固相应力在肿瘤中的研究进展
2023-05-30金嘉成王锐王士铭蓝兰王建伯
金嘉成?王锐?王士铭?蓝兰?王建伯
【摘要】近几十年来,肿瘤微环境(TME)作为肿瘤发生、发展、免疫逃避和治疗反应的关键而成为肿瘤研究的热点。而作为肿瘤微环境中的物理特性,“固相应力”可由周围正常组织从肿瘤外部施加产生,也可由肿瘤本身生长而引起。随着肿瘤的生长,固相应力会通过生化-物理机制破坏周围组织的结构和功能,并促进肿瘤的发生和肿瘤治疗的抗性。该文针对固相应力在肿瘤中的发生机制及相关进展进行综述,探讨恶性肿瘤生物学和物理学之间的联系,为新型药物研发和肿瘤治疗策略制定提供参考。
【关键词】固相应力;肿瘤微环境;生物力学;力学刺激;力学信号转导
Research progress on solid stress in tumors Jin Jiacheng, Wang Rui, Wang Shiming, Lan Lan, Wang Jianbo. Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
Corresponding author, Wang Jianbo, E-mail: wangjianbo@dlmedu.edu.cn
【Abstract】In recent decades, tumor microenvironment (TME) plays a significant role in tumorigenesis, progression, immune evasion, and therapeutic response, which has become a hot topic in tumor research. As a physical feature of TME, “solid stress” can be applied from the outside by surrounding normal tissues or caused by the tumor itself due to its growth. As the tumor grows, solid stress will destroy the structure and function of surrounding tissues through biochemical-physical mechanisms and promote tumor occurrence and treatment resistance. In this article, the mechanism and related progress on solid stress in tumors were reviewed and the association between cancer biology and physics was investigated, aiming to provide reference for the research and development of new drugs and treatment strategies for cancer.
【Key words】Solid stress; Tumor microenvironment; Biomechanics; Mechanical stimulation; Mechanical signal transduction
固相应力是包含在细胞和细胞外基质(ECM)中的机械力,可通过细胞和ECM的固体及弹性元件传递[1]。作为肿瘤微环境机械特性之一,它既可由周围正常组织从外部施加,又可由肿瘤本身生长诱导而产生,并随着肿瘤生长对周围组织的压迫而升高[2]。目前可检测出人体的应力大小范围从胶质母细胞瘤的<100 Pa(0.7 mmHg)到胰腺导管腺癌(PDAC)的10 000 Pa(75 mmHg)[3]。在肿瘤微环境中,固相应力扮演着重要的角色。一方面,固相应力会改变癌细胞的行为,如增殖、侵袭和凋亡,并且是影响恶性肿瘤发展过程的重要因素之一;另一方面,固相应力使附近血管和淋巴管塌陷,导致相应组织缺氧并且阻碍药物在细胞外液中的运输[4]。该文就肿瘤固相应力的起源、发展及临床价值进行综述,为实体瘤的临床治疗提供新思路。
一、固相应力的产生机制与性质
1. 外部施加的固相应力
在肿瘤微环境中浸润、增殖和基质沉积会引起组织体积增加,在有限空间内挤压肿瘤和周围组织中的弹性结构而产生固相应力[5]。当肿瘤患者经过治疗后,实体瘤体积减小,导致固相应力下降。与以边界清楚的结节状生长的肿瘤相比,其他内聚性较低而呈现浸润式生长的肿瘤,通过寻找阻力较小的路径,或通过细胞毒性和蛋白酶活性创造空间,来穿透正常组织的方式生长往往具有相对较小应力的特点[5-6]。
2. 生长诱导的固相应力
肿瘤生长过程中内部实质与基质相互作用而产生生长诱导应力[4]。将肿瘤从活体中完整地分离出来,由内部生长产生的固相应力仍然存在,所以又称为生长诱导的残余应力,占肿瘤总固相应力低于30%[7]。ECM成分,如胶原蛋白和透明质酸,会根据其机械性能而储存和传递固相应力[8]。此外,当成纤维细胞、免疫细胞和肿瘤细胞移动及试图修复结构损伤时,可通过肌动蛋白收缩胞内成分,细胞收缩产生的张力使ECM成分收缩,从而在肿瘤相应的部分产生张力通过其他成分的壓缩来平衡[2]。
