水下滑翔机变浮力装置热力学仿真分析
2022-11-11赵宏昌黄桥高刘静
赵宏昌,黄桥高,刘静
(西北工业大学航海学院 无人水下运载技术重点实验室,陕西 西安,710072)
0 引言
水下滑翔机是由浮力驱动的、带翼的自主式水下航行器,具有低能耗、续航能力强、作业范围广、作业深度大、投放和回收容易以及科学传感器搭载能力强等特点。在海洋技术与科学领域得到了越来越广泛的关注,在海洋探测方面有很好的应用前景。
水下滑翔机的浮力调节装置一般有油囊式、活塞缸式和压载水舱等形式。其中,活塞缸式变浮力装置是通过控制自身体积来改变浮力,从而控制水下滑翔机的上浮和下潜,图1 为其结构示意图。图中:1 为左活塞、2 为液压缸舱段、3 为活塞杆、4 为中间隔板、5 为右活塞、6 为泵、7 为电机、8 为液压油路控制单元、A~F 为设置在活塞缸式变浮力装置上的6 个监测点。
图1 变浮力装置结构示意图Fig.1 Schematic diagram of variable buoyancy device
近年来,针对水下航行器浮力调节装置有诸多研究成果。方旭[1]研制了一种油囊式的浮力调节装置。Sakagami 等[2]研制了一种带辅助弹簧的动态浮力调节装置,并进行了初步的试验。刘银水等[3]提出潜水器浮力微调采用海水液压浮力调节系统,替代油压和气压浮力调节系统,具有结构简单,性能可靠等优点,是目前大深度航行器普遍采用的形式。武建国等[4]设计了一套活塞缸式浮力调节装置,利用AMESim 软件进行了液压系统仿真,重点分析了液压缸的动态特性。杨江涛等[5]阐述了一种对变浮力装置的耐压密封试验方法。Zheng 等[6]设计了油舱浮力调节装置,分析了测量气体体积变化的准确性和灵敏度。冀功祥等[7]分别从装置组成、工作原理、液压系统和关重件设计四方面对浮力调节装置展开论述。孙永见[8]针对自主水下航行器的水下工况,设计并分析了油囊式、高精度油囊式以及活塞缸式3 种浮力调节装置。牟蓬涛[9]设计了一套浮力调节装置PMSM 驱动控制系统。孙伟志等[10]提出了一种基于齿轮—滚珠丝杠传动的浮力调节装置的设计方法。刘雁集等[11]设计了一种气压与液压结合的低功耗浮力调节系统,提高了海洋滑翔机浮力调节系统的可靠性,进一步降低了系统功耗。张安通等[12]提出了一种智能应急安全控制自救系统,可实现无人水下航行器浮力调节装置故障智能识别与防护。田冠枝等[13]在分析高精度浮力调节装置结构及功能的基础上,提出了该装置的控制驱动器硬件及软件设计方案。杨友胜等[14]阐述了一种新型的、基于压力补偿的浮力调节系统的工作原理,并展望了水下航行器浮力调节技术的发展趋势。
但是,目前的研究多针对变浮力装置提出了结构设计方法、耐压密封实验方法等,较少考虑热量对变浮力装置所产生的影响。水下滑翔机在上浮和下潜的过程中,活塞缸式变浮力装置处于持续工作状态,装置中的驱动电机和泵工作时产生的热量会对装置的温度场产生影响,装置的部分部件温度过高,极可能影响到整个装置的正常运行,因此对水下滑翔机的变浮力装置进行热力学仿真分析十分重要。
由于活塞缸式变浮力装置结构较复杂,对其求解析解较困难,文中采用有限元方法,利用ANSYS软件,对活塞缸式变浮力装置进行稳态热分析,研究变浮力装置不同点处达到热平衡时的温度,在不同电机转速下的规律以及随着海水深度变化的规律。
1 浮力调节装置热力学仿真模型
1.1 热力学分析模型
1.1.1 热力学过程
浮力调节装置的热量先从泵和电机处产生,通过热辐射向四周扩散,扩散到缸筒的内壁以及活塞的右侧端面,随后经过热传导,一部分传到右油腔并与右油腔中的液压油进行对流,一部分传到缸筒外表面并与外部海水进行对流。
1.1.2 热力学数学模型
电机和泵产生的热量以热辐射的形式向四周扩散,扩散至缸筒内壁以及活塞右侧端面,其净热量采用斯蒂芬-玻尔兹曼方程计算
式中:Q1和Q2分别为电机和泵的热流率;ε1为电机黑度,ε2为泵黑度;A1为电机辐射面面积;A2为泵辐射面面积;F为由电机和泵至周围环境的形状函数,取值为1;T1为电机辐射 面绝对温度;T2为周围环境绝对温度;T3为泵辐射面绝对温度。
经过热传导,一部分热量传至右油腔并与右油腔中的液压油进行对流,一部分热量传至缸筒外表面并与外部海水进行对流。热传导过程中遵循热传导基本规律(傅立叶定律),其计算公式为
对流时,遵循对流换热的基本规律(牛顿冷却公式),其计算公式为
