仿仙人掌集水进展
2023-01-09赵越崔笑宇田野
赵越,崔笑宇,2,田野,2
仿仙人掌集水进展
赵越1,崔笑宇1,2,田野1,2
(1.东北大学 医学与生物信息工程学院,沈阳 110016;2.东北大学 佛山研究生创新学院,广东 佛山 528300)
全面总结了仿仙人掌集水领域的研究进展,重点介绍了仿仙人掌结构的常见制备方法,包括3D打印法、梯度电化学腐蚀法、电纺结合可牺牲模板法、改进的磁颗粒辅助成形法、磁流变绘制光刻法和机械打孔结合模板复刻法,并对每一种方法的制备步骤和优缺点进行了详细介绍。同时,也详细介绍了仿仙人掌集水的主要原理,包括拉普拉斯压力梯度和表面自由能梯度,为集水工程技术的开发和改进提供了理论基础。另外,还详细地介绍了仿仙人掌结构的集水行为,包括单根仿仙人掌棘刺集水和大规模集水行为。最后,对仿仙人掌集水的未来发展方向进行了分析和展望。
仙人掌;集水;水资源短缺;仿生表面;仙人掌激发
水是生命之源,是人类和动植物生命中必不可少的物质[1-2]。然而,近些年来,淡水资源危机加剧,水资源短缺问题已经成为21世纪全球性难题,如何解决水资源短缺问题迫在眉睫[3-4]。近些年来,已经有一些旨在解决水资源短缺问题的技术问世,例如海水淡化技术和空气冷凝技术,但是这些技术一般会存在成本高昂、技术复杂等问题。因此,急需一种操作简单、成本低廉的技术来解决或缓解水资源短缺问题。据悉,大气中约含有1.29×1014t水,这部分水以雾气的形式存在,是由悬浮在大气中的大量微小水滴组成,约占地球上淡水总量的10%[5]。这在一定程度上为缓解水资源危机带来了新的解决思路。
为了获取大气中的水,人们尝试从自然中寻找灵感。蜘蛛丝[6-14]、甲壳虫背部[15-20]和猪笼草[21-24]等都展示出了良好的水收集性能。蜘蛛丝浸水后会呈现出规律排列的周期性的纺锤形结构,这种结构有利于捕获空气中的雾气,这些被捕获的雾气凝结成水滴,这些水滴会不断地融合长大,最终由于重力作用而从蛛丝上掉落下来,实现水的收集。沙漠甲壳虫背部具有超疏水和超亲水相间排列的结构,其中超亲水区域可以捕获空气中的雾气,随着捕获水量的增加,相邻亲水区小水滴会合并成大水滴,最终水滴大到足以克服甲壳虫背部亲水区域对水滴的粘附力,进而使得水滴滚落,从而开始新的水收集循环。另外,猪笼草的圆锥形棘齿结构、相邻棘齿之间的凹型结构以及蠕动表面等也展示出了良好的水收集性能。研究人员受到这些天然水收集器的启发,开发出了相应的水收集技术。
近些年来,由仙人掌集水现象[25-27]所激发的集水技术[28-46]受到了人们的广泛关注,这为缓解水资源短缺问题开辟了新的路径。仙人掌棘刺的特殊结构特征是仙人掌具有高效集水性能的原因。仙人掌棘刺呈现圆锥状,尖端具有圆锥形倒钩结构,中部有明显的微凹槽,底部有带状结构的毛状体,棘刺和倒钩的圆锥形形貌导致了拉普拉斯压力梯度,该压力梯度可以产生一个使水滴从棘刺尖端向根部移动的驱动力[25]。另外,棘刺微凹槽宽度梯度导致了棘刺尖端和底部的表面粗糙度不同,从而产生了表面自由能梯度,该表面自由能梯度也可以产生一个指向棘刺根部的驱动力。在拉普拉斯压力梯度和表面自由能梯度所产生的2个驱动力的共同作用下,凝结在仙人掌棘刺尖端的小水滴可以持续从棘刺尖端往棘刺根部移动,实现连续且周期性的定向水收集[25]。
受到仙人掌集水行为的启发,科研人员开发出了仿仙人掌棘刺结构,并将其广泛应用于集水领域。本文将全面介绍仿仙人掌集水领域的最新研究进展,详细阐述仙人掌的集水过程和仿仙人掌结构的制备方法、集水原理和集水行为等,并对仿仙人掌集水领域的未来发展做出展望。本文系统和全面地介绍了仿仙人掌集水领域的研究进展,并促进该领域在制备技术和集水性能等方面的全面进步和提高。另外,本文也可以为新材料的设计、流体控制和微流控等领域提供理论依据和科学指导。
1 仙人掌集水
许多仙人掌科的植物都能在高度干旱的荒漠里存活,其中一些仙人掌可以通过圆锥状的棘刺收集雾气来进行水分补给。来自奇华华沙漠的仙人掌O. Microdasys展示出一种集成的多功能高效水收集系统[25,28,31-32,34-35,39]。圆锥状棘刺簇和毛状体在仙人掌茎的表面生长成均匀分布的阵列,这些圆锥状棘刺沿任意方向生长,形成半球结构,棘刺根部的毛状体也形成半球结构,相邻2个棘刺之间的平均角度为18.1°±5.31°。圆锥状棘刺由具有不同结构特征的3部分组成,其尖端包含定向倒钩结构,中部包含梯度凹槽结构,根部包含带状结构的毛状体。其中,棘刺中部呈现多级凹槽,第一级凹槽是微凹槽,沿棘刺具有宽度梯度,第二级凹槽主要是宽度上缺乏明显梯度的亚微凹槽(见图1a)。这些结构(即圆锥状棘刺、定向倒钩、梯度凹槽和带状毛状体)的精细整合可有助于雾气的高效收集[25]。
图1 仙人掌表观结构及集水行为[25]