3. 固相应力的性质
实体肿瘤切开后被用于测量储存的弹性能量,由差异生长产生的固相应力导致内部组织的各向同性压缩与肿瘤块相切的张力增加,肿瘤的平面切割显示外围收缩和中央组织凸出的形状[9]。总之,这些研究证实固相应力的积累是实体瘤中的常见现象,并表明肿瘤中的差异性生长及其固相应力分布的不均一性。
二、固相应力对肿瘤细胞的影响
1. 固相应力对肿瘤细胞增殖与凋亡的影响
1997年Helmlinger等(Jain教授团队)[1]首次认识到固相应力对肿瘤细胞的影响,发现累积的固相应力会抑制肿瘤球体的生长,而在细胞水平上仅观察到凋亡率的轻微下降,并未发现对增殖的影响。Cheng等(2009年)在随后的一项研究中发现,肿瘤球体中高固相应力区域的细胞增殖受到抑制、凋亡率增加,并且证明了限制组织的力学性质的不均一性可通过诱导高应力区域的细胞凋亡,以及允许低应力区域的细胞增殖的方式来引导肿瘤生长的形态变化,而非依赖于细胞迁移。固相应力导致人体脑肿瘤细胞和结肠癌细胞的增殖能力下降[10]。影响增殖与凋亡的机制可能是由于肿瘤细胞有丝分裂受到抑制。因为HCT116结直肠癌细胞在空间限制施压下由于双极纺锤体异常而在肿瘤球体中停滞分裂[11]。但具体机制尚不清楚,有待进一步探索。总而言之,肿瘤球体的机械限制会导致固相应力增加,从而抑制细胞增殖并促进细胞凋亡。
2. 固相应力对肿瘤细胞迁移与侵袭的影响
除了调节肿瘤细胞的增殖和凋亡外,固相应力还影响细胞迁移与侵袭。施加于乳腺癌细胞的固相应力促进了先导细胞的形成[12]。而先导细胞通过创造侵袭轨迹、感知环境以及在生物化学和生物力学上与跟随细胞协调来促进恶性肿瘤的侵袭[13]。此外,Kalli等[10, 14-15]在胶质瘤细胞和胰腺癌细胞中也证明了在固相应力的作用下细胞迁移能力提高。但这些影响取决于不同的细胞类型,因为非肿瘤细胞和非浸润性肿瘤细胞不具备良好的迁移能力[16]。有学者认为,肿瘤细胞在组织微环境形成的固体界面的限制下迁移时往往会消耗更大的能量,而能量需求與细胞和基质的刚度相关[17]。因此,肿瘤细胞在固相应力下迁移的方式更为灵活,并受到诸多因素的影响。
3. 固相应力对肿瘤代谢的影响
肿瘤的发生依赖于细胞代谢的重编程,这是致癌基因突变的直接和间接结果。细胞可以通过整合素受体感知ECM的力学性质,并通过调节肌动蛋白细胞骨架的收缩性来测量固相应力等力学特性,进而通过调节细胞内信号通路完成细胞代谢的重编程[18]。在较为坚硬的ECM上,泛素连接酶TRIM21被应力纤维捕获导致磷酸果糖激酶(PFK)无法降解;而在硬度较低的ECM上,TRIM21能够通过靶向PFK进而减少肿瘤细胞的糖酵解[19]。不同细胞骨架张力的脂质组学也表明,在硬度较低的ECM上,SREBP介导的脂肪生成程序更倾向于中性脂质(甘油二酯和甘油三酯)及胆固醇的积累,最终导致脂滴形成增加[18, 20]。由于肿瘤会增加ECM的硬度,进而改变恶性肿瘤细胞的生物学功能,这使固相应力调节细胞新陈代谢的假设成为现实。
近年Hanahan[21]在“Hallmarks of cancer”先前版本的基础上新引入4个肿瘤标志性特征,为肿瘤学研究提供了新维度。但目前肿瘤固相应力的相关研究仅仅涉及为数不多的肿瘤表型,还需将生物力学的研究拓展到更多表型。此外,目前尚不清楚在组织微环境中什么条件下会触发实体肿瘤的表型改变,这值得进一步研究。
三、固相应力在临床中的应用
如今,研究者已经在各种肿瘤中观察到肿瘤生物力学特性的不利影响。固相应力的增加可以压垮附近的血管和淋巴管[22-23]。异常的脉管系统不仅阻碍药物输送,而且由此产生的缺氧环境也促使肿瘤侵袭、转移、免疫抑制、炎症、纤维化和治疗抵抗[24]。人们对物理微环境在恶性肿瘤中的作用日益重视,从而为患者带来了新的靶点和治疗策略。
目前的治疗策略可分为两种:调节肿瘤的机械环境;调节机械应力相关通路。首先,可通过靶向消除肿瘤细胞使细胞密度降低或降解基质成分及减少纤维化,从而使肿瘤受到施加的压力得以释放,进而改善了药物传递和疗效[22, 25]。异常的肿瘤微环境已被确定为对免疫检查点阻滞剂产生抗性的原因之一[26]。通过应用抗血管内皮生长因子(VEGF)抗体和肾素-血管紧张素系统抑制剂使血管正常化来靶向肿瘤微环境的非免疫成分,代表了一种克服免疫检查点阻滞剂耐药性的临床转化策略[26-30]。“肿瘤基质的正常化”是一种新兴治疗策略,已在局部晚期(即非转移性)促纤维增生性胰腺癌的Ⅱ期试验中成功地应用,成为“潜在治愈性”治疗(图1)[31]。使用“机械疗法”来诱导基质正常化,涉及靶向肿瘤相关的成纤维细胞、细胞外胶原蛋白和透明质酸,这反过来减轻肿瘤内应力、减轻肿瘤血管的压迫、改善灌注以及药物的全身输送。Mpekris等[32]还将“机械疗法”应用于纳米免疫治疗乳腺癌的策略中,为血管减压,改善肿瘤的机械环境。此外,可通过调节机械应力相关通路控制肿瘤细胞的恶性行为。Moreno等[33]研究表明,EGFR/ERK通路是通过抑制促凋亡基因“hid”来调节果蝇蛹中细胞存活的中枢调节因子,而异位组织拉伸或压缩可以瞬时上调或下调ERK活性[33-34]。因此,在邻近肿瘤前细胞中轻度激活EGFR/ERK通路可以显著减缓克隆扩增[34]。
