分数阶随机微分方程解的存在性与唯一性
2023-05-30罗欢陈付彬周旋
罗欢 陈付彬 周旋
摘 要:研究了一類分数阶随机微分方程解的存在性与唯一性。 通过运用微分方程的半离散化技术,推导出分数阶随机微分方程解的半离散化模型, 利用Minkowski不等式、Hlder不等式和Picard逐步逼近法, 证明了半离散随机模型解的存在性与唯一性。
关键词:分数阶;Picard迭代;Mittag-Leffler函数
中图分类号:O175.1
文献标志码:A
近年来,分数阶微积分[1]在量子力学[2]、土木工程[3]和非牛顿流体[4]等理工领域得到了快速的发展,在信号处理[5]、生物医学[6]和自动控制[7]等其他领域也发挥了积极推动的作用。20世纪60年代,意大利物理学家Caputo提出了一种具有弱奇异性质的分数阶导数, 使得Caputo分数阶导数解的存在性、唯一性和稳定性得到了更为广泛的研究[8-10]。关于确定性分数阶微分方程的文章较多,但是在某些随机环境中,模型的不确定性对系统的影响很大。为了解决这些问题,学者提出了分数阶随机微分方程。
涉及分数阶随机微分方程解的离散模型的文章较少,大部分讨论的是连续型解的存在性和唯一性,以及对稳定性的分析。文献[11]建立了随机神经网络的指数稳定性判据。PENG[12]建立了G-期望理论和G-布朗运动的概念,使G-布朗运动驱动的随机微分方程的研究工作得到了很好的发展。文献[13]利用逐次逼近方法将解的局部存在唯一性推广到全局存在唯一性,建立了分数阶随机微分方程两个不同解之间渐近距离的下界,推导出有界线性Caputo分数阶随机微分方程任意非平凡解的均方Lyapunov指数总是非负的。文献[14]研究了Caputo型分数阶随机微分方程的稳定性,证明了系统的随机稳定性和随机渐近稳定性,用新建立的It Caputo公式,推导出近似指数稳定性和p阶矩的指数稳定性。 文献[15]提出了关于整数阶变量上限积分的分数阶导数的新不等式, 有利于Lyapunov函数的构造,并基于拓扑度理论证明了平衡点的存在唯一性,此外,利用Picard逐次逼近技术,证明了初值解的存在性和唯一性。文献[16]利用Weissinger不动点理论证明了解对初始条件的连续依赖性。将Picard逐次逼近方法应用于求解含有Ψ-Hilfer分数阶导数的非线性柯西问题,并对误差进行了估计。文献[17]利用加权最大范数和It的等距法建立了非线性分数阶随机中立型微分方程系统在有限维随机环境下的Ulam-Hyers意义上的稳定性结果。
上述文献都得到了很好的结果,但实际动力系统一般是不连续的,利用半离散的方法可以得到动力系统的离散化模型,更能准确地分析其动力学行为。在此基础上,本文利用文献[18]的整数阶微积分的欧拉法推广到分数阶模型,推导出Caputo分数阶随机微分方程解的半离散化模型,最后利用Picard逐次逼近法讨论了解的存在性和唯一性。
综上所述,在初始x(0)=φ(0)条件下,方程在区间[0,K]上有唯一解x(k)∈L2(Ω0,Rn)。证毕。
4 结语
本文通过微分方程的半离散化方法,推导出Caputo分数阶随机微分方程解的半离散化模型,并利用Picard逐次逼近法讨论了解的存在性和唯一性,也为进一步的研究提供了方法上的一些启迪,如:分数阶随机微分方程的定性理论,稳定性,可控性或中立型方程。
参考文献:
[1]KILBAS A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[J]. North-Holland Mathematics Studies, 2006, 204: 90-98.
[2] METZLER R. Fractional calculus: an introduction for physicists[J]. Physics Today, 2012, 65(2): 55-56.
[3] SHITIKOVA M V. Fractional operator viscoelastic models in dynamic problems of mechanics of solids: a review[J]. Mechanics of Solids, 2021, 57(1): 1-33.