式中:ts1和tf1分别为右侧活塞表面温度和液压油流体温度;ts2和tf2分别为缸筒外表面温度和海水流体温度;h1为右侧活塞表面与液压油的对流换热系数;h2为缸筒外表面与海水的对流换热系数。
1.2 有限元模型
1.2.1 材料选择及网格划分
缸体、活塞以及活塞杆选用的材料均为7075铝合金,而泵的材料一般为钢,对各部分模型进行材料附加,并对模型进行网格划分,网格大小采用7 mm,划分结果如图2 所示。
图2 网格划分Fig.2 Mesh generation
1.2.2 边界条件设置
文中研究了活塞缸式变浮力装置在理想运动状态下到达热平衡时的温度与海水深度的关系。据相关资料统计[15],我国南海典型海水温度随海水深度变化关系如图3 所示。所选取的样本点的海水温度与海水深度的关系如表1 所示。
表1 海水温度与海水深度样本点Table 1 Sample points of sea temperature and water depth
图3 海水温度随海水深度变化曲线Fig.3 Curve of sea temperature changing with water depth
根据文献[16]~[18]可知,我国南海海域典型海水密度与海水深度的关系拟合公式为
式中,H为海水深度。
拟合曲线参数在海水深度为0~117.5 m 时,b1=2.3843×10-12,b2=-1.208×10-9,b3=2.105×10-7,b4=-1.5312×10-5,b5=6.1578×10-4,b6=2.8478×10-3,b7=1021;在海水深度为117.5~1500 m 时,b1=-2.5615×10-17,b2=1.4308×10-13,b3=-3.1843×10-10,b4=3.5882×10-7,b5=-2.1545×10-4,b6=7.1091×10-2,b7=1018.3。
根据压力公式p=ρgh,所选取的样本点的海水密度、压力与海水深度的关系如表2 所示。在海面时海水压力取一个标准大气压。
表2 海水密度、压力与海水深度样本点Table 2 Sample points of seawater density,pressure and water depth
在电机和泵模型的表面施加热辐射约束,其辐射系数为0.42,周围温度为22℃。油腔液压油之间的对流约束,取其对流换热系数为50 W/(m2·℃),工作温度为50℃。变浮力装置缸筒外部周围温度设为4℃。电机和泵的效率均为98%。
假设变浮力装置运行,活塞作匀速运动,此时,泵的工作负载与海水外部压力相等。在电机和泵模型上添加内部生成热载荷,其对电机和泵生热率的影响如表3 所示。
表3 海水深度对泵和电机生热率边界条件的影响Table 3 Influence of water depth on the boundary conditions of heat generation rate of the pump and the motor
在真实的情况下,活塞不仅只做匀速运动,电机转速也不是突然就能达到某一固定值,因此,接下来研究变浮力装置在海水深度1500 m 时温度与电机转速的关系。电机转速对电机和泵生热率的影响如表4 所示,其余参数设置同上。
表4 电机转速对泵和电机生热率边界条件的影响Table 4 Influence of motor speed on the boundary conditions of heat generation rate of the pump and the motor
2 仿真分析
经过稳态热分析仿真计算,对变浮力装置A~F等6 个点的温度值进行监测。图4 为变浮力装置在不同海水深度下的温度场云图。由图可知,当活塞在理想匀速运动状态时,变浮力装置在海面处和在海水深度100 m 处到达热平衡时最高温度存在于右侧活塞上,分别为31.49℃和26.90℃。其余工况下装置到达热平衡时的最高温度均存在于泵模型的压盖上,在海水深度为1500 m 时,最高温度值为29.22℃。
图4 变浮力装置在不同海水深度下的温度场云图Fig.4 Contours of temperature field of variable buoyancy device at different water depths
