APP下载

SMILE术后角膜体积的变化及其与角膜生物力学特性的相关性

2022-09-19刘志慧李雪郑志源陆强

眼科学报 2022年8期
关键词:屈光负相关眼压

刘志慧,李雪,郑志源,陆强

(佛山市第二人民医院视光学中心,广东 佛山 528000)

近年来的飞秒激光小切口角膜基质透镜取出术(femtosecond laser small incision lenticule extraction,SMILE)是目前主要的角膜屈光手术之一。有研究[1-2]表明因角膜组织的切除伴随着角膜体积(corneal volume,CV)的改变,同时引起一定程度的角膜生物力学特性的改变。Pentacam(Pentacam HR,Oculus,Wetzlar,Germany)三维眼前节分析系统可以提供有足够的重复性、可靠性和重现性的表征角膜结构及形态的CV[3]。新一代可视化角膜生物力学分析仪(corneal visualization Scheimpflug technology,Corvis®ST)提供量化角膜生物力学状态的各项角膜生物力学参数[4-5]。现研究发现CV的改变以及角膜形态的改变与角膜生物力学改变有一定的相关性,CV的变化可能是角膜扩张症发展的预测因素[2-3,6]。本研究分析SMILE术前后CV的改变与新一代Corvis®ST提供的新型角膜生物力学参数之间的相关性,预期CV对于评估SMILE术后角膜生物力学特性以及预测屈光手术的结果方面是有价值的;旨在进一步证明SMILE术后不同区域的CV的变化除了表征术后角膜组织结构变化外,还可以表征术后部分角膜生物力学特性的改变,CV可能成为表征角膜屈光术后角膜扩张发展的预测因素。

1 对象与方法

1.1 对象

采用前瞻性病例观察研究。收集2021年1月至8月在佛山市第二人民医院视光学中心拟行SMILE角膜屈光手术的近视及近视散光患者。随访跟踪术前和术后3个月的数据。为避免双眼相关性,选择纳入患者的一个合适眼(右眼或者左眼)。纳入标准:1)年龄18~35岁;2)角膜透明形态正常,无云翳或斑翳;3)2年内屈光稳定或者每年屈光度变化量≤0.5 D;4)停戴软性角膜接触镜≥2周,停戴硬性角膜接触镜≥1个月,停戴角膜塑形镜≥3个月;5)中央角膜厚度(central corneal thickness,CCT)>470 μm,眼压范围13~20 mmHg(1 mmHg=0.133 kPa)。排除标准:1)圆锥角膜及疑似圆锥角膜者;2)有眼部手术外伤史或者手术史;3)有眼部活动性疾病;4)有角膜营养不良、青光眼、糖尿病、全身结缔组织疾病或者自身免疫性疾病;5)瘢痕体质;6)扫描质量差、术中并发症和数据缺失的受试者。本研究遵守赫尔辛基宣言,并获得佛山市第二人民医院医学伦理委员会的论证和同意,所有患者签署手术知情同意书。根据术前CCT将患者分为3组,470~<530 μm为低角膜厚度组(22眼),530~<560 μm为中角膜厚度组(25眼),≥560 μm为高角膜厚度组(25眼)。

1.2 方法

所有患者行常规术前眼科检查,包括裸眼视力检查、复方托吡卡胺散瞳验光和综合验光确定屈光度、角膜测厚度、眼前节检查、非接触眼压计眼压测量、眼底检查。手术方式是SMILE,采用德国蔡司公司VisuMAX飞秒激光系统进行术眼角膜扫描切割,激光频率为500 kHz,能量为110 nJ,角膜帽厚度为120 μm,直径为7.3 mm,透镜直径为6.5 μm,切口位于颞上方,切口宽度为3 mm。术前3 d常规使用玻璃酸钠滴眼液及抗生素滴眼液;手术均由同一位主任医师操作,手术过程顺利;术后常规抗生素及糖皮质激素滴眼液使用,术后常规1 d、1周、1个月和3个月复查,复查情况良好,未出现感染、弥漫性层间角膜炎等术后并发症。

1.3 观察指标

1.3.1 新一代Corvis®ST测量角膜生物力学参数

Corvis®ST是一种使用高强度空气脉冲使角膜发生形变,并且使用高速Scheimpflug相机实时动态地记录其角膜形变的整个过程的活体测量新设备。选择测量显示“OK”的数据。重复测量3次,取平均值,间隔2~5 min进行。新型整合参数包括非接触生物力学校正眼压(biomechanical intraocular pressure,bIOP)、2 mm处变形幅度的比值[DA ratiomax(2 mm),DA2ratio]、综合半径(Integrated inverse concave radius,IR)、水平方向Ambrôsio相关厚度,最薄点厚度/厚度变化率(Ambrósio’s relational thickness,ARTh)、第一次压平时角膜硬度参数(stiffness parameter applanation 1,SP-A1)、Corvis生物力学指数(Corvis biomechanical index,CBI)和应力和应变参数(stress-strain index,SSI)。