[4] TONG D, WANG R, YANG H. Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe[J]. Science in China Series G: Physics, Mechanics and Astronomy, 2005, 48(4): 485-495.
[5] ORTIGUEIRA M D, MACHADO J. Fractional calculus applications in signals and systems[J]. Signal Processing, 2006, 86(10): 2503-2504.
[6] PETR I. An effective numerical method and its utilization to solution of fractional models used in bioengineering applications[J]. Advances in Difference Equations, 2011, 2011: 652789.1-652789.14.
[7] MACHADO J T, KIRYAKOVA V, MAINARDI F. Recent history of fractional calculus[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(3): 1140-1153.
[8] TUAN N H, MOHAMMADI H, REZAPOUR S. A mathematical model for COVID-19 transmission by using the Caputo fractional derivative[J]. Chaos, Solitons & Fractals, 2020, 140: 110107.1-110107.11.
[9] DOKUYUCU M A, CELIK E, BULUT H, et al. Cancer treatment model with the Caputo-Fabrizio fractional derivative[J]. The European Physical Journal Plus, 2018, 133(3): 1-6.
[10]BALEANU D, JAJARMI A, MOHAMMADI H, et al. A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative[J]. Chaos, Solitons & Fractals, 2020, 134: 109705.1-109705.7.
[11]GUO C, OREGAN D, DENG F, et al. Fixed points and exponential stability for a stochastic neutral cellular neural network[J]. Applied Mathematics Letters, 2013, 26(8): 849-853.
[12]PENG S. Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation[J]. Stochastic Processes and their Applications, 2006, 118(12): 2223-2253.
[13]DOAN T S, HUONG P T, Kloeden P E. Asymptotic se-paration between solutions of Caputo fractional stochastic differential equations[J]. Stochastic Analysis and Applications, 2018, 36: 654-664.
[14]XIAO G, WANG J. Stability of solutions of Caputo fractional stochastic differential equations[J]. Nonlinear Analysis-Modelling and Control, 2021, 26: 581-596.
[15]WANG L F, WU H, LIU D Y, et al. Lure Postnikov Lyapunov functional technique to global Mittag-Leffler stability of fractional-order neural networks with piecewise constant argument[J]. Neurocomputing, 2018, 302: 23-32.
[16]KUCCHE K D, MALI A D. On the nonlinear (k, Ψ)-Hilfer fractional differential equations[J]. Chaos, Solitons & Fractals, 2021, 152: 111335.1-111335.18.
[17]AHMADOVA A, MAHMUDOV N I. Ulam-Hyers stability of Caputo type fractional stochastic neutral differential equations[J]. Statistics & Probability Letters, 2021, 168: 108949.1-108949.6.
[18]HAN S, LIU G, ZHANG T W. Mean almost periodicity and moment exponential stability of semi-discrete random cellular neural networks with fuzzy operations[J]. Plos one, 2019, 14(8): e0220861.1- e0220861.27.
[19]KUANG J C. Applied inequalities[M]. Jinan: Shangdong Science Technic Press, 2004.
(責任编辑:周晓南)
Existence and Uniqueness of Solutions for Fractional
Stochastic Differential Equations
LUO Huan*, CHEN Fubin, ZHOU Xuan
(Kunming University of Science and Technology Oxbridge College, Kunming 650106, China)
Abstract:
In this paper, the existence and uniqueness of solutions for a class of fractional stochastic differential equations are studied. By using the semi-discretization technique of differential equations, the semi-discretization model for solutions of fractional stochastic differential equations is derived and then the existence and uniqueness of solutions of semi-discretization stochastic differential equations are proved by using Minkowski inequality, Hlder inequality and Picard approximation method.
Key words:
fractional order; Picard iteration; Mittag-Leffler function
收稿日期:2022-04-18
基金项目:云南省教育厅科学研究基金资助项目(2020J1233, 2022J1098)
作者简介:罗 欢(1990—),女,讲师,硕士,研究方向:分数阶微分方程,E-mail:oxbridge_luo@126.com.
通讯作者:罗 欢,E-mail:oxbridge_luo@126.com.