将单个棘刺以多个倾斜角度(90°、45°、–45°、90°、0°)放置,来确定棘刺生长方向对水滴定向运动行为的影响。对于每种情况,即使当棘刺垂直固定且尖端向下时,水滴也会被定向驱动,从尖端向棘刺的根部运动。这些结果表明,水滴的重力对定向集水性能影响不大,仙人掌茎上的棘刺生长方向不是水滴定向运动的关键因素(见图1b)。将具有多个定向倒钩的棘刺水平放置,在初始阶段,倒钩和棘刺上同时有微小水滴沉积。随着沉积的进行,倒刺上的水滴一边生长一边向倒钩的根部移动,当水滴离开倒钩之后,倒钩又开始了新的水滴沉积和定向收集循环,最终倒钩上的水滴与棘刺上的水滴合并形成较大的水滴。随着连续沉积,这个较大的水滴进一步与沉积在相邻倒钩上的水滴合并,随着小水滴沉积的继续,水滴尺寸持续增大,棘刺尖端侧水滴依次聚结并沿棘刺向棘刺根部方向定向移动,从而实现水收集的目的。该过程可循环发生,实现连续循环水收集(见图1c)。完整的仙人掌雾气收集过程可概述如下:“水滴沉积过程”最初发生在倒钩和棘刺上,随后水滴沿着倒钩和棘刺定向移动;随着沉积的进行和水滴的结合,这些水滴的尺寸增大,并从棘刺的顶端离开(“收集过程”),然后较大的水滴沿着棘刺的梯度槽进一步传输(“传输过程”),并最终通过棘刺,被棘刺根部毛状体吸收(“吸收过程”)[25]。
2 制备方法
研究人员已经开发出了多种仿仙人掌结构的制备方法,以此来模仿仙人掌独特的形貌和表面微结构,从而实现快速、高效的水收集。下面将简要介绍现有的主要仿仙人掌结构制备技术[47]。
2.1 3D打印法
3D打印法可以制备高精度的仿仙人掌结构[48-49]。高精度的3D打印设备通常会被用来打印复杂的棘刺结构或圆锥形棘刺阵列。光敏树脂是常用的打印仿仙人掌棘刺结构的材料。其中,层基表面浸没堆积3D打印法(The layer-based immersed surface accumulation 3D printing method)[48]是一种极其有效的制备仿仙人掌结构的方法(如图2所示)。层基表面浸没堆积3D打印系统由光学系统、运动系统和视觉系统组成,其中,该系统中的光学工具可以投射2D图案光束。为了产生2D图案化光束,基于数字微镜器件(DMD)的微尺度光学系统被设计与构建。在光学系统中,可见光首先通过荧光成像滤光片,该滤光片只能透射405 nm波长的光。光被DMD反射到准直透镜中,使像素在最终的2D图案光束中显得明亮。通过调整DMD芯片中每个对应微镜的开关频率,可以控制2D图案光束中每个像素的亮度。最后,在准直光通过4×Olympus plan消色差物镜聚焦(聚焦距离=15 mm)后,在光学工具的顶面上产生2D图案光束。把光学工具浸没在可光固化的树脂罐内,材料随着光学工具的移动而堆积,再与多轴运动相结合,微尺度多叉棘刺结构便可以在不同的表面方向上成形。这个亲水多叉棘刺的阵列结构可以通过表面改性方法来提升其疏水性能,从而来优化该仿仙人掌结构的集水性能。3D打印法的优点在于其高度的可控性,可以精准制备形状复杂的仿仙人掌结构,但是缺点是设备昂贵,操作复杂,操作人员需要经过专业的培训,且不适宜完成大规模连续仿仙人掌结构的制备。
图2 层基表面浸没堆积3D打印过程[48]
2.2 梯度电化学腐蚀法
梯度电化学腐蚀法[50-52]是一种简单、快速地制备仿仙人掌结构的方法。该方法分为2步来制备仿仙人掌棘刺结构,首先,通过梯度电化学腐蚀制备圆锥形铜丝(见图3a),然后再将圆锥形铜丝进行梯度化学修饰(见图3b)。商用铜丝在使用前,先用砂纸仔细将铜丝直径打磨至约350 μm,然后用乙醇和大量水冲洗干净,再用氮气干燥,以除去外围绝缘漆。接下来,将该铜丝垂直固定并连接到10 V DC电源的阳极,用铜片将其连接到阴极,并使用CuSO4溶液充当电解液。将装满硫酸铜溶液的容器放在可编程升降工作台上,通过以特定速度升降工作台,铜丝沿其高度产生电化学腐蚀梯度,从而形成圆锥形结构[50]。
图3 梯度电化学腐蚀法制备仿仙人掌棘刺结构[50]
接下来,通过梯度电化学腐蚀制备的圆锥形铜丝需要使用真空蒸发法镀上一层薄而均匀的金纳米颗粒。然后将圆锥形铜丝垂直固定在支架上,尖端朝下。将装满1–十二硫醇的乙醇溶液的容器放置在圆锥形铜丝下方可编程升降工作台上。缓慢抬起升降工作台,圆锥形铜丝逐渐浸没在溶液中。控制提升速度,确保圆锥形铜丝大约需要10 min才能完全浸没。用充足的乙醇冲洗制备好的圆锥形铜丝,以去除物理吸附的1–十二硫醇,然后浸入11–巯基–1–十一醇的乙醇溶液中大约10 min,再用大量乙醇冲洗,最后在氮气流中干燥[50]。通过上述2步工艺,便可以得到形貌和表面润湿性均类似于仙人掌棘刺的结构。该方法可以简单、快速地制备仿仙人掌结构,但是存在耗能高、难以批量生产等问题。
2.3 电纺结合可牺牲模板法
