一种三维相变存储器1S1R存储单元电路仿真模型
2023-01-03张光明雷宇陈后鹏俞秋瑶宋志棠
张光明, 雷宇, 陈后鹏, 俞秋瑶, 宋志棠
(1. 中国科学技术大学 微电子学院,合肥 230026; 2. 上海市纳米科技与产业发展促进中心,上海 200237; 3. 中国科学院 上海微系统与信息技术研究所,上海 200050)
在大数据和人工智能的不断推动下,数据量呈现爆炸式增长趋势,存储器行业已成为集成电路产业最大的细分市场.相变存储器(PCRAM)是目前最成熟的新型存储器之一,由于其具有存储非易失性、读写速度快、可多位存储和与互补金属氧化物工艺兼容等优点,在当下诸多热门领域有着较好的应用前景[1-3].PCRAM的工作原理是利用相变材料的晶态和非晶态之间的大电阻率比例存储二进制数据[4].相变材料处于结构长程有序的晶态时,表现出低阻态(LRS);而处于无序的非晶态时,表现出高阻态(HRS).在电信号的作用下,两种状态可进行可逆转变,从而实现读写、擦除功能[5].为防止PCRAM阵列泄漏电流,双向阈值选通管(OTS)被引用到PCRAM中[6].OTS是一种基于奥弗辛斯基阈值导通理论的两端器件,当其两端电压达到阈值电压(Uth)时,OTS进入导通状态,阻值迅速降低;当导通状态的OTS电压高于保持电压(Uhold),OTS会保持低阻导通状态[6-7].
三维相变存储器采用OTS和限制型(confine)相变存储器件(PCM)串联组成的1S1R(OTS+PCM)存储单元,其阵列采用字线和位线交叉堆叠的方式实现三维集成,外围电路置于阵列下方[8].相较于平面相变存储器中常用的由蘑菇型(mushroom)PCM和场效应管(MOS)串联组成的1T1R(MOS+PCM)存储单元,1S1R单元具有更强的微缩能力、更低的写操作电流和可以三维集成等优点,是目前实现高密度相变存储器的最先进方案[6, 8].在1S1R结构中,PCM需要在OTS打开后才能被编程或读取.但外围电路受到电源电压、面积等限制,能够支持的操作电压、电流有限.OTS导通后若电阻率高,则分压过高导致PCM无法完成编程操作.因此,能够准确模拟OTS和PCM电学和物理特性的1S1R模型是设计良好器件和电路的前提.
当前关于1S1R的研究主要集中在新材料研发方面,而电路仿真模型较少.Choi等[9]设计的OTS模型能够模拟OTS的开关特性,但在关断状态下阻值恒定,且未考虑OTS亚阈值电阻率的非线性变化,而OTS亚阈值非线性的模拟对研究阵列泄露电流和亚阈值读取电路的设计具有重要意义.当前研究的PCM模型模拟程度较低,且大多针对蘑菇型结构,不适用于限制型结构.Chen等[10-12]设计的PCM模型能够模拟结晶和非晶化状态,但不能模拟熔融过程和在晶态时PCM阻值随温度的变化情况,无法完整模拟PCM的相变过程,且采用电路图集成的方式具有仿真速度较慢、模型参数修改不方便的缺点.Pigot等[13]设计的PCM模型模拟了PCM结晶、熔融、非晶过程以及晶态PCM阻值随温度的变化过程,但采用加热电极与蘑菇型PCM热阻的温度计算模型,其不适用于三维相变存储器中1S1R无加热电极的限制型PCM.基于蘑菇型PCM的熔融电阻率与晶态电阻率完全等效的阻值计算模型激活区域有限,不适用于能够完全晶态和非晶态转变的限制型PCM,且阈值转换公式在完全晶态时不收敛.上述问题导致三维相变存储器芯片中的1S1R器件和外围电路难以被协同优化,这也是实现PCM产业化的痛点之一.
