合并症无关[26]。Uysal 等[27]认为,MMP-9 浓度和MMP-9/TIMP-1 比值是COPD 患者肺气肿的最佳预测指标,他们根据症状的严重程度和加重风险对COPD 患者进行了分类,发现血浆中MMP-9水平升高与疾病的严重程度相关,且肺气肿患者MMP-9浓度最高。Gilowska等[28]的研究也证明了这点,他们认为MMP-9、MMP-9/TIMP-1 可能与疾病相关的肺环境有关,但与MMP-9基因的遗传特征无关。MMP-9 在COPD 发展中起重要作用,因此通过检测MMP-9 水平可以估计损伤或疾病的严重程度,也可以初步预测治疗的效果。

4.2 抗蛋白酶标志物

抗蛋白酶可与活性MMP结合并使其失活,是金属蛋白酶网络的内源拮抗剂。TIMP-1 是首次发现的天然胶原酶抑制剂,在TIMP 家族中活性最强,它在参与细胞生长、细胞增殖与凋亡、血管生成、伤口愈合、纤维化等方面发挥重要作用。研究表明,MMP-9 和TIMP-1 比值的失衡可能参与COPD 的发病机制[29]。健康非吸烟者比COPD和健康吸烟者有更高的TIMP-1表达,且气道高反应的吸烟者呈现高水平的MMP-9/TIMP1,表明MMP-9/TIMP1可以作为一种新的识别易患COPD 的吸烟者的预测指标[30]。MMP-9 和TIMP-1 的表达平衡随COPD 的进展而变化,两者的联合表达变化较单一的MMP 或TIMP 的变化意义更大。

5 表观遗传学相关标志物

非编码RNA(non-coding RNA,ncRNA)包括微小RNA(microRNA,miRNA)、环形RNA(circular RNA,circRNA)和长链非编码RNA(long non-coding RNA,lncRNA)等,其作为表观遗传学的关键调控因素,最近受到越来越多的关注。ncRNA通过多种表观遗传学机制参与转录及转录后调控,进而调节与生物学过程(如炎症、增殖、分化、凋亡等)相关的蛋白质功能。多项研究发现ncRNA参与COPD的发生发展。与不吸烟人群相比,在患或不患有COPD 吸烟者的肺组织中,miR-145-5p 的表达降低,并通过靶向KLF5来调节p53介导的凋亡信号转导、NF-κB信号转导以及TNF-α、IL-6 和IL-8 等促炎细胞因子的释放,且miR-145 的表达水平与COPD 的严重程度相关[31]。另有研究报道,COPD 患者外周血中lncRNA NEAT1 上调,与miR-193a 呈负相关,与GOLD 分期和TNF-α、IL-1β、IL-6 和IL-17 的表达呈正相关[32]。NEAT1 诱导的炎症级联反应和氧化应激导致严重的肺损伤,这表明NEAT1 与COPD 严重程度和炎症呈正相关,并具有预测疾病易感性和急性加重风险的潜力。大量研究证实了ncRNA 在COPD 肺组织中异常表达,且部分ncRNA 有特异性表达,这将有助于寻找COPD 相关的早期生物学标志物和药物治疗靶点。然而,部分ncRNA在不同种属间同源性不显著,妨碍了动物实验的进行;丰度低、保守性差,导致有些lncRNA 难于被发现;另外,lncRNA靶点的多样性,增加了分析的困难。这些问题都需要进一步研究克服。

6 其 他

生物学标志物可以在临床各种样本中进行评估,包括血液、尿液、支气管肺活检组织、支气管肺泡灌洗液、诱导痰和呼出气冷凝液等。以血液和痰为样本的分子生物学标志物具有实用性、非侵入性、易于采样及处理等优点;而支气管肺泡灌洗液、支气管肺活检组织可以提供更直接的肺腔室参数,但采样技术价格昂贵,具有侵入性,有一定的风险。呼出气冷凝液中的标志物因其无创且能直接反映气道的生化状态,目前也在不断被研究。在COPD 患者呼出气冷凝液中,过氧化氢和8-异前列腺素等氧化应激标志物的水平显著增加[33]。但由于重复性差,蛋白质含量低,目前仍然缺少可靠的呼出气标志物,其主要挑战是呼吸采样技术的异质性、适当的对照组选择以及缺乏成熟和标准化的数据统计分析方法。

7 总结与展望

我们对文中COPD相关生物学标志物作了总结(表1)。COPD是一种复杂的慢性气道炎症性疾病,它的发生、发展是一个多因素、多环节相互作用的结果,主要与炎症信号通路的激活、免疫失衡、蛋白酶/抗蛋白酶失衡以及氧化/抗氧化失衡有关。这些因素相互关联且由于分子靶向信号的重叠作用,很难通过单一的参数达到预期效果,多个生物学标志物联合可能比单个生物学标志物发挥更大的作用。对COPD发病机制中生物学标志物的研究有助于临床筛查和诊断,监测疾病活动和进展,并指导治疗,值得我们进一步探究。

表1 COPD相关生物学标志物总结Table 1 Summary of biomarkers related to COPD

猜你喜欢

吸烟者肺泡蛋白酶
经支气管肺泡灌洗术确诊新型冠状病毒肺炎1例
肺泡微石症并发气胸一例报道并文献复习
钙结合蛋白S100A8、S100A9在大鼠肺泡巨噬细胞中的表达及作用
吸烟者更易腰腹肥胖
思乡与蛋白酶
吸烟显著增加患2型糖尿病风险
类肺炎表现的肺泡细胞癌的临床分析
多胚蛋白酶 高效养畜禽
No Smoking请勿吸烟
IgA蛋白酶在IgA肾病治疗中的潜在价值