另外一种有效制备仿仙人掌结构的方法是电纺结合可牺牲模板法[53]。电纺结合可牺牲模板法的制备过程(见图4a)可分为3步:1)静电纺PAA-PS复合纤维经热亚胺化处理后可以转变为纳米凹槽PI纤维;2)在电场力的作用下,制备的复合纤维平行穿过电极间隙,然,将一根银针沿着对齐的纤维以固定的角度旋转,从而在复合纤维表面覆盖静电纺丝产生的纤维;3)在接下来的亚胺化过程中,去除PS,便可得到具有层次分明的凹槽结构的人造仙人掌棘刺。接下来,将180根制备好的人造仙人掌棘刺装配到一个球形海绵上,便可以得到人造仙人掌模型(见图4b)。这种方法可以精准地构建人造仙人掌棘刺表面的微凹槽结构,可更加精准地模仿仙人掌棘刺,但该类方法存在产量较低、耗能高、高压电危险等缺点。
2.4 改进的磁颗粒辅助成形法
改进的磁颗粒辅助成形法[54-55]是一种简易且可大规模制备仿仙人掌棘刺阵列的方法(见图5a)。首先,制备含有PDMS预聚物和磁性颗粒的混合物,质量比为2︰1。然后,通过旋涂工艺将均匀分布的混合物涂布在尺寸为0.5 mm(长)×0.5 mm(宽)× 0.13 mm(深)的聚苯乙烯几何构形板上。使用具有超磁场强度的钕磁体作为外部磁场,在该磁场驱动下,通过红外辐射固化,沿磁场方向产生了均匀有序的仙人掌棘刺状微尖端阵列(见图5b)。另外,轻微振动会加速磁性颗粒阵列的布置,有利于快速制备微尖端阵列。由于材料成分对微尖端形貌具有一定影响,所以通过调整PDMS与磁性颗粒的质量比便可以制备出多种微尖端阵列样品。该方法简单、快速、易操作,且适合大规模制备仿仙人掌棘刺阵列,缺点是微尖端阵列形貌可控性有限,很难制备较长的尖刺结构。
图4 电纺结合可牺牲模板法制备仿仙人掌结构[53]
图5 改进的磁颗粒辅助成型法制备仿仙人掌棘刺阵列[54]
2.5 磁流变绘制光刻法
为了使用磁流变绘制光刻法[56]来实现仿仙人掌圆锥形棘刺(带/不带微倒钩结构)的增材制造,研究人员自主开发了一套制备装置(见图6a),并通过COMSOL Mutiphysics计算出磁场分布情况(见图6b)。磁流变绘制光刻法具体制备过程(见图6c)如下:将尖端有磁流变液滴的1 mm柱子压缩在海绵基底上,以1 mm/s的速度拉回,在外部垂直磁场(≈80 mT)的作用下,在基底上形成一个液体圆锥形棘刺结构。将液体圆锥形棘刺结构在80 ℃下加热并固化30 min。为了在固化的液体圆锥形棘刺结构上制造微倒钩,将圆锥形棘刺水平固定在绘制区域,以1 mm/s的速度绘制垂直微倒钩阵列,并在圆锥形棘刺表面上逐个形成一条线。当微倒钩被移动到角度转移区域时,其方向被转移。圆锥形棘刺一侧的倾斜微倒钩也在80 ℃下加热固化30 min。圆锥形棘刺另一侧的微倒钩阵列也被如此重复制造。这样便可以得到无倒钩以及有向前倒钩、垂直倒钩和向后倒钩的圆锥形棘刺结构。磁流变绘制光刻法可以制备复杂的仿仙人掌棘刺结构,特别是对仙人掌倒钩结构的模拟有着天然的优势,缺点是操作程序复杂,需要丰富的实验经验,制备过程涉及到高温加热和外部磁场作用,能耗较高。
2.6 机械打孔结合模板复刻法
机械打孔结合模板复刻法[57-58]是一种简单、快速制备仿仙人掌棘刺阵列的方法(如图7所示)。首先,使用圆锥状尖锐物(如不锈钢针)在基底材料上均匀规则地打孔,然后将PDMS的预聚物均匀涂覆在打好孔的基底上。待PDMS填充满孔洞后,加热固化PDMS。待PDMS完全固化后,要么将PDMS从基底上剥离,要么将基底材料溶解,便可以得到仿仙人掌棘刺阵列。该方法制备过程简单,操作方便,可以快速大规模制备仿仙人掌棘刺阵列,缺点是所制备的棘刺长度有限,难以精准复刻仙人掌棘刺倒钩结构和微凹槽结构。
图6 磁流变绘制光刻法制备仿仙人掌结构[56]
图7 机械打孔结合模板复刻法制备仿仙人掌棘刺阵列[57]
3 集水机理
仿仙人掌集水在集水领域受到了广泛的关注。研究人员从机理角度揭示了仿仙人掌集水过程,提出了适用于仿仙人掌集水的机理模型,例如拉普拉斯压力梯度模型和表面自由能梯度模型等。这些模型有助于人们对仿仙人掌集水过程(如图8a所示)有更深刻的理解,更好地指导人们对集水仿仙人掌结构进行设计和优化。
3.1 拉普拉斯压力梯度
在仙人掌和仿仙人掌材料上,凝结在倒钩和棘刺尖端的小水滴能定向从这些尖端向对应的根部移动,其中最主要的动力之一就是由倒钩和棘刺的形状梯度所导致的拉普拉斯压力梯度。在拉普拉斯压力梯度的作用下,在圆锥形表面上的水滴会被驱动,从而向半径加大的一端移动。通常情况下,由拉普拉斯压力梯度引起的驱动力(见图8b)可以表示为[25,30,41,57]:
图8 仿仙人掌结构集水机理[25]