因此,设计一种采用模拟硬件描述语言Verilog-A实现的OTS和PCM电路仿真模型,利用过渡函数保证其收敛性.OTS模型实现了对OTS的亚阈值非线性和双向选通特性.PCM模型针对三维相变存储器1S1R单元采用的限制型PCM的结构特点,设计相应的温度计算模块,考虑熔融电阻率稳定的特点;采用相变阻值和非线性电压电流并行方法,实现限制型PCM的相变过程、阈值转换、晶态非线性和熔融电阻率稳定的集成,可仿真PCM结晶、熔融和淬火过程,并监测过程中的电压、电流、温度、熔融率、结晶率和非晶率的变化.该模型有良好的收敛性和较快的仿真速度,能够满足三维相变存储器电路仿真的需求.首先,主要介绍OTS和PCM模型设计方法;然后,对OTS和PCM模型仿真验证,分析OTS亚阈值非线性参数和读电压窗口的关系,设计用于5 V电源电压的1S1R单元模型参数,并对1S1R单元和阵列进行仿真验证并给出结论.
1 OTS和PCM模型设计
OTS选通特性和非晶态PCM的阈值转换均基于硫系化合物的阈值转换理论[7].在模型中引入过渡函数(G)来描述转换前后的电学特性[14],实现阈值转换前后变量的连续变化,保证仿真模型的收敛性.过渡函数G满足一阶微分方程:
(1)
式中:θ(·) 为单位阶跃函数;t为时间;U为器件两端电压;τ为时间常数,可以修调转换速度.
1.1 OTS模型设计
OTS模型的流程图如图1所示.状态寄存模块中寄存当前时刻OTS关断或导通状态,阻值计算模块依据当前的导通或关断状态和相应的阻值计算公式,计算导通状态阻值(ROTS_ON)或关断状态阻值(ROTS_OFF);再由仿真器依据电路仿真环境迭代计算出电压(UOTS),将该电压与阈值电压Uth、保持电压Uhold对比,确定下一时刻的工作状态和阻值.
图1 双向阈值选通管模型流程图Fig.1 Flow chart of OTS model
关断状态的OTS阻值会随着电压的升高而降低,表现出亚阈值非线性变化,参考文献[15]选通管阻值ROTS_ON与电压UOTS的关系为
(2)
式中:ROFF为OTS关断状态下零偏压阻值;UOFF为亚阈值非线性常数,用来修调OTS的非线性程度.
导通状态下的OTS表现出一个恒定的阻值状态[15]:
ROTS_ON=RON
(3)
式中:RON为OTS导通状态下的阻值.
在OTS开关前后引入过渡函数G,则OTS电流可表示为
(4)
1.2 PCM模型设计
相变存储器件模型设计流程图如图2所示.其中,UPCM为PCM两端电压,RPCM为相变阻值,Tamb为环境温度,IPCM为流过PCM的电流.相变阻值变化模块通过t时刻的相变存储器件阻值、电压和环境温度计算出相变存储器件温度,依据温度计算结果与熔融温度(Tm)和结晶温度(Tc)之间的关系判断相变材料正在保持、结晶或熔融,计算实时的熔融率、晶态率和非晶率的比例变化,再通过非晶率、晶态率和熔融率计算PCM相变阻值.同时,通过非线性电压电流模块判断当前电压是否达到PCM阈值电压,利用不同的电流公式计算阈值转换前后的电流,若阈值转换后PCM超过了熔融温度,则保持PCM达到熔融温度时刻的阻值,最终由仿真器依据电路仿真环境,迭代计算出t+1时刻相变存储器件的电压和电流.
图2 相变存储器件模型流程框图Fig.2 Flow chart of PCM model
相变和阻值变化部分模拟了结晶、熔融和淬火过程及各种态比例变化导致的PCM阻值变化.非线性电压、电流部分模拟了PCM阈值转换、晶态阻值随温度变化和熔融电阻稳定的特点.
PCM温度计算要考虑采用的PCM结构类型,三维相变存储器中1S1R采用的限制型结构没有加热电极,是完全依赖电流和自身阻值产生焦耳热的自加热结构[16].参考文献[17]其加热功率为
(5)
式中:R为PCM的阻值.
当PCM的温度高于周围温度时,其会向周围散热.为了降低限制型相变存储器件的热扩散,提高加热效率,降低写操作电流,三维相变存储器通常采用低热导率的介质填充,同时引入边界热阻[16,18].为仿真PCM温度扩散情况,利用多物理场仿真软件COMSOL对限制型PCM进行电热仿真.限制型PCM截面图如图3(a)所示,其中,r为限制型PCM底面半径;l为限制型PCM的高度;A为PCM的中心,B和C分别为PCM器件顶面和侧面边界点,A与B的温差为PCM内部纵向温差ΔT1,A与C的温差为PCM内部横向温差ΔT2.限制型PCM内部纵向和横向温差仿真结果如图3(b)所示,其中,ΔT为PCM与环境温度的温差,点为仿真结果,线为拟合结果.
