间充质干细胞源性外泌体在皮肤创伤修复和再生中的研究进展
2023-05-22郑舒丹吴金燕张利平杨屈杨李越赵贤省朱宁文
郑舒丹 吴金燕 张利平 杨屈杨 李越 赵贤省 朱宁文
[摘要]间充质干细胞源性外泌体是具有脂质双层结构的纳米级别囊泡样物质,携带多种生物活性分子,包括脂质、蛋白质和核酸。这些小囊泡由多种类型细胞分泌,通过体液循环将信息传递给周边细胞和远程细胞,与其他细胞进行密切交流。目前,大量研究表明间充质干细胞源性外泌体在促进皮肤创伤修复和再生,抑制瘢痕形成过程中发挥重要作用。本文就间充质干细胞源性外泌体在皮肤创伤修复和再生中的研究进展作一综述。
[关键词]间充质干细胞;外泌体;创伤和修复;再生
[中图分类号]R641 [文献标志码]A [文章编号]1008-6455(2023)04-0189-05
Research Progress of Mesenchymal Stem Cell-derived Exosomes in Skin Wound Repair and Regeneration
ZHENG Shudan1,2,WU Jinyan1,ZHANG Liping1,YANG Quyang1,LI Yue1,ZHAO Xiansheng1,ZHU Ningwen1
(1.Department of Dermatology,Huashan Hospital,Fudan University,Shanghai 200040,China; 2.Department of Plastic Surgery,the Second Affiliated Hospital of Hainan Medical College,Haikou 570100,Hainan,China)
Abstract: Exosomes are nano-sized cargos with a lipid bilayer structure carrying diverse biomolecules including lipids,proteins, and nucleic acids. These small vesicles are secreted by most types of cells to communicate with eachother. Since exosomes circulate through bodily fluids, they can transfer information not only to local cells but alsoto remote cells. At present, a large number of studies have shown that mesenchymal stem cell-derived exosomes play an important role in promoting skin wound repair and regeneration and inhibiting the formation of scars. This article reviews the research progress of mesenchymal stem cell-derived exosomes in skin wound repair and regeneration.
Key words: mesenchymal stem cells; exosomes; wounding and repair; regeneration
皮肤是人体最大的组织器官,隔绝了外界中有害物质和伤害,形成保护屏障。除了对物理、化学和生物因素的防御功能外,皮肤还可以调节机体的温度,维持体内环境的平衡,参与感官知觉的发生机制以及组织再生过程[1]。皮肤常因大面积烧伤、外伤或糖尿病溃疡等多种原因导致出现急性或者慢性创伤[2-3],这些不仅会使个人出现一系列身心健康问题,也给社会带来巨大的经济负担。