Fig.8 Water collection mechanism of bioinspired cactus structures[25]: a) an overview of the efficient cactus water collection system; b) analysis of the driving forces arising from the gradient of the Laplace pressure; c) analysis of the driving forces arising from the gradient of the surface-free energy
3.2 表面自由能梯度
除了拉普拉斯压力梯度引起的力之外,驱动水滴定向移动到棘刺根部的另一个主要的驱动力是由仙人掌棘刺表面的自由能梯度产生的。表面自由能梯度高度依赖于材料的化学成分和材料表面的粗糙度。特别是仙人掌棘刺表面上的微凹槽有宽度梯度,并且接近棘刺根部的微凹槽比接近尖端的微凹槽稀疏很多,换言之,靠近棘刺尖端的表面要比靠近棘刺根部的表面粗糙很多。另一方面,从表面的粗糙度来说,对于亲水表面,表面粗糙度大的具有更高的表面能;而对于疏水表面,表面粗糙度大的具有更小的表面能。根据Wenzel定律[25]有:
其中:ω为表观接触角;为本征接触角;为表面粗糙度因子。由于仙人掌棘刺被一层植物蜡覆盖着,所以仙人掌棘刺表面呈现疏水性。因为仙人掌棘刺尖端的粗糙度大,所以其疏水性较强,表面自由能较低,而仙人掌棘刺的底部的粗糙度小,所以其疏水性较差,表面自由能较高,因此水滴向表面自由能较高的棘刺底部方向移动。由表面自由能梯度所产生的驱动力(见图8c)可表示为[25,30,41]:
式中:A和R分别为水滴在仙人掌棘刺表面的前进角和后退角;d为从棘刺尖端附近区域(tip)到棘刺底部附近区域(base)在沿着棘刺中部长度上的积分变量。由于表面自由能梯度所产生的驱动力由表面能较低的棘刺尖端指向表面自由能较高的棘刺根部方向,因此由表面自由能梯度所产生的驱动力可以推动水滴从棘刺尖端向棘刺根部定向移动。
4 集水行为
4.1 单根仿仙人掌棘刺集水
单根仿仙人掌棘刺集水行为与自然中仙人掌棘刺集水行为类似。对于单一圆锥状仿仙人掌棘刺结构[50,52-54],其集水过程为:在初始阶段,雾气中的微小水滴随机沉积在仿仙人掌棘刺结构的表面上;随着沉积的进行,仿仙人掌棘刺结构上的水滴一边生长,一边向仿仙人掌棘刺结构的根部移动,并与仿仙人掌棘刺上沿途的水滴合并,从而形成较大的水滴;随着连续沉积和合并,这个水滴尺寸越来越大,尖端侧水滴依次聚结并沿仿仙人掌棘刺向其根部方向定向移动,从而实现水收集的目的。该过程可连续循环发生,实现连续循环水收集。对于带有倒钩的仿仙人掌棘刺结构[56],其集水过程可以概括为:将具有倒钩结构的仿仙人掌棘刺结构水平放置,在初始阶段,这些倒钩和仿仙人掌棘刺上同时有微小水滴沉积;随着沉积的进行,这些倒钩上的小水滴一边生长,一边向倒钩的根部移动;当水滴离开倒钩之后,这些倒钩又开始了新的水滴沉积和定向收集循环;最终,这些倒钩上的水滴与仿仙人掌棘刺上的水滴合并形成较大的水滴;随着连续沉积,这个较大的水滴进一步与沉积在相邻倒钩上的水滴合并,随着小水滴沉积的继续,水滴尺寸越来越大,仿仙人掌棘刺尖端侧水滴依次聚结,并沿着仿仙人掌棘刺向仿仙人掌棘刺根部方向定向移动,从而实现水收集的目的。该过程可循环发生,实现连续循环水收集。
4.2 大规模集水
目前,对于仿仙人掌结构集水的研究大多停留在单根棘刺结构或者单根棘刺结构重复的棘刺阵列结构上,对于大规模集成仿仙人掌结构集水的方面研究较少。
Guo等[53]用电纺结合可牺牲模板法制备了仿仙人掌棘刺,并将180根仿仙人掌棘刺安装在椭球形海绵球上,构成一个简易的仿仙人掌集水器。在雾流速为55~60 cm/s的情况下,该集水器可以在15 min内收集1.3 mL的水,并且使用200个该仿仙人掌集水器,在2.4 h内便可以收集到满足1个成年人1天的饮水量(见图9a)。另外,Cao等[54]也通过在棉球上安装圆锥形微尖的结构来构建仙人掌激发的连续雾气收集器(见图9b),通过构建这种仿仙人掌结构的集水器,成功实现了大规模、高效的水收集。
图9 仿仙人掌结构集水行为[53-54]
5 结语
