通过“一题多编”培养学生核心素养 ①
2022-12-17刘三文刘基天
刘三文 刘基天
(广东省深圳市盐田高级中学,广东 深圳 518083)
1 引言
高三复习少不了模拟考试,在考试中有的学生对同一个问题屡考屡错。究其原因,很大程度上是教师在平常教学中,重学生刷题、轻分析试题情境与物理概念和规律的联系,学生不能针对具有一定复杂性、开放性的情境问题应用物理知识去分析、解决。在高三物理教学中试题讲评课占比较大,为了培养学生的核心素养,作为教师不能只满足于学生能得出正确答案,要精选试题,对经典试题进行拓展、改编,围绕同一情境设置进阶问题,提高学生的核心素养。“一题多变”使“题”成为实现必备知识“超链接”的载体,让“题”成为提升学生核心素养的助推器。
2 原题呈现与解答
如图1所示,在某冰雪游乐场中,甲、乙两冰车在轨道上做碰碰车游戏,甲的质量为m1=20 kg,乙的质量m2=10 kg,轨道由一斜面与水平面通过小圆弧B平滑连接。冰车甲从斜面上的A处由静止释放,与停在水平面C处的冰车乙发生正碰,碰撞后乙冰车向前滑行18 m停止运动。已知A到地面的高度H=5 m,BC的距离L=32 m,两车受到水平面的阻力均为其重力的0.1倍,忽略甲冰车在斜面运动时的阻力,重力加速度g=10 m/s2。求:
图1
(1) 甲到达C处碰上乙前的速度大小;
(2) 两车相碰时动能损失。
2.1 核心素养视域下的考核目标及学业质量评价
本题是2022年深圳市第一次高考物理模拟试卷的第13题,满分10分,难度系数为0.64,难度适中,有较好的区分度。
本题情境来源于生活中“冰上碰碰车”娱乐活动,第(1)问主要考查学生的运动观念与能量观念。冰车从斜面滑下后在水平面上滑行一段距离与停在C处的乙车相碰,求碰前甲车速度大小,该问题情境很常见,但能考查学生应用物理知识解决具体问题的能力,第一类学生将甲车碰前在斜面与在水平面滑行过程看作一个过程,用动能定理可快速求出结果;第二类学生将甲车碰前分成斜面与水平面两个运动过程,分别用动能定理列两个方程进行求解;第三类同学就会用上述第(1)问的第二种解法进行求解。很显然第一类同学在应用能量观解决实际问题、信息整理能力、归纳概括能力要强于另外两类同学。试题将三类同学对必备知识、关键能力的掌握情况进行了有效的考查与甄别。
第(2)问主要考查学生的物理观念和科学思维,尤其是考查科学思维中的模型建构、科学推理要素,学生通过分析乙车碰后在水平面上滑行的过程,能求出碰后乙车的速度,再应用动量守恒及能量守恒定律,可求出碰撞过程中的能量损失,求解过程中与第(1)问相似,将不同水平的学生都能区分出来,有一部分同学认为两车碰撞为完全非弹性碰撞或弹性碰撞,从而导致解答错误,事实上本题中并没有告知碰撞的类型,避免了刷题也能做对情况的发生,对学生能否准确应用能量守恒及动量守恒定律等必备知识解决实际问题的能力进行了重点考查。
3 试题改编
进阶式设置问题,改变条件、设问方式和所用的知识,可培养学生应用物理知识解决实际问题的能力,引导学生深度学习。
3.1 增设问题与讨论
增设问题:试题中两车的碰撞属于弹性碰撞、非弹性碰撞还是完全非弹性碰撞?