图3 限制型PCM温度分布仿真Fig.3 Simulation of confined PCM temperature distribution
结合热传导公式和图3限制型PCM温度分布的仿真结果,限制型PCM横向和纵向总散热功率近似为
(6)
ΔT1=αΔT, ΔT2=βΔT
(7)
式中:Q为热量;k为导热系数;α为ΔT1与ΔT的比率;β为ΔT2与ΔT的比率.
将加热功率和散热功率叠加,参照文献[17]计算PCM与环境温度的温差为
(8)
式中:c为比热容;V为PCM的体积;γ为散热效率因子,取值范围为0~1,用来修正温度计算模型中相变材料温度均匀分布导致的误差.通过UPCM反映出实际加热电阻,便于动态表现出相变存储器件的物理特性.
参照文献[17],相变存储器件的温度为
T=ΔT+Tamb
(9)
当PCM温度达到熔融温度Tm时,相变材料开始熔融,但PCM内部温度没有完全均匀分布,PCM温度、达到熔融温度的时间、温度分布的均匀程度都会影响PCM熔融部分的比例.状态变量Fm为温度达到Tm时的熔融比例,Fm满足如下一阶微分方程[13]:
(10)
式中:τm为熔融时间常数;σm为熔融温度扩散系数,用来修调温度非均匀分布的影响.求解得
(11)
当PCM被加热至结晶温度Tc和熔融温度Tm之间时,非晶态和熔融态相变材料会逐渐结晶变为晶态.状态变量Fc为温度在Tc~Tm之间时的熔融比例,结晶过程满足JMAK方程[19]:
Fc=1-exp(-Kt)
(12)
(13)
式中:K0为频率因子;Ea为材料相变的活化能;KB为玻尔兹曼常量.
参照文献[13],PCM非晶比例为
Fa=1-Fm-Fc
(14)
三维相变存储器中1S1R采用的限制型结构无加热电极,可以实现完全晶态和非晶态的转变[20].PCM的相变阻值由每种相的阻值所占比例计算,其由相变阻值的高低阻来存储数据“0”和“1”,参照文献[13], PCM的阻值为
RPCM=FcRc+FmRc+FaRa
(15)
式中:Rc为PCM完全晶态时的阻值;Ra为PCM完全非晶态的阻值.参照文献[21],Rc和Ra的计算公式为
(16)
(17)
式中:ρc为晶态相变材料电阻率;ρa为非晶态相变材料电阻率;S为PCM底面面积.
非晶态PCM存在Poole-Frenkel效应,在一定电场强度下会诱发跃迁导通,称之为阈值转换现象,阈值转换后的相变材料即使没有结晶,仍然会表现出晶态相变材料的低阻特性.PCM阈值电压与非晶态比例有关[22].当完全非晶态时,阈值电压最大;当完全晶态时,阈值电压为0 V,不存在阈值转换现象.
参照文献[14],相变存储器件阈值转换前的电流IOFF满足:
(18)
(19)
R0=(Rc)Fc(Ra)Fa
(20)
式中:U0a和U0c分别为PCM完全非晶态和完全晶态的非线性参数.
晶态PCM的阻值遵循Arrhenius公式随温度升高而降低[13,16].将晶态PCM阻值随温度的变化和温度计算模型统一,阈值转换后和晶态时的PCM电流参照文献[14],计算:
(21)
完全晶态时,式(18)与式(21)相等,保证了不同比例非晶态PCM在阈值转换时的收敛性.在PCM阈值转换前后引入过渡函数G,则PCM电流参照文献[14]表示为
IPCM=(1-G)IOFF+GION
(22)
限制型PCM与蘑菇型PCM的激活区域有限不同,其能够实现全体积熔融[20],而熔融态相变材料阻值几乎不随温度变化[16,23].此时,电流由Is计算为
(23)
式中:Um和Im分别为熔融温度时PCM的电压和电流.