四、小结与展望
固相应力在肿瘤发生进程中起到重要的调节作用,并影响化学治疗或靶向药物的作用效果,进而改变肿瘤患者的预后。由于肿瘤的物理性质相比于其他生物学标志物,受到的关注较少,从宏观到微观的固相应力,如何通过控制基因表达来调节细胞命运仍然缺乏实验基础。因此,需要多学科密切合作研发更多先进的体内、外模型来概括和研究肿瘤物理特性的异常。此外,还需要更简化、更精准的测量工具来量化固相应力以及探索其产生的不同原因。固相应力有望作为生物学标志物,在各种肿瘤的诊断、预后评价和靶向治疗中发挥巨大的作用。
参 考 文 献
[1] Helmlinger G, Netti P A, Lichtenbeld H C, et al. Solid stress inhibits the growth of multicellular tumor spheroids. Nat Biotechnol, 1997, 15(8): 778-783.
[2] Nia H T, Munn L L, Jain R K. Physical traits of cancer. Science, 2020, 370(6516): eaaz0868.
[3] Purkayastha P, Jaiswal M K, Lele T P. Molecular cancer cell responses to solid compressive stress and interstitial fluid pressure. Cytoskeleton (Hoboken), 2021, 78(6): 312-322.
[4] Deng B, Zhao Z, Kong W, et al. Biological role of matrix stiffness in tumor growth and treatment. J Transl Med, 2022, 20(1): 540.
[5] Seano G, Nia H T, Emblem K E, et al. Solid stress in brain tumours causes neuronal loss and neurological dysfunction and can be reversed by lithium. Nat Biomed Eng, 2019, 3(3): 230-245.
[6] Fernández Moro C, Bozóky B, Gerling M. Growth patterns of colorectal cancer liver metastases and their impact on prognosis: a systematic review. BMJ Open Gastroenterol, 2018, 5(1): e000217.
[7] Mierke C T. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. Rep Prog Phys, 2019, 82(6): 064602.
[8] Ferruzzi J, Sun M, Gkousioudi A, et al. Compressive remodeling alters fluid transport properties of collagen networks - implications for tumor growth. Sci Rep, 2019, 9(1): 17151.
[9] Chen Q, Yang D, Zong H, et al. Growth-induced stress enhances epithelial-mesenchymal transition induced by IL-6 in clear cell renal cell carcinoma via the Akt/GSK-3β/β-catenin signaling pathway. Oncogenesis, 2017, 6(8): e375.
[10] Kalli M, Stylianopoulos T. Defining the role of solid stress and matrix stiffness in cancer cell proliferation and metastasis. Front Oncol, 2018, 8: 55.
[11] Desmaison A, Frongia C, Grenier K, et al. Mechanical stress impairs mitosis progression in multi-cellular tumor spheroids. PLoS One, 2013, 8(12): e80447.