1.3.2 Pentacam测量眼前段形态参数

Pentacam眼前节分析系统使用旋转的Scheimpflug原理,以非侵入性方式获取眼前节的三维立体图图像,评估眼前段生物测量值,重复测量3次,取平均值,间隔2~5 min进行。参数包括CCT、角膜曲率及CV。距角膜顶端直径3 mm、5 mm部分为角膜中心区域(CV3mm、CV5mm),7 mm的区域(CV7mm)、假设直径为10 mm的总角膜体积(CV10mm)定义为角膜周边区域。

以上检查由同一位有经验的技术人员完成。

1.4 统计学处理

采用IBM-SPSS 26.0统计学软件分析数据。对本研究参数值均进行描述性检验统计和采用Kolmogorov-Smirnov检验正态性;应用成对样本t检验或Wilcoxon符号秩检验来分析SMILE术前后各项参数的变化;单因素方差分析及LSD-T检验事后多重分析不同角膜厚度组的差异性;由于观察参数变量之间存在多重共线性且样本量小,通过预测误差均方根(root mean square error of prediction,RMSEP)确认主成分数量后进行偏最小二乘回归(partial least square linear regression,PLSLR)和Spearman相关性有效性检验分析相关性。以P<0.05为差异有统计学意义。

2 结果

2.1 基本资料

纳入患者72例(72眼);其中男27例,女45例,年龄17~37(25.28±0.67)岁;等效球镜度(spherical equivalent,SE)为-2.125~-10.375(-4.84±0.21) D;眼轴(axial length,AL)为(25.66±0.10) mm;CCT为476~623(545.50±3.70) μm;眼压为12~24(16.81±0.33) mmHg。3组术前屈光度、年龄、AL及曲率比较差异无统计学意义(均P≥0.05,表1)。

表1 不同厚度组的术前基线资料Table 1 Preoperative baseline data and cutting depth for different thickness groups

2.2 SMILE手术前后不同区域的CV等形态及结构参数的变化

SMILE术后3个月,眼压、CCT、CV3mm、CV5mm、CV7mm和CV10mm均较术前显著降低(P<0.05,表2,图1)。CV变化量从小到大依次为CV3mm、CV5mm、CV7mm、CV10mm;越往周边区域CV减少量增加。不同角膜厚度组的术前CV3mm、CV5mm差异具有统计学意义(P<0.05),但术后CV差异无统计学意义(P>0.05,表3)。

图1 SMILE术前及术后3个月CV3mm、CV5mm、CV7mm和CV10mmFigure 1 CV3mm,CV5mm,CV7mm,and CV10mm at preoperation and 3 months after SMILE

表2 SMILE手术前后CV、CCT和眼压的变化Table 2 Changes of CV,CCT and intraocular pressure before and after SMILE

表3 不同厚度组的不同区域CV比较Table 3 Comparison of CV in different areas of different thickness groups

2.3 角膜生物力学新型整合参数

SMILE术后3个月,bIOP、ARTh、SP-A1和SSI较术前基线明显下降;DA2ratio、IR和CBI较术前明显升高,差异均有统计学意义(均P<0.05)。

术前和术后3个月ARTh、SP-A1、DA2ratio、IR和CBI组间差异均有统计学意义(P<0.05);bIOP、SSI组间差异无统计学意义(P>0.05)。与手术前比较,术后高角膜厚度组ARTh、SP-A1、DA2ratio、IR、CBI和SSI差异有统计学意义(P<0.05);与手术前比较,术后低中角膜厚度组ARTh、SP-A1、DA2ratio、IR和CBI差异有统计学意义(P<0.05);SSI术后无显著变化(P>0.05;表4,5)。

表4 SMILE术前和术后3个月角膜生物力学新型整合参数的变化Table 4 Changes in corneal biomechanical parameters before and 3 months after SMILE

表5 不同厚度组SMILE术前和术后3个月角膜生物力学新型整合参数的比较Table 5 Comparison of new corneal biomechanical integration parameters for SMILE of different thickness groups before and 3 months after SMILE

对比低角膜厚度组16例术前和高角膜厚度16例术后的角膜生物力学参数和角膜厚度、眼压,结果显示两组ARTh、IR、CBI参数差异具有统计学意义(P<0.01,表6)。

表6 16例低角膜厚度组术前角膜生物力学参数和16例高角膜厚度组术后的角膜生物力学参数对比Table 6 Comparison of corneal biomechanical parameters between 16 patients with low corneal thickness before SMILE and 16 patients with high corneal thickness after SMILE