近年来,间充质干细胞(Mesenchymal stromal cells,MSCs)在皮肤创伤修复和再生方面备受关注。MSCs积极参与皮肤创伤修复过程,不仅分化为参与基质合成的成纤维细胞,还释放参与组织再生的各种因子,如抗瘢痕、抗凋亡和促进血管生成因子。因此,一些研究已将外源性MSCs应用于创伤,利用其增生的特性,对创伤愈合和瘢痕形成发挥有利作用[4]。但是,有多项研究表明MSCs本身并未参与治疗过程[5]。相反,MSCs的治疗效果主要依赖于体内旁分泌信号发挥作用,释放某些生物活性分子,增殖和分化成所需的受损组织细胞类型,从而达到创面的修复作用。因此,MSCs源性外泌体疗法作为一种无细胞治疗替代方法应用于创面的修复和再生受到广泛关注。本文就MSCs源性外泌体在皮肤创伤修复和再生中的研究进展作一综述。
1 间充质干细胞
1.1 MSCs的来源:MSCs是一种来源于成体的多能干细胞,几乎存在于所有的组织器官中,能分化成多种细胞类型。目前,MSCs的最广泛来源是骨髓源性MSCs(Bone marrow-derived MSCs,BM-MSCs)、脂肪源性MSCs(Adipose tissue-derived MSCs,AT-MSCs)和脐带源性MSCs(Umbilical cord-derived MSCs,UC-MSCs)。MSCs的另一个重要来源是口腔组织,包括牙髓、牙根尖周炎囊肿、脱落的乳牙牙髓、牙周韧带、牙囊祖细胞、牙齿和牙龈的根尖乳头组织[6]。此外,还可以从羊水、骨膜和胎儿组织中分离出来[7],这些MSCs显示表型异质性。以及其他一些组织,如血液、肝脏、脾脏和妊娠早期、中期人类胎儿的骨髓中提取。MSCs易于體外分离和扩增,分离后在低温环境下冷冻保存,对其生物学活性不产生影响以及表达中等或低等水平的MHCI类和MHCII分子,具有低免疫原性等特点。
1.2 MSCs的安全性问题:尽管MSCs在皮肤创伤修复和再生方面取得了重大进展,但MSCs治疗的安全性和有效性一直存在争议。例如在MSCs的制备过程中要充分了解供者的健康状况,包括年龄、既往史、家族史等,规避这些外在的干扰因素,存储过程要求严格无菌,排除医源性导致的感染,以及免疫排斥和肿瘤发生等风险。相反,与MSCs治疗相比,MSCs源性外泌体具有以下优势:①MSCs源性外泌体与靶细胞直接结合,具有很强的生物学效应;②MSCs源性外泌体可以在-70℃下长期储存和运输,其生物活性不易破坏[8];③浓度、剂量、途径和使用时间易于控制;④不存在由细胞移植治疗引起的免疫排斥和肿瘤发生的风险[9-10];⑤外泌体可以通过过滤进行灭菌而进入临床使用[11]。因此,MSCs源性外泌体可以替代MSCs治疗,在创伤修复与再生医学领域具有良好的应用前景和潜能。
2 MSCs源性外泌体生物学特性
外泌体的首次发现早在20世纪60年代[12],直至20世纪80年代后期对于外泌体的研究才有了更多发现。在羊网织红细胞成熟的研究中,揭示了外泌体形成的机制[13]。外泌体是一些具有生物活性的分子,以微米到纳米大小的细胞外囊泡(Extracellular vesicles,EVs)颗粒形式释放。根据颗粒大小,EVs可分为外泌体(50~100 nm)、微泡(100~1 000 nm)和凋亡小体(500~5 000 nm)。外泌体的生物合成主要由细胞经胞吞作用分泌,细胞膜先向内出芽形成更大的细胞内囊泡—多囊泡体(Multivesicular bodies,MVBs),随后多囊泡体逐渐向细胞边缘迁移并与细胞膜融合,再次向内凹陷形成颗粒状小囊泡—外泌体,最后通过胞吐作用被释放到细胞外环境中。MSCs源性外泌体具有多种特异性标记蛋白,包括膜转运蛋白和融合蛋白(例如鸟苷三磷酸和膜联蛋白)、四跨膜蛋白(例如CD9、CD63和CD81)、热休克蛋白(例如hsp60、hsp70和hsp90)、参与MVBs生物合成蛋白(如:肿瘤易感基因101蛋白和Alix蛋白),以及脂质相关蛋白和磷脂酶。外泌体是MSCs旁分泌至关重要的生物活性囊泡,通过影响受体细胞的存活、增殖、迁移、基因表达以及重新编程靶向细胞行为来调节许多生理和病理过程[14],在皮肤创伤修复和再生过程中起重要作用。
3 皮肤创伤修复过程