本文主要介绍了目前较为常用的仿仙人掌结构制备法(见表1)、仿仙人掌结构的集水原理以及相应的集水行为,这将很好地促进仿仙人掌集水领域的发展和进步。目前,仿仙人掌结构集水已经得到较好的研究,特别是对单根仿仙人掌结构的集水过程和原理进行了深入了探讨,并已经能够较好地实现大气集水,或为缺水地区的人民带来福音。然而,目前的仿仙人掌结构集水仍旧存在一些不足,比如结构较为复杂的仿仙人掌结构的制备工艺较为复杂,一般成本较高;结构简单且制备简单的仿仙人掌棘刺结构较难实现对水的快速、高效收集;仿仙人掌棘刺结构在集水时对环境湿度具有较高的依赖性等。在未来的研究中,应该注重利用更先进的加工制备工艺来制备价格低廉、工艺简单、表面微纳结构更优、集水性能更佳的仿仙人掌结构,实现高效、快速、大规模的水收集。同样,如何在较为干旱的、湿度较低的环境中利用仿仙人掌结构集水也是未来重要的研究方向之一。另外,如何实现仿仙人掌结构的大规模制备,以及利用仿仙人掌结构实现大规模、高效水收集也是需要在未来重点攻克的难题。由仙人掌集水现象的启发,人们已经在仿仙人掌集水领域做出了许多杰出的贡献。同时,这些可喜的发现为解决水资源短缺问题提供了新的思路,相信在不久的将来,仿仙人掌集水技术会有质的飞跃,为解决水资源短缺问题带来实质性的和根本的解决方案和策略。本综述提供了一个全面的视角,使人们更加全面地了解仿仙人掌结构集水领域的研究进展。本综述能为功能材料的设计提供很好的途径,也能促进仿仙人掌结构应用的开发、改善和拓展,同时也能促进诸如液体传输、油水分离、流体控制和功能材料等领域的发展。
表1 仿仙人掌结构制备方法汇总
[1] ZHOU W, ZHOU C, DENG C, et al. High-Performance Freshwater Harvesting System by Coupling Solar Desalination and Fog Collection with Hierarchical Porous Microneedle Arrays[J]. Advanced Functional Materials, 2022, 32: 2113264.
[2] LU Heng-yi, SHI Wen, ZHANG J H, et al. Tailoring the Desorption Behavior of Hygroscopic Gels for Atmospheric Water Harvesting in Arid Climates[J]. Advanced Materials, 2022, 34(37): 2205344.
[3] LAHA S, MAJI T K. Binary/Ternary MOF Nanocomposites for Multi-Environment Indoor Atmospheric Water Harvesting[J]. Advanced Functional Materials, 2022, 32(34): 2203093.
[4] DODS M N, WESTON S C, LONG J R. Prospects for Simultaneously Capturing Carbon Dioxide and Harvesting Water from Air[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(38): e2204277.
[5] LI Ren-yuan, SHI Y, ALSAEDI M, et al. Hybrid Hydrogel with High Water Vapor Harvesting Capacity for Deployable Solar-Driven Atmospheric Water Generator[J]. Environmental Science & Technology, 2018, 52(19): 11367-11377.
[6] ZHENG Yong-mei, BAI Hao, HUANG Zhong-bing, et al. Directional Water Collection on Wetted Spider Silk[J]. Nature, 2010, 463(7281): 640-643.
[7] DONG H, WANG N, WANG L, et al. Bioinspired Electrospun Knotted Microfibers for Fog Harvesting[J]. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry, 2012, 13(5): 1153-1156.
[8] SHI Rui, TIAN Ye, WANG Li-qiu. Bioinspired Fibers with Controlled Wettability: From Spinning to Application[J]. ACS Nano, 2021, 15(5): 7907-7930.
[9] TIAN Ye, WANG Li-qiu. Bioinspired Microfibers for Water Collection[J]. Journal of Materials Chemistry A, 2018, 6(39): 18766-18781.