图5 为变浮力装置在热平衡时温度随海水深度的变化曲线。由图可知:当活塞在理想匀速运动状态时,装置远离热源的位置到达热平衡时的温度随海水深度的增加而降低;装置接近发热源的位置到达热平衡时的温度随海水深度先降低后升高;在所选工况中,海水深度为500 m 时温度最低,在海面时温度最高。通过仿真分析可知,随着海水深度的增加,变浮力装置周围的海水温度不断降低,导致该装置在热辐射、对流、传导时,传出去的热量增加;但随着海水深度的增加,海水压力也会增加,相应的泵和电机的工作负载和发热量会增加。活塞缸式变浮力装置在远离发热源的位置,受海水环境温度的影响较大;在接近热源的位置,在所选工况中,海水深度小于500 m 时,受海水环境温度的影响较大,在海水深度大于500 m 时,受泵和电机的工作负载和发热量的影响较大。
图5 热平衡时各点温度随海水深度变化曲线Fig.5 Curves of temperature at various points during thermal equilibrium changing with water depth
图6 是变浮力装置在海水深度1500 m 时,不同电机转速下装置到达热平衡时的温度场云图。由图可知,变浮力装置到达热平衡时最高温度为40.95℃,存在于泵模型的压盖上。其各点达到热平衡状态后的温度与转速的关系曲线如图7 所示。图中,电机转速为5000 r/min 时,装置到达热平衡时的温度最高,此时电机功率最高,散发出的热量最大,故而在热平衡状态时的温度最高;由于点F距离热源较远,受热源影响温度变化较小,故温度基本保持不变。
图6 不同电机转速下装置到达热平衡时温度场云图Fig.6 Contours of temperature field of the device at thermal equilibrium at different motor speeds
图7 热平衡时各点温度随电机转速变化曲线Fig.7 Curves of temperature at various points during thermal equilibrium changing with motor speed
当水下滑翔机在海水深度为1500 m 时,其变浮力装置达热平衡时的温度在电机转速为5000 r/min时工况最高。此时,装置中作为热源的电机和泵的温度在几个测试点中最高,温度分别为31.97℃和40.95℃。其次右侧活塞的温度为6.66℃,端盖处的温度为3.90℃,接近热源的缸筒外表面的温度为3.55℃,远离热源的缸筒外表面的温度为3.00℃,趋近于海水温度。结果表明,该变浮力装置到达热平衡时的温度满足设计要求,处于正常工作状态。
3 结论
文中建立了变浮力装置的热力学仿真模型,对变浮力装置在不同转速下达到热平衡时温度场的分布进行了仿真计算,获得了变浮力装置温度随海水深度和电机转速的变化规律。
1) 当活塞在理想匀速运动状态时,变浮力装置远离热源的位置到达热平衡时的温度随海水深度的增加而降低。装置接近发热源的位置到达热平衡时的温度随海水深度先降低后升高,在所选不同海水深度的工况中,海水深度为500 m 时温度最低,在海面时温度最高。
2) 当活塞在理想匀速运动状态时,变浮力装置在海面处和水深100 m 处到达热平衡时的最高温度存在于右侧活塞上,分别为31.49℃和26.90℃。其余工况下,装置到达热平衡时的最高温度均存在于泵模型的压盖上,海水深度为1500 m 时,最高温度值为29.22℃。
3) 变浮力装置在1500 m 处正常运行时,在所选不同电机转速的工况中,电机转速为5000 r/min时,装置到达热平衡时的温度最高,为40.95℃,存在于泵模型的压盖上。
采用有限元软件对变浮力装置进行了热力学仿真,得到了由于变浮力装置的电机和泵在运行工作时散发的热量对装置温度场的影响规律以及变浮力装置在达到稳态热平衡时温度场的分布,找到了装置热平衡时温度较高的点,对分析变浮力装置在工作时是否会由于热量过热、温度过高而影响到装置正常运行的问题具有参考意义。该模型考虑到了海水温度以及海水压力等因素,具有一定的准确性。
由于计算机能力的限制,文中将内部的模型简化,网格不够精确,海水的对流换热系数无法进行精确计算。接下来将细化模型内部结构和网格,通过获取该装置所处位置的海水,测其温度、深度、盐度以及海水流速等水文数据,计算该位置海水的对流换热系数,以获得更为精确的结果。