讨论:如果在题中说明两小车的碰撞是弹性碰撞或完全非弹性碰撞,其他条件均不变,能否求出小车乙碰后在水平面上滑行的距离?如果可以,请分别求出来。
3.2 教师引导与分析
(1) 从试题答案上来看,在两车碰撞过程中动能损失了90 J,很显然不是弹性碰撞,因为弹性碰撞没有动能损失。是否为完全非弹性碰撞?如果是完全非弹性碰撞,碰后两车会黏在一起具有共同速度,而本题中两车碰后速度分别为3 m/s和6 m/s,故两车碰撞是一般的非弹性碰撞。
可以发现两小车的碰撞类型会影响乙车碰后在水平面上滑行的距离,这是因为不同类型的碰撞,乙车获得的速度不同,自然在水平面上滑行的距离也不一样。并且发生弹性碰撞时乙车的速度最大,发生完全非弹性碰撞时乙车的速度最小。如果题中两车碰撞类型不确定,乙车滑行的距离也不确定,但有一定范围,我们可以按此思路设计一道较难的习题。
改编题1:在冰雪游乐场中,甲、乙两冰车在轨道上发生碰撞,甲的质量m1=20 kg,乙的质量m2=10 kg,轨道由一斜面与水平面通过小圆弧B平滑连接,冰车甲从斜面上的A处由静止释放,与停在水平面C处的冰车乙发生正碰。已知A到地面的高度H=5 m,BC的距离L=32 m,两车受到水平面的阻力均为其重力的0.1倍,忽略甲车在斜面上运动时所受的阻力,重力加速度取g=10 m/s2。求:
(1) 甲到达C处与乙相碰前的速度大小;
(2) 由于碰撞类型不明,碰后乙车停止时离C点的距离可能是多少?
3.3 核心素养视域下的考核目标及学业质量评价
改编题1与原题相比较,情境并没有变换,第(2)问如此设问,对学生的知识和能力的要求大大提高。要求学生对“碰撞类型”这一关键信息进行解读,能够准确概括和描述弹性碰撞、非弹性碰撞与完全非弹性碰撞的特征及其相互关系,并能从中发现碰后小车乙的速度值有一个范围,通过碰撞类型看清问题的本质,求出碰后乙车的速度值有一个范围,这对学生的知识获取能力及思维能力的要求较高。
按照SOLO分类理论,原题第(2)问属于多点结构,回答问题时需要明白两车碰撞时系统的动量守恒,通过乙车碰后滑行的距离应用动能定理求出碰后乙车速度,代入动量守恒方程,就可以求出碰后甲车的速度,最后求出碰撞中损失的能量,将这些知识点联系起来,并不需要完整的知识网络就能解决问题;而改编后,题目难度提升,情境与考查目标的关联度加强了,要求学生深度理解碰撞类型,发生不同类型的碰撞,碰撞后乙车速度不同,在水平面滑行的距离也会不同,问题有了一定开放性,属于SOLO分类理论中的高层次关联结构,在回答问题时,需要学生能够联想多个事件即要求学生熟悉碰撞类型,并能全面考虑可能的碰撞类型,求解碰后乙车速度可能的范围,再通过这个速度范围求出小车乙滑行的距离范围。只有对这些知识形成了整体性的认识,才有可能正确解答问题。可见同一情境、不同设问对学生关键能力的考查不一样,对学生的核心素养的要求也不一样,这也正是评价体系中要求教师能熟悉学业质量水平要求、在平常教学中应该加强研究的课题。
3.4 改变试题情境复杂程度与开放性,培养知识迁移能力
在《普通高中物理课程标准(2017版)》的“命题建议”中要求:试题的情境具有一定的问题性、真实性、探究性或开放性。为了考查学生的核心素养水平,应尽量创设类型多样的、具有一定复杂程度的、开放性的真实情境作为试题的任务情境。
改编题2:如图2所示,甲、乙两冰车在轨道上发生碰撞,冰面轨道由一斜面与平台平滑连接而成。冰车甲从斜面A处无初速释放,与停在平台BC末端C处的冰车乙发生正碰,乙车离开水平面落在地面上,已知H=1 m,L=2 m,h=0.8 m。斜面光滑,两车(均可视为质点)在水平面上受到的阻力为其所受重力的0.1倍,重力加速度g=10 m/s2。
图2
(1) 小车甲与乙车碰前的速度是多少?
(2) 甲、乙两车质量之比为2∶1,且碰撞类型不确定,则乙车落在地面上离D点距离的可能值是多少?
3.5 核心素养视域下的学业质量评价
改编题2较原题情境有较大的变化,由原来的两车碰后乙车继续在水平面上滑行,改为碰后乙车做平抛运动。改编题2与改编题1相比,考查方法、能力要求几乎相同,同样考查了物理观念中的运动与相互作用观念、能量观念,也考查了科学思维中的模型建构、分析综合与推理论证等要素。
4 结语
平常模拟试题或学生训练习题应符合学业水平质量要求,根据普通高中物理课程标准的基本理念、课程目标和核心素养的培养要求,结合教学的实际情况,优化教学设计,强化试题研究,将核心素养的考查、发展学生关键能力的要求落实到平常命题工作中来。试题命制应以课程目标、课程内容和学业质量为依据,能切实提高学生的核心素养。