[10] BAI H, JU J, SUN R, et al. Controlled Fabrication and Water Collection Ability of Bioinspired Artificial Spider Silks[J]. Advanced Materials, 2011, 23(32): 3708-3711.
[11] TIAN Xue-lin, CHEN Yuan, ZHENG Yong-mei, et al. Controlling Water Capture of Bioinspired Fibers with Hump Structures[J]. Advanced Materials (Deerfield Beach, Fla), 2011, 23(46): 5486-5491.
[12] BAI Hao, TIAN Xue-lin, ZHENG Yong-mei, et al. Direction Controlled Driving of Tiny Water Drops on Bioinspired Artificial Spider Silks[J]. Advanced Materials (Deerfield Beach, Fla), 2010, 22(48): 5521-5525.
[13] DONG Hua, ZHENG Yong-mei, WANG N, et al. Highly Efficient Fog Collection Unit by Integrating Artificial Spider Silks[J]. Advanced Materials Interfaces, 2016, 3(11): 1500831.
[14] TIAN Ye, ZHU Pin-gan, TANG Xin, et al. Large-Scale Water Collection of Bioinspired Cavity-Microfibers[J]. Nature Communications, 2017, 8: 1080.
[15] WANG Xi-kui, ZENG Jia, LI Jing, et al. Beetle and Cactus-Inspired Surface Endows Continuous and Directional Droplet Jumping for Efficient Water Harvesting[J]. Journal of Materials Chemistry A, 2021, 9(3): 1507-1516.
[16] WEN Chi-yu, GUO Hong-shuang, BAI Hao-yu, et al. Beetle-Inspired Hierarchical Antibacterial Interface for Reliable Fog Harvesting[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 34330-34337.
[17] ZHU H, HUANG Y, LOU X, et al. Beetle-Inspired Wettable Materials: From Fabrications to Applications[J]. Materials Today Nano, 2019, 6: 100034.
[18] WANG Xi-kui, ZENG Jia, YU Xin-quan, et al. Beetle- Like Droplet-Jumping Superamphiphobic Coatings for Enhancing Fog Collection of Sheet Arrays[J]. RSC Advances, 2020, 10(1): 282-288.
[19] XU Chen, FENG Rui, SONG Fei, et al. Desert Beetle- Inspired Superhydrophilic/Superhydrophobic Patterned Cellulose Film with Efficient Water Collection and Antibacterial Performance[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14679-14684.
[20] YU Z, YUN F F, WANG Y, et al. Desert Beetle-Inspired Superwettable Patterned Surfaces for Water Harvesting[J]. Small, 2017, 13(36): 1701403.
[21] LI Chu-xin, YU Cun-long, ZHOU Shan, et al. Liquid Harvesting and Transport on Multiscaled Curvatures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(38): 23436-23442.
[22] FENG Rui, XU Chen, SONG Fei, et al. A Bioinspired Slippery Surface with Stable Lubricant Impregnation for Efficient Water Harvesting[J]. ACS Applied Materials & Interfaces, 2020, 12(10): 12373-12381.
[23] DAI Xian-ming, SUN Nan, NIELSEN S O, et al. Hydrophilic Directional Slippery Rough Surfaces for Water Harvesting[J]. Science Advances, 2018, 4(3): eaaq0919.
[24] WANG Yuan-feng, LIANG Xin, MA Kai-kai, et al. Nature-Inspired Windmill for Water Collection in Complex Windy Environments[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17952-17959.
[25] JU Jie, BAI Hao, ZHENG Yong-mei, et al. A Multi- Structural and Multi-Functional Integrated Fog Collection System in Cactus[J]. Nature Communications, 2012, 3: 1247.
[26] LEE S J, HA Na-mi, KIM H. Superhydrophilic-Superhydrophobic Water Harvester Inspired by Wetting Property of Cactus Stem[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10561-10569.
[27] LIU Cheng-cheng, XUE Yan, CHEN Yuan, et al. Effective Directional Self-Gathering of Drops on Spine of Cactus with Splayed Capillary Arrays[J]. Scientific Reports, 2015, 5: 17757.
[28] CAO Si-si, JIANG Qi-sheng, WU Xuan-hao, et al. Advances in Solar Evaporator Materials for Freshwater Generation[J]. Journal of Materials Chemistry A, 2019, 7(42): 24092-24123.
[29] MALINOWSKI R, PARKIN I P, VOLPE G. Advances towards Programmable Droplet Transport on Solid Surfaces and Its Applications[J]. Chemical Society Reviews, 2020, 49(22): 7879-7892.
[30] LIU Jing, CAO Min, LI Long, et al. Bioinspired Interfacial Design for Gravity-Independent Fluid Transport Control[J]. Giant, 2022, 10: 100100.
[31] ZHANG Fan, GUO Zhi-guang. Bioinspired Materials for Water-Harvesting: Focusing on Microstructure Designs and the Improvement of Sustainability[J]. Materials Advances, 2020, 1(8): 2592-2613.
[32] JU Jie, ZHENG Yong-mei, JIANG Lei. Bioinspired One- Dimensional Materials for Directional Liquid Transport[J]. Accounts of Chemical Research, 2014, 47(8): 2342-2352.