2 OTS、PCM、1S1R模型及阵列仿真验证
2.1 OTS模型仿真
OTS的亚阈值非线性是实现亚阈值读电路设计的关键,关断状态的泄露电流限制存储器阵列大小和导通状态的驱动能力影响1S1R单元是否能够完成编程操作.在完成OTS模型设计后,使用Spectre仿真OTS模型I-V特性与文献[24]中实验测得的AsTeSi材料OTS器件的I-V特性的拟合对比,结果如图4所示,其中,点为器件测试结果,线为OTS模型仿真结果,OTS阈值电压为2.7 V.从图4拟合结果可知,当其两端电压达到阈值电压Vth时,OTS进入导通状态,阻值迅速降低.当导通状态的OTS电压不低于保持电压Vhold时,OTS会保持低阻导通状态.该模型能够模拟OTS亚阈值非线性和双向选通特性,与实验测得的OTS器件的I-V特性有较高的拟合度.
图4 OTS的I-V特性仿真(线型)和实验测得数据(点型)对比Fig.4 Comparison of I-V characteristics of OTS simulation (lines) and experimental data (dots)
2.2 PCM模型仿真
非晶态PCM的阈值转换现象是其能够在较低的电源电压下实现写操作的前提,也是影响1S1R读电压窗口的关键.在完成PCM模型设计后,使用Spectre仿真不同非晶态比例PCM模型1T1R单元的I-V仿真结果与文献[13]中实验测得数据对比,结果如图5所示,其中,点为器件测试结果,线为PCM模型仿真结果,PCM阈值电压为0.9 V.从图5可知,该模型能够模拟PCM不同非晶态比例下的阈值转换,仿真结果与实验测得的数据有较高的拟合度.
图5 PCM不同非晶比例I-V特性仿真(线型)和实验测得数据(点型)对比Fig.5 Comparison of simulation of I-V characteristics of PCM at different amorphous proportions (lines) and experimental data (dots)
相变窗口是观察PCM晶态和非晶态之间可逆转变的重要方式.给非晶态PCM施加不同高度的电压脉冲,当达到结晶温度时,非晶态PCM结晶,阻值迅速下降;当达到熔融温度时,PCM熔融,淬火后变为非晶态,阻值迅速升高.图6为PCM模型分别在30、50和100 ns脉冲宽度下测得的PCM阻值与脉冲高度关系,其与文献[1]中实验测得锗锑碲(GST)材料PCM数据进行对比,其中,点为器件测试结果,线为PCM模型仿真结果.可知,该模型能够模拟PCM在电信号操作下实现晶态和非晶态可逆转变,与文献[1]中实验测得的数据有较高拟合度.
图6 不同脉冲宽度下PCM阻值与脉冲高度的关系仿真(线型)和实验测得数据(点型)对比Fig.6 Comparison of simulation of relationship between PCM resistance and pulse height at different pulse widths (lines) and experimental data (dots)
2.3 1S1R参数设计
三维相变存储器中常用U/2偏置方法,选中的位线(BL)接至写驱动,选中的字线(WL)接地,未选中的BL和WL接至U/2[8].为使得未选中单元有较低的泄露电流,要求OTS阈值电压Uth大于U/2;为实现较大的阵列规模,OTS要有较低的泄露电流,ROFF值要增大;为防止读操作中出现数据破坏现象,OTS导通阻值不能较低.
在三维相变存储器读操作时,高阻态和低阻态相变存储器件阻值不同,因此分压不同.高阻1S1R单元的选通电压(UtR)大于低阻1S1R单元的选通电压(UtS),并构成一个读电压窗口,当读电压窗口过小时,会降低读操作的正确率[8].因此,探究OTS的亚阈值电压常数UOFF对读电压窗口的影响,仿真结果如图7所示.其中,Uc为1S1R单元电压,Ic为1S1R单元电流.图7(a)、(b)、(c)分别为其他参数固定情况下,UOFF为0.25、0.30、0.40 V时对应的高阻和低阻1S1R单元I-V仿真结果.
图7 不同OTS亚阈值电压常数下1S1R读窗口仿真Fig.7 Simulation of 1S1R read voltage window at different OTS subthreshold voltage constants
可知,当UOFF过小时,OTS阈值电流远大于PCM阈值电流,高阻1S1R和低阻1S1R亚阈值的电流差距更大,读电压窗口较低;当UOFF过大时,OTS阈值电流远小于PCM阈值电流,未选通时的泄露电流更小,但读电压窗口也会降低.为保证较大的读电压窗口,要求OTS阈值电流约等于完全非晶态PCM的阈值电流,UOFF需满足以下公式:
(24)
式中:Uth_OTS为OTS的阈值电压;Uth_PCM为PCM的阈值电压.