皮肤创伤修复是一个复杂的动态过程,主要作用是恢复受损组织的结构和功能。它是一个复杂而有序的精确调控过程,包括止血期、炎症反应期、细胞迁移增殖期、血管生成和基质重塑期[15]。在影响创伤修复的各种因素中,血管生成占据关键位置,向创伤部位输送营养和氧气,促进成纤维细胞增殖,胶原蛋白合成和再上皮化[9,16]。在病理情况下,破坏和延长创伤愈合过程会导致慢性、不愈合的伤口,例如糖尿病伤口[16]。糖尿病伤口愈合不良的机制目前仍不清楚,但是缺氧会造成血管生成受损,活性氧(Reactive oxygen species,ROS)产生和神经病变损害,导致这些患者长期医疗负担和生活质量受损[10,17]。在创伤愈合方面,由于MSCs疗法能够募集细胞,释放生长因子和蛋白质,被认为是一种有前途的细胞基础疗法。它能够加速伤口愈合,增加伤口上皮化,肉芽化组织形成,分化为皮肤的血管生成细胞和修复受损细胞。但是,因MSCs的缺点,目前已经专注于MSCs源性外泌体,包括细胞因子、生长因子、趋化因子和含有mRNA、蛋白质和microRNA的细胞外囊泡,以及他们在伤口愈合过程中的作用[10]。
4 MSCs源性外泌体在皮肤创伤修复中的作用机制
4.1 MSCs源性外泌体通过多种信号通路促进细胞增殖、迁移和血管生成:MSCs源性外泌体通过激活信号通路如Wnt/β-catenin、磷脂酰肌醇3-激酶(Phosphatidylinositol 3-kinase,PI3K)/蛋白质激酶B通路(Proteinkinase B pathway,AKT)或细胞外信号调节激酶(Extracellular signal-regulatedkinase,ERK)级联,促使生长因子表达上调,导致血管生成、细胞迁移、增殖和再上皮化过程。例如:从人脂肪源性MSCs(Human AT-MSCs,hAT-MSCs)中分离的外泌体刺激细胞增殖和迁移,通过Wnt/β-catenin信号对过氧化氢(Hydrogen peroxide,H2O2)处理的人角质形成细胞 (Human keratinocytes,HaCaTs)凋亡起到抑制作用[18]。肺腺癌转移相关转录物1(Metastasis associated lung adenocarcinoma transcript 1,MALAT1),是包含在这些外泌体中的转录调节因子,可以通过靶向miR-124并激活该途径介导H2O2来诱导创伤愈合[19]。Zhang等[20]研究表明在人脐带源性MSCs(Human UC-MSC,hUC-MSCs)外泌体中14-3-3ζ蛋白增强Hippo/Yes相关蛋白(Yippo/Yes-associated protein,YAP)通路,促进体内皮肤再生重塑阶段Wnt/β-catenin信号传导的自我调节以及在大鼠深二度烧伤模型中限制皮肤细胞的过度增殖和胶原蛋白沉积。此外,他们发现外泌体14-3-3ζ蛋白促进了大肿瘤抑制因子(Large tumor suppressor,p-LATS)与YAP的紧密结合,促使YAP磷酸化。同时,miR-135a下调大肿瘤抑制因子2(Large tumor suppressor 2,LATS2)的表达,增加人皮肤成纤维细胞的迁移并促进体内伤口愈合[21]。对于Wnt/β-catenin信号传导,在hUC-MSCs源性外泌体中Wnt4促进β-catenin核易位和增强HaCaTs在体外的增殖和迁移活性,在大鼠皮肤烧伤模型中伤口的再上皮化起到关键作用[22]。β-catenin核易位促使增殖细胞核抗原(Roliferating cell nuclear antigen,PCNA)、细胞周期蛋白D3、N-钙粘蛋白和β-catenin表达增加,而抑制E-钙粘蛋白的表达。此外,Wnt4诱导β-catenin激活内皮细胞并发挥促血管生成作用,这可能是皮肤创伤愈合的重要机制[23]。其他增殖标志物,包括生长因子和迁移相关趋化因子,如血管紧张素-2(Angiotensin-2,Ang-2)[24]、细胞周期蛋白D1、细胞周期蛋白A2和C-X-C基序趋化因子12(C-X-C motif chemokine 12,CXCL12)通过hUC-MSCs源性外泌体处理后表达显着上调,促进内皮细胞增殖、迁移和血管生成[25]。在這项研究中,铁氧化物纳米颗粒标记的外泌体显著增加创伤部位外泌体的累积数量,增强内皮细胞增殖、迁移和血管生成,同时由于增加CK19、PCNA和胶原蛋白的表达从而减少瘢痕形成。
