数学教学方法不具有真理性吗?
2023-01-11胡吉振李永桃胡典顺潘家乐金璐瑶
胡吉振, 李永桃, 胡典顺, 潘家乐, 金璐瑶
(1.丽水学院教师教育学院,浙江 丽水 323000;2.华中师范大学数学与统计学学院,湖北 武汉 430079)
1 问题的提出
在《中国数学教学研究30年》中有这样一段话:“学科内容的不同,演绎不同的学科教学方法.数学教学方法是数学教育工作者在长期教学实践中探索出来的普遍有效的教学方式的理论提升.数学教学方法不具有真理性而反映以下4个特点:1)社会性;2)交合性;3)主观性;4)客观性.”这段文字认为数学教学方法不具有真理性,笔者认为是不妥当的,是值得商榷的.其实这段引文暗含着数学教学方法就是具有真理性的.首先,从上面的引文中可以看出“数学教学方法是一种理论提升”,而且这种理论提升是“在长期教学实践中探索出来的”,这符合马克思主义的科学实践观,这些数学教学方法是从实践中来的,而且是“普遍有效的教学方式”,这就可能包含真理或具有真理性.“普遍有效”与“放之四海而皆准”有什么不同?当数学教学方法具有客观性和主观性且二者相统一或相吻合时,数学教学方法具有真理性,这就是古希腊哲学家亚里士多德强调的符合论的真理观[1].再加上交合性和社会性,可以用这两种性质检验数学教学方法是否具有真理性,如果在教学实践中主观符合了客观,甚至达到了主观认识与客观事实二者高度的和谐统一,这时候数学教学方法肯定是具有真理性的.
对于“数学教学方法不具有真理性”这个问题的反驳可以从“真理是什么”这个概念的定义开始探讨,并从“数学教学方法是什么”的视角来进行分析,针对不同的真理标准探讨不同的数学教学方法是否具有真理性.荆建春在文献[2]中强调的“道”,笔者认为这就是解题的规律或真理,在某种程度上就是强调了解题方法的真理性.但是笔者还想从以下5个方面强调数学教学方法是具有真理性的.
2 数学教学方法的真理性分析
2.1 从数学教学方法来源的视角
从数学教学方法来源的视角来看,数学教学方法是从数学思想方法中派生出来的,是从古今中外的数学发展史中提炼出来的数学思想方法的经验总结,可以说凝结了无数的数学研究者和数学教育者的血汗和智慧.从这个意义上讲,至少包含有真理的成分,对相关的数学问题,这些方法是有用的;即使是从美国教育家杜威的实用主义哲学的视角来看,数学教学方法也是科学的,也是包含真理的.微积分的教学方法可以从微积分的发展史中通过学习而获取,也可以从前人的微积分教育教学实践活动中获取,这些方法针对具体的微积分教学实践活动来讲是有帮助的.因此,数学教学方法是包含真理的.
换而言之,这些数学教学方法之所以包含真理就是因为它们是从教学实践活动中来到教学实践活动中去的,它们秉承了马克思主义科学的实践观.数学教学方法实践活动就是不断地在教学实践活动中发现真理和检验真理.从马克思主义实践论的观点来看,数学教学方法不仅含有科学的成分,也是具有真理性的.数学教学方法在数学教学实践中不断达到了主观与客观的符合,它能有效地解决教材中的或现实生活中的数学问题,这就是符合论的真理观.
2.2 从数学教学方法与数学知识关系的视角
数学教学方法甚至比数学知识更具真理性.法国哲学家、数学家笛卡尔在数学上留下的定理很少,但是他关于“位置坐标”的数学思想方法能证明无数的数学定理.从这个意义上讲,数学教学方法比数学知识,甚至比数学定理更为重要.如果说数学知识是“金子”,那么数学教学方法就是“点金术”.显然“点金术”比“金子”更重要.
笔者认为数学知识这个“金子”是学不完的,关键是教师在数学教学中要启迪学生的思想,引导学生进行创造性的数学思考,让学生主动地去发现数学知识或创造数学知识,这实际上就是秉承了荷兰数学教育家弗拉登塔尔所强调的“数学的学习就是数学知识的再创造的思想”.如果说数学知识是真理,那么教师引导学生发现数学知识的“数学教学方法”这个真理就应该比数学知识这个真理更具真理性和重要性了.“授之以鱼不如授之以渔”的观点也揭示了发现知识的方法比知识更重要,反映在数学教学中也必须肯定数学教学方法的重要性.
数学教学方法与数学知识或数学问题是紧密联系在一起的.数学家为了解决问题,在创造了数学教学方法的同时也创造了数学知识.在很多情况下,数学教学方法是不能脱离具体的数学问题或数学知识而单独存在的.数学教学方法是与数学知识密切联系在一起的,也就是说数学教学方法蕴涵在数学知识之中,如果我们承认了数学知识的真理性,也必须承认数学教学方法的真理性;也就是说数学教学方法与数学知识是密切联系在一起的,如果承认了数学知识的真理性,那么作为与数学知识密切联系的数学教学方法也存在真理性.