[12] Chen B J, Wu J S, Tang Y J, et al. What makes leader cells arise: intrinsic properties and support from neighboring cells. J Cell Physiol, 2020, 235(12): 8983-8995.
[13] Vilchez Mercedes S A, Bocci F, Levine H, et al. Decoding leader cells in collective cancer invasion. Nat Rev Cancer, 2021, 21(9): 592-604.
[14] Kalli M, Minia A, Pliaka V, et al. Solid stress-induced migration is mediated by GDF15 through Akt pathway activation in pancreatic cancer cells. Sci Rep, 2019, 9(1): 978.
[15] Kalli M, Voutouri C, Minia A, et al. Mechanical compression regulates brain cancer cell migration through MEK1/Erk1 pathway activation and GDF15 expression. Front Oncol, 2019, 9: 992.
[16] Tse J M, Cheng G, Tyrrell J A, et al. Mechanical compression drives cancer cells toward invasive phenotype. Proc Natl Acad Sci USA, 2012, 109(3): 911-916.
[17] Zanotelli M R, Rahman-Zaman A, VanderBurgh J A, et al. Energetic costs regulated by cell mechanics and confinement are predictive of migration path during decision-making. Nat Commun, 2019, 10(1): 4185.
[18] Romani P, Brian I, Santinon G, et al. Extracellular matrix mechanical cues regulate lipid metabolism through Lipin-1 and SREBP. Nat Cell Biol, 2019, 21(3): 338-347.
[19] Park J S, Burckhardt C J, Lazcano R, et al. Mechanical regulation of glycolysis via cytoskeleton architecture. Nature, 2020, 578(7796): 621-626.
[20] Bertolio R, Napoletano F, Mano M, et al. Sterol regulatory element binding protein 1 couples mechanical cues and lipid metabolism. Nat Commun, 2019, 10(1): 1326.
[21] Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov, 2022, 12(1): 31-46.
[22] Zhao X, Pan J, Li W, et al. Gold nanoparticles enhance cisplatin delivery and potentiate chemotherapy by decompressing colorectal cancer vessels. Int J Nanomedicine, 2018, 13: 6207-6221.
[23] Zanotelli M R, Reinhart-King C A. Mechanical forces in tumor angiogenesis. Adv Exp Med Biol, 2018, 1092: 91-112.
[24] Stylianopoulos T, Munn L L, Jain R K. Reengineering the tumor vasculature: improving drug delivery and efficacy. Trends Cancer, 2018, 4(4): 258-259.
[25] Munn L L, Stylianopoulos T, Jain N K, et al. Vascular normalization to improve treatment of COVID-19: lessons from treatment of cancer. Clin Cancer Res, 2021, 27(10): 2706-2711.
[26] Datta M, Coussens L M, Nishikawa H, et al. Reprogramming the tumor microenvironment to improve immunotherapy: emerging strategies and combination therapies. Am Soc Clin Oncol Educ Book, 2019, 39: 165-174.
[27] Pinter M, Jain R K, Duda D G. The current landscape of immune checkpoint blockade in hepatocellular carcinoma: a review. JAMA Oncol, 2021, 7(1): 113-123.
[28] Pinter M, Jain R K. Targeting the renin-angiotensin system to improve cancer treatment: implications for immunotherapy. Sci Transl Med, 2017, 9(410): eaan5616.
[29] Huang Q, Lei Y, Li X, et al. A highlight of the mechanisms of immune checkpoint blocker resistance. Front Cell Dev Biol, 2020, 8: 580140.
[30] 張金华, 田园, 杨晓萍. 肿瘤血管新生及中医药抗肿瘤血管新生的研究进展. 新医学, 2022, 53(1): 18-21.
[31] Murphy J E, Wo J Y, Ryan D P, et al. Total neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: a phase 2 clinical trial. JAMA Oncol, 2019, 5(7): 1020-1027.
[32] Mpekris F, Panagi M, Voutouri C, et al. Normalizing the microenvironment overcomes vessel compression and resistance to nano-immunotherapy in breast cancer lung metastasis. Adv Sci (Weinh), 2020, 8(3): 2001917.
[33] Moreno E, Valon L, Levillayer F, et al. Competition for space induces cell elimination through compaction-driven ERK downregulation. Curr Biol, 2019, 29(1): 23-34.e8.
[34] Gudipaty S A, Lindblom J, Loftus P D, et al. Mechanical stretch triggers rapid epithelial cell division through piezo1. Nature, 2017, 543(7643): 118-121.
(收稿日期:2022-12-01)
(本文编辑:林燕薇)