2.4 角膜生物力学参数与CV相关性分析

经Spearman相关性分析,再通过RMSEP选择主成分数量为3进行PLSLR分析。在PLSLR分析中,应考虑角膜厚度和眼压等对角膜生物力学参数的显著相关会掩盖其他参数的相关性研究,因此去除眼压和角膜厚度后进行PLSLR分析相关性研究(表7~9)。

表7 SMILE术前角膜生物力学参数与术前角膜体积等形态及结构参数的相关性Table 7 Correlation between corneal biomechanical parameters before SMILE and preoperative morphological and structural parameters before SMILE

2.4.1 SMILE术前角膜生物力学参数与术前CV等形态及结构参数的相关性

术前bIOP、DA2ratio、IR、ARTh、SP-A1和CBI与眼压均有相关性(P<0.05),DA2ratio、IR、ARTh、SP-A1和CBI与CCT显著相关(P<0.05),bIOP和SSI与CCT无相关性(P>0.05),SSI与眼压无相关性(P>0.05);DA2ratio与CV3mm、CV5mm呈负相关(r=-0.512、-0.362,P<0.05),与CV10mm呈正相关(r=0.679,P<0.05);ARTh与CV3mm、CV5mm呈正相关(r=0.324、0.241,P<0.05),与CV10mm呈负相关(r=-0.340,P<0.05);bIOP与CV10mm呈正相关(r=0.276,P<0.05);IR与CV3mm、CV5mm呈负相关(r=-0.376、-0.264,P<0.05),与CV10mm呈正相关(r=0.510,P<0.05);SP-A1与CV3mm、CV5mm呈正相关(r=0.465、0.330,P<0.05),与CV10mm呈负相关(r=-0.608,P<0.05);CBI与CV3mm、CV5mm和CV10mm呈负相关(r=-0.316、-0.244、-0.264,P<0.05),SSI与CV3mm呈正相关(r=0.251,P<0.05),与CV10mm呈负相关(r=-0.295,P<0.05,表7)。

2.4.2 SMILE术后3个月角膜生物力学参数与CV等形态及结构参数的相关性

SMILE术后3个月bIOP、DA2ratio、IR、ARTh、SP-A1、CBI和SSI与眼压均有相关性(P<0.05),DA2ratio、IR、ARTh、SP-A1和CBI与CCT显著相关(P<0.05),SSI与CCT无相关性(P>0.05);ARTh与CV3mm、CV5mm呈正相关(r=0.376、0.203,P<0.05),与CV10mm呈负相关(r=-0.417,P<0.05);CBI与CV3mm呈负相关(r=-0.214,P<0.05)、CV10mm呈正相关(r=0.290,P<0.05,表8)。

表8 SMILE术后3个月角膜生物力学参数与形态及结构参数的相关性Table 8 Correlation of corneal biomechanical parameters with morphological and structural parameters 3 months after SMILE

2.4.3 SMILE术后角膜生物力学参数变化量与CV等形态及结构参数变化量的相关性

SMILE手术前后bIOP、DA2ratio、IR、SP-A1和CBI变化量均与眼压变化量呈显著相关(均P<0.05),DA2ratio、IR、ARTh、SP-A1和CBI变化量与CCT变化量显著相关(均P<0.05);ARTh变化量与CV3mm、CV5mm变化量呈正相关(r=0.392、0.453,P<0.05),与CV10mm变化量呈负相关(r=-1.047,P<0.05);bIOP变化量与CV3mm、CV5mm变化量呈负相关(r=-0.272、-0.311,P<0.05),与CV10mm变化量呈正相关(r=0.822,P<0.05);IR变化量与CV10mm变化量呈负相关(r=-0.487,P<0.05);SP-A1变化量与CV5mm变化量呈负相关(r=-0.229,P<0.05),与CV10mm变化量呈正相关(r=-0.549,P<0.05);CBI变化量与CV3mm、CV5mm变化量负相关(r=-0.224、-0.263,P<0.05),与CV10mm变化量呈正相关(r=0.468,P<0.05,表9)。

表9 SMILE术后3个月角膜生物力学参数变化量与形态及结构参数变化量的相关性Table 9 Correlation of changes of corneal biomechanical parameters with changes of morphological and structural parameters 3 months after SMILE

3 讨论

在近年来的角膜屈光手术研究领域中,CV是表征角膜结构和影响角膜生物力学特性的重要的角膜结构参数之一,研究也表明角膜组织量的区域空间分布特征对角膜屈光手术适应证的筛选和术后随访都极其重要[3,7]。本研究旨在探讨成人SMILE术后早期不同区域的CV的变化,应用新一代Corvis®ST提供的角膜生物力学参数分析SMILE术后早期角膜生物力学特性的变化,并探讨之间的相关性,进一步证明CV对于评估SMILE术后角膜生物力学特性以及预测屈光手术的结果方面的价值。