创伤愈合过程中的另一个重要信号通路是PI3K/AKT,与Wnt/β-catenin通路平行。Yang等[26]报道hAT-MSCs源性外泌体中的miR-21通过PI3K/AKT信号通路增强基质金属蛋白酶-9 (Matrix metalloproteinases,MMP-9)表达并抑制金属蛋白酶内源性抑制剂1(Tissue inhibitors ofmetalloproteinase,TIMP-1),促进HaCaTs在体外的增殖。此外,miR-126促使磷酸酶和张力蛋白同源物(Phosphatase and tensin homolog,PTEN)下调,在体外通过PI3K/AKT通路刺激血管生成,有助于刺激创伤愈合和糖尿病大鼠体内的血管生成[27]。该通路也被报道在体外经过hAT-MSCs源性外泌体处理后,促进成纤维细胞增殖和胶原蛋白沉积,从而促进伤口愈合[28]。Yu等[29]报道通过阿托伐他汀(Atorvastatin,ATV)處理的人BM-MSCs(Human BM-MSCs,hBM-MSCs)源性外泌体激活AKT/内皮一氧化氮合成酶(Endothelial nitric oxide synthase,eNOS)信号通路,上调miR-211-3p,促进内皮细胞血管生成,加速糖尿病大鼠体内伤口的再生。另外,除了AKT,hBM-MSCs源性外泌体还能够激活ERK1/2信号转导和转录激活因子3(Activator of transcription 3,STAT3),促进体外营养因子如细胞周期蛋白D2表达。这也刺激体外内皮细胞的成纤维细胞生长、迁移和血管生成[30]。诱导间充质基质细胞(Induced mesenchymal stromal cell,iMSC)源性外泌体也已被证明可以刺激ERK1/2信号转导从而促进HaCaTs和人体内真皮成纤维细胞(Human dermal fibroblasts,HDF)的增殖[31]。而且,从hBM-MSCs、hAT-MSCs和hUC-MSCs中获得的外泌体被报道,通过诱导伤口愈合介导的生长因子可促进HaCaT和HDF体外的增殖和迁移[32]。例如,作为血管内皮生长因子A(Vascular endothelial growth factor A,VEGF-A)、成纤维细胞生长因子2(Fibroblast growth factor 2,FGF-2)、肝细胞生长因子(Hepatocyte growth factor,HGF)和血小板衍生生长因子BB(Platelet-derived growth factor BB,PDGF-BB),可激活AKT、ERK和STAT3信号传导[7]。对于ERK蛋白,Wang等[33]报道,hAT-MSCs源性外泌体通过激活ERK/丝裂原活化蛋白激酶(Mitogen-activated protein kinase,MAPK)途径增加皮肤真皮成纤维细胞基质金属蛋白酶3(Matrix metalloproteinases,MMP3)的表达,导致MMP3转化成TIMP1,这也利于细胞外基质重塑。这些外泌体还减少了瘢痕的大小并通过在体内阻止成纤维细胞分化为肌成纤维细胞,增加转化生长因子-β3(Transforming growth factor,TGF-β3)转化成转化生长因子-β1(Transforming growth factor,TGF-β1)的比例来增加小鼠伤口中胶原蛋白Ⅲ与胶原蛋白Ⅰ的比例。
4.2 MSCs源性外泌体通过多种信号通路减少瘢痕形成:与创伤修复相关的另一个重要问题是瘢痕形成。在创伤愈合过程中,皮肤瘢痕的形成涉及细胞与细胞外基质(Extracellular matrix,ECM)分子信号间相互作用的复杂序列协调。瘢痕组织的特点是ECM成分的过度沉积和缺乏皮肤附属物,如毛囊和汗腺。ECM重塑,尤其是胶原蛋白的合成和降解,对于瘢痕的形成非常重要。此外,成纤维细胞—肌成纤维细胞的转化在这个过程中至关重要。为了应对皮肤损伤,真皮成纤维细胞转化为肌成纤维细胞,增强细胞收缩能力和促进α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)的表达。多项研究表明,TGF-β1/Smad信号通路参与胶原蛋白形成和成纤维细胞—肌成纤维细胞的转化[33]。有趣的是,无瘢痕愈合发生在胚胎发育的早中期阶段。因此,在胎儿创伤组织中,Ⅲ型胶原蛋白转化成Ⅰ型胶原蛋白的比例增高,相应的TGF-β3转化TGF-β1的比例也增高,促使金属蛋白酶内源性抑制剂(Tissue inhibitors of metalloproteinases,TIMPs)对基质金属蛋白酶(Matrix metalloproteinases,MMP)的抑制作用减弱。