[33] CUI Ying, LI De-wen, BAI Hao. Bioinspired Smart Materials for Directional Liquid Transport[J]. Industrial & Engineering Chemistry Research, 2017, 56(17): 4887-4897.
[34] ZHU Hai, GUO Zhi-guang, LIU Wei-min. Biomimetic Water-Collecting Materials Inspired by Nature[J]. Chemical Communications (Cambridge, England), 2016, 52(20): 3863-3879.
[35] YUE Hao, ZENG Qing-hong, HUANG Jin-xia, et al. Fog Collection Behavior of Bionic Surface and Large Fog Collector: A Review[J]. Advances in Colloid and Interface Science, 2022, 300: 102583.
[36] YU Zhi-hua, ZHU Tian-xue, ZHANG Ji-chao, et al. Fog Harvesting Devices Inspired from Single to Multiple Creatures: Current Progress and Future Perspective (Adv. Funct. Mater. 26/2022)[J]. Advanced Functional Materials, 2022, 32(26): 2270148.
[37] WANG Ben, ZHOU Xue-chang, GUO Zhi-guang, et al. Recent Advances in Atmosphere Water Harvesting: Design Principle, Materials, Devices, and Applications[J]. Nano Today, 2021, 40: 101283.
[38] LIU C, SUN Y, HUANG J, et al. External-Field-Induced Directional Droplet Transport: A Review[J]. Advances in Colloid and Interface Science, 2021, 295: 102502.
[39] LI Jian, GUO Zhi-guang. Spontaneous Directional Transportations of Water Droplets on Surfaces Driven by Gradient Structures[J]. Nanoscale, 2018, 10(29): 13814- 13831.
[40] WANG Yuan-feng, MA Kai-kai, XIN J H. Stimuli-Responsive Bioinspired Materials for Controllable Liquid Manipulation: Principles, Fabrication, and Applications[J]. Advanced Functional Materials, 2018, 28(6): 1705128.
[41] WANG Qiu-yue, YANG Fu-chao, GUO Zhi-guang. The Intrigue of Directional Water Collection Interface: Mechanisms and Strategies[J]. Journal of Materials Chemistry A, 2021, 9(40): 22729-22758.
[42] GURERA D, BHUSHAN B. Designing Bioinspired Surfaces for Water Collection from Fog[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377(2138): 20180269.
[43] ZHAI Lei, BERG M C, CEBECI F C, et al. Patterned Superhydrophobic Surfaces: Toward a Synthetic Mimic of the Namib Desert Beetle[J]. Nano Letters, 2006, 6(6): 1213-1217.
[44] GUO L, TANG G H. Experimental Study on Directional Motion of a Single Droplet on Cactus Spines[J]. International Journal of Heat and Mass Transfer, 2015, 84: 198-202.
[45] MALIK F T, CLEMENT R M, GETHIN D T, et al. Hierarchical Structures of Cactus Spines that Aid in the Directional Movement of Dew Droplets[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374(2073): 20160110.
[46] BAI Hao-yu, ZHAO Tian-hong, WANG Xin-sheng, et al. Cactus Kirigami for Efficient Fog Harvesting: Simplifying a 3D Cactus into 2D Paper Art[J]. Journal of Materials Chemistry A, 2020, 8(27): 13452-13458.
[47] ZHANG S, HUANG J, CHEN Z, et al. Bioinspired Special Wettability Surfaces: From Fundamental Research to Water Harvesting Applications[J]. Small (Weinheim an Der Bergstrasse, Germany), 2017, 13(3): 27935211.
[48] LI Xiang-jia, YANG Yang, LIU Lu-yang, et al. 3D-Printed Cactus-Inspired Spine Structures for Highly Efficient Water Collection[J]. Advanced Materials Interfaces, 2020, 7(3): 1901752.
[49] MAHMOOD A, CHEN L, CHEN S, et al. Nature-Inspired Design of Conical Array for Continuous and Efficient Fog Collection Application[J]. Colloid and Interface Science Communications, 2020, 37: 100283.
[50] JU Jie, XIAO Kai, YAO Xi, et al. Bioinspired Conical Copper Wire with Gradient Wettability for Continuous and Efficient Fog Collection[J]. Advanced Materials (Deerfield Beach, Fla), 2013, 25(41): 5937-5942.
[51] TAN Xian-hua, SHI Tie-lin, TANG Zi-rong, et al. Investigation of Fog Collection on Cactus-Inspired Structures[J]. Journal of Bionic Engineering, 2016, 13(3): 364-372.
[52] HENG Xin, XIANG Ming-ming, LU Zhi-hui, et al. Branched ZnO Wire Structures for Water Collection Inspired by Cacti[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8032-8041.
[53] BAI Fan, WU Jun-tao, GONG Guang-ming, et al. Biomimetic Cactus Spine with Hierarchical Groove Structure for Efficient Fog Collection[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2015, 2(7): 1500047.
[54] CAO Mo-yuan, JU Jie, LI Kan, et al. Facile and Large- Scale Fabrication of a Cactus-Inspired Continuous Fog Collector[J]. Advanced Functional Materials, 2014, 24(21): 3235-3240.
[55] SONG Yun-yun, YU Zhao-peng, DONG Li-ming, et al. Cactus-Inspired Janus Membrane with a Conical Array of Wettability Gradient for Efficient Fog Collection[J]. Langmuir, 2021, 37(46): 13703-13711.