另一方面,为了能在有限的电源电压下实现编程操作,当PCM达到熔融温度时,1S1R电压要低于电源电压,即:
ImRON+Um (25) 式中:UDD为电源电压. 综合阵列和电路设计需求以及文献[24]中实验测得的OTS器件特性,将设计的5 V电源电压下三维相变存储器用OTS模型参数设置,列于表1[15,24].根据式(24)、(25)和表1中的参数,当UOFF= 0.3 V时,OTS阈值电流约等于PCM阈值电流,读电压窗口最大. 本文参考文献中PCM尺寸[20]、阈值电压[25]、熔融时间常数[13]、热导率、比热容、晶态和非晶态电阻率参数[18],由式(24)中的电路设计需求计算非晶态非线性参数,将由文献[13]中实验测得的晶态阻值随温度变化参数和式(21)中计算的晶态非线性参数与表1中OTS模型参数匹配的PCM模型参数设置列于表2[13, 18, 20, 25]. 表1 OTS模型参数Tab.1 Parameters of OTS model 表2 PCM模型参数Tab.2 Parameters of PCM model 1S1R读电压窗口是三维相变存储器读电路设计的关键.将设计的OTS模型和相变存储模型串联组成1S1R存储单元,仿真高阻态和低阻态1S1R的I-V特性,仿真结果如图8所示.在读电压窗口中,高阻态和低阻态单元电阻比超过100倍.将读电压(Uread)设置在UtS和UtR之间,将读电流与参考电流比较,即可读出当前数据状态. 图8 1S1R读窗口仿真Fig.8 Simulation of 1S1R read voltage window 在完成1S1R单元设计和仿真验证后,本文设计2 Kibit(32×32×2)的1S1R阵列,利用Spectre仿真工具对选中单元在1.2 us内进行电流脉冲写“1”(Set)和写“0”(Reset)操作仿真.图9为选中单元电流、OTS阻值、PCM阻值、温度、熔融率、结晶率和非晶率,以及选中BL上半选通单元泄露电流(ISBL)、选中WL上半选通单元泄露电流(ISWL)变化的瞬态仿真结果,其中,瞬态仿真用时66.3 s. 图9 1S1R阵列瞬态仿真Fig.9 Transient simulation of 1S1R array 从仿真结果可知,在阵列中选中单元Set过程中,当温度介于结晶温度和熔融温度之间时,晶态比例逐渐上升,非晶态比例下降,相变阻值同步降低;在Reset过程中,当PCM温度超过熔融温度时,发生熔融,在Reset电流脉冲快速淬火后,极少比例的熔融部分发生了再结晶,其余变为非晶态,相变阻值同步变化.仿真结果表明,该1S1R模型能够模拟出PCM结晶、熔融和淬火过程中温度、熔融率、结晶率、非晶率相变阻值的变化.同时,选中BL上半选通未选中单元和选中WL上半选通未选中单元泄露电流在nA级别,没有发生误操作. 本文设计的PCRAM电路仿真模型与其他文献中相变存储器仿真模型对比结果列于表3,其中“空白”表示该文献未设计模拟该特性的相关模块.与传统模型相比,本模型首次实现了对PCM熔融过程、晶态非线性、熔融电阻率稳定的模拟和集成,并展示了1S1R单元直流仿真和阵列的瞬态仿真结果. 表3 本文与其他文献中相变存储器仿真模型对比Tab.3 Comparison of PCRAM model between this paper and other literatures 本文介绍OTS和PCM的基本原理,分析两者的电学特性和物理特性,设计一种OTS和PCM电路仿真模型,利用过渡函数保证收敛性.PCM模型采用相变阻值和非线性电压电流并行方法,针对三维相变存储器1S1R单元采用的限制型PCM的结构特点,设计了相应的温度计算模块,考虑了熔融电阻率稳定的特点.模拟了OTS的亚阈值非线性和双向选通特性、限制型PCM的阈值转换和相变窗口,并与实验测得数据进行拟合对比.结合电路设计和器件测试结果设计了用于5 V三维相变存储器的OTS和PCM参数,仿真了2 Kibit的1S1R阵列中选中单元PCM结晶、熔融、淬火过程中温度、熔融率、结晶率、非晶率的变化以及未选中单元的泄露电流.分析了UOFF和读窗口的关系,发现当OTS阈值电流约等于完全非晶态PCM的阈值电流时,读窗口最大.仿真结果体现了所提仿真模型较高的模拟程度、良好的收敛性和较快的仿真速度.2.4 1S1R单元和2 Kibit阵列仿真
3 结语