关于无瘢痕伤口愈合,一些研究已经关注到TGF-β/Smad信号通路的作用。例如,Jiang等[34]表明hBM-MSCs源性外泌体在体外促进HaCaT和HDF生长并加速体内无瘢痕创伤修复。他们研究发现TGF-β1、Smad2、Smad3和Smad4表达明显下调,而TGF-β3和Smad7表达明显上调。此外,在小鼠皮肤创伤模型中hUC-MSCs源性外泌体可减少体内瘢痕形成和肌成纤维细胞累积。Zhang等[35]报道这些含有特定microRNA的外泌体,例如miR-21、miR-23a、miR-125b和miR-145通过抑制TGF-β2/Smad2信号通路转化,在抑制肌成纤维细胞的形成中起关键作用。对于这一点,Jiang等[36]研究表明肿瘤坏死因子诱导基因6(Tumor necrosis factor-inducible gene 6,TSG-6)过表达的hBM-MSCs源性外泌体可有效改善瘢痕组织病理损伤,减少炎症因子分泌和小鼠皮肤创伤模型中的体内胶原蛋白的沉积,同时抑制瘢痕组织TGFβ1、p-Smad2、p-Smad3的表达。还发现Smad2/3磷酸化显著减少成纤维细胞[14]。Dalirfardouei等[37]报道人月经血间充质干细胞(Human menstrual MSCs,hMen-MSCs)源性外泌体降低胶原蛋白Ⅰ/Ⅲ的比例,减少糖尿病小鼠模型中的瘢痕形成,促进体内伤口闭合、血管生成和再上皮化。hAT-MSCs源性外泌体也发挥了相同的作用,通过增加体外N-cadherin、cyclin-1、PCNA 和胶原蛋白Ⅰ/Ⅲ基因表达,在体内伤口愈合早期阶段促进胶原蛋白Ⅰ和Ⅲ的产生,在晚期阶段抑制胶原蛋白表达以减少疤痕形成[38]。此外,人类羊膜上皮细胞(Human amniotic epithelial cell,hAEC)源性外泌体显著增强成纤维细胞体外增殖和迁移能力,通过刺激MMP-1的表达,在这些细胞中显著下调胶原蛋白Ⅰ和胶原蛋白Ⅲ表达。经过对体内伤口测定表明,在伤口愈合过程外泌体治疗促进胶原纤维的整齐排列[39]。另外,被报道参与伤口愈合过程的其他信号通路是聚ADP核糖聚合酶1(Poly ADP ribose polymerase 1,PARP 1)/凋亡诱导因子(Apoptosis-inducing factor,AIF)凋亡通路和Notch信号通路。PARP 1/AIF凋亡通路经hUC-MSCs源性外泌体处理后在体外通过抑制AIF核易位和上调PARP-1抑制HaCaT细胞凋亡,而在体内增强表皮再上皮化和真皮血管生成[40]。体内研究表明,人胎儿真皮间充质基质细胞(Human fetal dermalmesenchymal stromal cell,hFD-MSCs)源性外泌体通过激活Notch信号通路在小鼠全层皮肤创伤模型中可以加速伤口愈合[41]。
5 展望
MSCs源性外泌体具有创伤修复和组织细胞再生特性,它们作为一种新兴的潜在无细胞治疗方式,克服目前干细胞疗法的固有局限性,在皮肤创伤修复和再生中发挥重要作用。相比MSCs,其治疗安全性更高。皮肤创伤修复和再生,是一个动态且多种细胞相互作用的复杂过程,包括刺激成纤维细胞和角质形成细胞的迁移和增殖,促进血管生成和胶原蛋白合成。目前,被报道最多的信号通路包括Wnt/β-catenin、PI3K/AKT、ERK和TGF-β/Smad信号通路。但是,对于MSCs源性外泌体在创伤修复和再生中发挥的作用机制及具体成分目前有待进一步研究,相信随着研究的不断进展,其来源、提取、分离和保存等技术的不断改良,MSCs源性外泌體将来会为皮肤创伤修复和再生提供新的方向,将更好地应用于临床。
[参考文献]
[1]Oualla-bachiri W,Fernandez-gonzalez A,Quinones-vico M I,et al.From grafts to human bioengineered vascularized skin substitutes[J].Int J Mol Sci,2020,21(21):8197.