[56] YI Sheng-zhu, WANG Jian, CHEN Zhi-peng, et al. Cactus-Inspired Conical Spines with Oriented Microbarbs for Efficient Fog Harvesting[J]. Advanced Materials Technologies, 2019, 4(12): 1900727.
[57] JU Jie, YAO Xi, YANG Shuai, et al. Cactus Stem Inspired Cone-Arrayed Surfaces for Efficient Fog Collection[J]. Advanced Functional Materials, 2014, 24(44): 6933-6938.
[58] PENG Y, HE Y, YANG S, et al. Magnetically Induced Fog Harvesting via Flexible Conical Arrays[J]. Advanced Functional Materials, 2015, 25(37): 5967-5971.
Advances in Cactus-inspired Water Collection
1,1,2,1,2
(1. College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110016, China; 2. Foshan Graduate School of Innovation, Northeastern University, Guangdong Foshan 528300, China)
Water is the source of life and essential to human life, animal and plant life. However, the water shortage has become a major global issue in the 21st century. It is extremely urgent to solve the water shortage. Therefore, a simple and low-cost technology is urgently needed to solve or alleviate water shortage. There is a large amount of water in the atmosphere, to a certain extent, which brings the new solution to alleviate the water crisis. To obtain the water from the atmosphere, people try to draw inspiration from nature.
The water collection property of cactus provides a good idea for solving the problem of water shortage. The special structure of cactus spines is the reason of its efficient water collecting performance. The special structure results in the driving forces arising from the gradient of the Laplace pressure and the gradient of the surface-free energy. Both forces can drive the small water droplets to move from the tip of spine to the bottom of spine. Therefore, the cactus spine can collect water from atmosphere continuously.
In recent years, the water collection of cactus has attracted more and more attentions due to its high water harvesting performance. Therefore, it is very necessary to summarize the advances in cactus water collection and cactus-inspired water harvesting. In this work, research progresses in water collection of natural cactus and cactus-inspired structures were summarized comprehensively and in detail. This work mainly introduced the common fabrication methods of cactus inspired structures, including3D printing methods, gradient electrochemical corrosion method, combining electrospinning with sacrificial template method, modified magnetic particle-assisted molding approach, magnetorheological drawing lithography method and combining mechanical perforating and template replica technology, and also expounded the fabrication steps, advantages and disadvantages for each method. The related introduction of fabrication methods for cactus inspired structures can make people have a good understanding of cactus-inspired structures and materials. Meanwhile, this work also introduced the main mechanisms of water collection of cactus-inspired structures, including Laplace pressure gradient and surface free energy gradient, providing a theoretical basis for the development and improvement of water collection engineering and technology. The forces arising from Laplace pressure gradient and surface free energy gradient can provide strong driving forces to push tiny water droplet to move from tip side to end side along the cactus spine. This made the cactus show the high performance of water harvesting. In addition, this work also introduced the water collection behaviors, including water collection on a single bioinspired cactus spine and large-scale water collection. This would help related people understand the water harvesting behaviors and characteristics. At last, the future development direction of cactus inspired structures for water collection was analyzed and prospected. This work will contribute to a comprehensive understanding of the fabrication methods, the water collection mechanism and water collection behaviors of cactus-inspired structures and greatly promote the development of water collection engineering, liquid transport, functional materials, microfluidics and fluid control, even smart materials, bioinspired materials and functional materials.
cactus; water collection; water shortage; bioinspired surface; cactus-inspired
TQ342
A
1001-3660(2022)12-0052-11
10.16490/j.cnki.issn.1001-3660.2022.12.004
2022–10–01;
2022–11–08
2022-10-01;
2022-11-08
广东省基础与应用基础研究基金(2020A1515110126,2021A1515010130);中央高校基本科研业务专项资金(N2119006,N2224001-10);宁波市2025重大专项(2021Z027)
Guangdong Basic and Applied Basic Research Foundation (2020A1515110126, 2021A1515010130); The Fundamental Research Funds for the Central Universities (N2119006, N2224001-10); Ningbo Science and Technology Bureau (2021Z027)
赵越(1966—),女,博士,教授,主要研究方向为生物信息学、医学图像分析和仿生工程。
ZHAO Yue (1966-), Female, Doctor, Professor, Research focus: bioinformatics, medical images analysis and bioinspired engineering.
崔笑宇(1984—),男,博士,副教授,主要研究方向为生物信息学、计算机视觉和仿生工程。
CUI Xiao-yu (1984-), Male, Doctor, Associate professor, Research focus: bioinformatics, computer vision and bioinspired engineering.
田野(1987—),男,博士,副教授,主要研究方向为微流控、软物质、功能纤维、集水工程。
TIAN Ye (1987-), Male, Doctor, Associate professor, Research focus: microfluidics, soft matter, Functional fiber and Water-collection engineering.
赵越, 崔笑宇, 田野. 仿仙人掌集水进展[J]. 表面技术, 2022, 51(12): 52-62.
ZHAO Yue, CUI Xiao-yu, TIAN Ye. Advances in Cactus-inspired Water Collection[J]. Surface Technology, 2022, 51(12): 52-62.
责任编辑:刘世忠