2.3 从数学教学学科的视角
从数学作为一门特殊教学学科的视角来看,数学教学方法也是具有真理性的.李邦河院士认为“数学就是玩概念”[3],而数学概念教学的方法触及了数学的本质,就是含有科学和真理的成分.再例如一些数学教师总结了古今中外的数学家学习或研究数学的方法,把比较好的教学方法应用在数学教学实践活动中,收到了良好的教学效果,这个数学教学方法就具有真理性——因为它能在更好地改善教师教学的同时,促进学生对数学的学习.涂荣豹在文献[4]中把数学教学方法纳入数学教学认识论的概念之下,把数学教学提高到认识论的高度,也就是提高到哲学的高度,这是值得肯定的.一般而言,知识或真理是蕴涵在哲学的认识论之中的,涂荣豹把数学教学方法纳入了认识论,因此数学教学方法作为数学教学认识论的一个重要的组成部分也应该包含真理.
2.4 从哲学方法论的视角
“方法”和“方法论”既有密切的联系,又有本质的区别,二者是辩证统一的关系.从联系的角度看:一方面,方法是方法论的片面的、散乱的、不系统的经验材料,缺乏方法论指导的方法是难于发挥其应有作用的;另一方面,具体的方法构成了方法论的基础和素材,没有具体方法支撑的方法论仅仅是抽象的、空洞的,不可能指导人们对方法进行运用、总结和提升.从区别的角度来看:一方面,方法论不是各种方法的简单堆积,而是众多具体方法的共性和升华,只有在一定的原理、观点指导下形成的系统化、条理化的方法体系,才能称之为方法论;另一方面,方法仅仅是方法论研究的对象、加工的材料,是方法论中的个别和具体,不在一定原理、观点指导下加以系统化和条理化的方法是不能称之为方法论的[5].数学教学方法是数学教学的一种方法,以上从方法与方法论的关系来讲数学教学方法也是存在真理的.数学教学方法是数学教育工作者在长期教学实践活动中探索出来的普遍有效的教学方式的理论提升.
事实上,这提升了数学教学方法论的高度,肯定了真理的存在,因为方法论就是从哲学的高度总结人类创造和运用各种方法的经验,探求关于方法的规律性知识[5];如果数学教学方法仅仅是一种方法,而没有提升到理论的高度或者说没有提升到数学教学方法论的高度,那么在数学教学实践活动中,我们就需要进一步把纷繁复杂的方法通过整理、抽象,形成系统化、理论化的数学教学方法,以此让数学教学方法上升为数学教学方法论的高度,从而使数学教学方法成为一种真理,显然这是可以做到的.这就从方法与方法论的关系视角揭示了数学教学方法是含有真理的.
在教育界经常说的一句话是“教学有法,教无定法,贵在得法”.“教学有法”,指的是教学有一定的方法、原理、规律,其实这些方法、原理、规律在一定程度上讲就是真理.
2.5 从后现代主义哲学的视角
千百年来,古人渴望追求确定的、绝对的、永恒的、不变的知识或真理,这就是古人的绝对真理观,例如数学知识就是符合这样的知识要求.古希腊数学家欧几里得的《几何原本》就是西方人追求绝对真理的典范,但是这种绝对的真理观随着19世纪下半叶非欧几何的出现而逐渐地在人们心目中消失,取而代之的是数学的相对真理观的诞生.如果用古希腊这种古典的绝对真理观来衡量今天的数学教学方法,那么数学教学方法可能是没有真理性的.问题是这种古典的真理观已经远去了,而且无法与时俱进地满足人类数学发展的需要.
我们处在一个后现代主义哲学思潮盛行的时代.后现代主义哲学视角下的真理是宽泛的,甚至不是唯一的,这就像非欧几何一样真理是有很多种的,罗巴切夫斯基几何学秉承了一种真理观,而黎曼几何学又秉承了另外的一种数学真理观,这就深刻体现了数学真理观具有多样性和相对性.后现代主义哲学主张去中心论,主张价值多元和解释多元,反对宏大叙述等.建构主义思想就是一种后现代主义哲学的教育理论.根据建构主义的理论,真理是带着自己文化传统、时代背景和生活阅历的学习者主观建构出来的.按照这种观点,教师在数学教学实践活动中的方法更具有真理性.从这个意义上讲,数学教学方法至少含有后现代主义思潮观念下的真理性.
3 结语
本文主要是反驳“数学教学方法没有真理性”这一观点,其实从引文的一些事实或已知条件就可以推导出数学教学方法是具有真理性,甚至从真理的概念和数学教学方法的概念都可以推导出数学教学方法是可能具有真理性的.本文中笔者另辟蹊径,并从多个方面来进行反驳“数学教学方法没有真理性”这一观点:从数学教学方法的发展史或来源、数学教学方法与数学知识的关系、数学教学学科、哲学方法论、后现代主义哲学这几个角度,说明在数学教学或数学教学方法中是存在真理的.人们经常说,教学是科学也是艺术.那么数学教学更是科学与艺术的典范.教学既然是科学,当然包含真理;教学是艺术,艺术中也是存在真理的.德国哲学家海德格尔强调了以艺术为代表的人文科学(包括教育在内)真理的存在性[7],这就从教学是科学也是艺术的视角说明:无论教学是艺术还是科学,教学都包含有真理的成分.
作为一门特殊学科重要内容之一——数学教学方法也是具有真理性的.数学教学方法作为一门交叉学科,本身具有数学的性质又具有教学的性质.从数学性质的角度来看,数学是科学,当然含有真理性;从教学的角度来看,教学作为一门艺术,本文中已说明也是包含真理的.推而广之,以数学教学或教学为代表的人文科学也是具有真理性的,换句话说,真理不是自然科学和数学科学的专利.