[2]Zhang Y,Yan J,Li Z,et al.Exosomes derived from human umbilical cord mesenchymal stem cells alleviate psoriasis-like skin inflammation[J].J Interferon Cytokine Res,2022,42(1):8-18.
[3]Casado-diaz A,Quesada-gomez J M,Dorado G,et al.Extracellular vesicles derived from mesenchymal stem cells (MSC) in regenerative medicine: applications in skin wound healing[J].Front Bioeng Biotechnol,2020,8:146.
[4]Rosca A M,Tutuianu R,Titorencu I D,et al.Mesenchymal stromal cells derived exosomes as tools for chronic wound healing therapy[J].Rom J Morphol Embryol,2018,59(3):655-662.
[5]Toma C,Wagner W R,Bowry S,et al.Fate of culture-expanded mesenchymal stem cells in the microvasculature: in vivo observations of cell kinetics[J].Circ Res,2009,104(3):398-402.
[6]Spagnuolo G,Codispoti B,Marrelli M,et al.Commitment of oral-derived stem cells in dental and maxillofacial applications[J].Dent J (Basel),2018,6(4):72.
[7]Hoang D H,Nguyen T D,Nguyen H P,et al.Differential wound healing capacity of mesenchymal stem cell-derived exosomes originated from bone marrow, adipose tissue and umbilical cord under serum- and xeno-free condition[J].Front Mol Biosci,2020,7:119.
[8]Zhao B,Zhang Y,Han S,et al.Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation[J].J Mol Histol,2017,48(2):121-132.
[9]Yu M,Liu W,Li J,et al.Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway[J].Stem Cell Res Ther,2020,11(1):350.
[10]An T,Chen Y,Tu Y,et al.Mesenchymal stromal cell-derived extracellular vesicles in the treatment of diabetic foot ulcers: application and challenges[J].Stem Cell Rev Rep,2021,17(2):369-378.
[11]Lai P,Chen X,Guo L,et al.A potent immunomodulatory role of exosomes derived from mesenchymal stromal cells in preventing cGVHD[J].J Hematol Oncol,2018,11(1):135.
[12]Bonucci E.Fine structure of early cartilage calcification[J].J Ultrastruct Res,1967,20(1):33-50.
[13]Pan B T,Teng K,Wu C,et al.Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes[J].J Cell Biol,1985,101(3):942-948.
[14]Hu J,Chen Y,Huang Y,et al.Human umbilical cord mesenchymal stem cell-derived exosomes suppress dermal fibroblasts-myofibroblats transition via inhibiting the TGF-beta1/Smad 2/3 signaling pathway[J].Exp Mol Pathol,2020,115:104468.
[15]Gao S,Chen T,Hao Y,et al.Exosomal miR-135a derived from human amnion mesenchymal stem cells promotes cutaneous wound healing in rats and fibroblast migration by directly inhibiting LATS2 expression[J].Stem Cell Res Ther,2020,11(1):56.
[16]Liu J,Yan Z,Yang F,et al.Exosomes derived from human umbilical cord mesenchymal stem cells accelerate cutaneous wound healing by enhancing angiogenesis through delivering angiopoietin-2[J].Stem Cell Rev Rep,2021,17(2):305-317.
[17]Wang C,Wang M,Xu T,et al.Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration[J].Theranostics,2019,9(1):65-76.
[18]Ma T,Fu B,Yang X,et al.Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/beta-catenin signaling in cutaneous wound healing[J].J Cell Biochem,2019,120(6):10847-10854.
[19]He L,Zhu C,Jia J,et al.ADSC-Exos containing MALAT1 promotes wound healing by targeting miR-124 through activating Wnt/beta-catenin pathway[J].Biosci Rep,2020,40(5):BSR20192549.
[20]Zhang B,Shi Y,Gong A,et al.HucMSC exosome-delivered 14-3-3zeta orchestrates self-control of the wnt response via modulation of yap during cutaneous regeneration[J].Stem Cells,2016,34(10):2485-2500.
[21]Gao S,Chen T,Hao Y,et al.Exosomal miR-135a derived from human amnion mesenchymal stem cells promotes cutaneous wound healing in rats and fibroblast migration by directly inhibiting LATS2 expression[J].Stem Cell Res Ther,2020,11(1):56.
[22]Zhang B,Wang M,Gong A,et al.HucMSC-exosome mediated-wnt4 signaling is required for cutaneous wound healing[J].Stem Cells,2015,33(7):2158-2168.
[23]Zhang B,Wu X,Zhang X,et al.Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/beta-catenin pathway[J].Stem Cells Transl Med,2015,4(5):513-522.
[24]Liu J,Yan Z,Yang F,et al.Exosomes derived from human umbilical cord mesenchymal stem cells accelerate cutaneous wound healing by enhancing angiogenesis through delivering angiopoietin-2[J].Stem Cell Rev Rep,2021,17(2):305-317.
[25]Li X,Wang Y,Shi L,et al.Magnetic targeting enhances the cutaneous wound healing effects of human mesenchymal stem cell-derived iron oxide exosomes[J].J Nanobiotechnology,2020,18(1):113.
[26]Yang C,Luo L,Bai X,et al.Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway[J].Arch Biochem Biophys,2020,681:108259.
[27]Ding J,Wang X,Chen B,et al.Exosomes derived from human bone marrow mesenchymal stem cells stimulated by deferoxamine accelerate cutaneous wound healing by promoting angiogenesis[J].Biomed Res Int,2019,2019:9742765.
[28]Zhang W,Bai X,Zhao B,et al.Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway[J].Exp Cell Res,2018,370(2):333-342.
[29]Yu M,Liu W,Li J,et al.Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway[J].Stem Cell Res Ther,2020,11(1):350.
[30]Shabbir A,Cox A,Rodriguez-Menocal L,et al.Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro[J].Stem Cells Dev,2015,24(14):1635-1647.
[31]Kim S,Lee S K,Kim H,et al.Exosomes secreted from induced pluripotent stem cell-derived mesenchymal stem cells accelerate skin cell proliferation[J].Int J Mol Sci,2018,19(10):3119.
[32]Choi E W,Seo M K,Woo E Y,et al.Exosomes from human adipose-derived stem cells promote proliferation and migration of skin fibroblasts[J].Exp Dermatol,2018,27(10):1170-1172.
[33]Wang L,Hu L,Zhou X,et al.Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling[J].Sci Rep,2017,7(1):13321.
[34]Jiang T,Wang Z,Sun J,et al.Human bone marrow mesenchymal stem cell-derived exosomes stimulate cutaneous wound healing mediates through TGF-beta/Smad signaling pathway[J].Stem Cell Res Ther,2020,11(1):198.
[35]Zhang Y,Xue C,Yang C,et al.Umbilical cord-derived mesenchymal stem cell-derived exosomal micrornas suppress myofibroblast differentiation by inhibiting the transforming growth factor-beta/SMAD2 pathway during wound healing[J].Stem Cells Transl Med,2016,5(10):1425-1439.
[36]Jiang L,Zhang Y,Liu T,et al.Exosomes derived from TSG-6 modified mesenchymal stromal cells attenuate scar formation during wound healing[J].Biochimie,2020,177:40-49.
[37]Dalirfardouei R,Jamialahmadi K,Jafarian A H,et al.Promising effects of exosomes isolated from menstrual blood-derived mesenchymal stem cell on wound-healing process in diabetic mouse model[J].J Tissue Eng Regen Med,2019,13(4):555-568.
[38]Hu L,Wang J,Zhou X,et al.Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts[J].Sci Rep,2016,6:32993.
[39]Zhao B,Zhang Y,Han S,et al.Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation[J].J Mol Histol,2017,48(2):121-132.
[40]Wang B,Zhang Y,Han X,et al.MSC-derived exosomes attenuate cell death through suppressing AIF nucleus translocation and enhance cutaneous wound healing[J].Stem Cell Res Ther,2020,11(1):174.
[41]Wang X,Jiao Y,Pan Y,et al.Fetal dermal mesenchymal stem cell-derived exosomes accelerate cutaneous wound healing by activating notch signaling[J].Stem Cells Int,2019,2019:2402916.
[收稿日期]2022-03-02
本文引用格式:鄭舒丹,吴金燕,张利平,等.间充质干细胞源性外泌体在皮肤创伤修复和再生中的研究进展[J].中国美容医学,2023,32(4):189-193.