以往研究[3]表明CV和角膜厚度都是反应角膜结构和角膜组织量的重要指标。本研究应用Pentacam眼前节分析系统测量CV3mm、CV5mm、CV7mm、CV10mm和CCT,分析了SMILE术后3个月不同区域CV的变化情况,结果显示SMILE术后3个月CV3mm、CV5mm、CV7mm、CV10m和CCT均较术前明显减少。有研究[3,8-9]提出CV是角膜屈光手术术后评估的重要指标,可以成为表征预测角膜扩张发展的因素。Wei等[7]认为SMILE术后CV和角膜厚度的减少与角膜手术切削角膜组织量和术后反应等相关,研究FS-LASIK和SMILE术后不同区域CV的变化并进行对比,发现SMILE术后3个月不同区域的CV减少,使得角膜胶原纤维数量减少和角膜外基质成分减少,进而引起角膜生物力学的改变。Sedaghat等[10]也提到CV与角膜生物力学参数角膜滞后量和阻力因子量相关。本研究也发现CV术前后变化量从小到大依次为CV3mm、CV5mm、CV7mm、CV10mm,越往周边区域CV减少量增加,考虑可能的原因与Reinstein等[11]提到的SMILE在基质层制作透镜后胶原纤维被切断,所在区域两侧的胶原纤维回缩,层间黏合力下降,从而中央区域的基质贴合较周边松弛有关,因此周边区域CV偏大。

本研究中新一代Corvis®ST提供的角膜生物力学参数与CCT和眼压显著相关,角膜生物力学参数变化与不同区域CV变化存在有一定的相关性。Wei等[7]认为角膜基质胶原纤维呈异向性排列,相互交联,从角膜中央区到周边变得更明显,这样有助于角膜缘维持抗张力。角膜结构及组织量的稳定有助于角膜生物力学的稳定,SMILE术后由于角膜组织量切削导致CV减少,角膜所含的胶原纤维和细胞外基质成分减少,提供维持机械强度的胶原纤维减少,使得角膜机械强度下降。有趣的是,本研究对比了低角膜厚度组16例术前和高角膜厚度16例术后的角膜生物力学参数和角膜厚度、眼压,结果显示尽管这两组的角膜厚度(CCT)和眼压无明显差异,ARTh、IR、CBI这3项角膜生物力学参数仍然显示明显差异。ARTh指最薄点的角膜厚度与角膜厚度变化率的比值,值越小说明CCT薄或角膜厚度由内到外变化大,而角膜厚度测量的是角膜中央或者某个区域的厚度,本研究中ARTh的差异性也进一步提示角膜厚度不能全面反映角膜屈光术后角膜组织量的变化;IR指反向凹面半径曲线下的面积,反应角膜的整体硬度,值越大说明角膜抵抗形变的能力越弱,角膜硬度越低;CBI指基于角膜厚度分布及变形特点的参数,由6个不同的Corvis®ST角膜生物力学参数通过逻辑回归公式计算得来,在logistic回归分析的基础上,考虑了角膜变形反应指数和角膜厚度信息[12]。Wei等[7]和Han等[13]提到CCT的变化并不能全面反映角膜组织的实际变化,CV可以表征整体的变化量,并以单一值表征角膜形态变化[7,13]。因此,本研究探讨SMILE术后CV的变化对角膜生物力学特性的影响;在CV的改变可以表征部分角膜生物力学特性的改变方面提出了假设,今后的研究也可以延长随访时间,更合理地设计加大样本量,来进一步证实观点。

本研究SMILE术后3个月的角膜生物力学参数中bIOP、ARTh、SP-A1和SSI较术前基线明显下降;DA2ratio、IR和CBI较术前明显升高。以往的研究[1,5,14]应用角眼反应分析仪和Corvis®ST研究角膜屈光术后生物力学特性的变化,提出角膜屈光手术均显著改变了角膜的生物力学特性。Yu等[15]和Spadea等[16]指出角膜生物力学变化在临床上可以表现为角膜的形态改变,角膜形态改变引起的生物力学反应改变,并且角膜生物力学特性在很大程度上是比较复杂并且随时间有变化的;Fernández等[17]应用Corvis®ST动态图像分析仪提供的新参数对小切口皮孔摘除术后的生物力学变化进行了研究,发现术后1个月角膜生物力学参数变化显著。Cao等[18]提到角膜生物力学的改变只发生在SMILE术后的早期,与透镜移除和重建新的生物力学平衡有一定的关系。Chen等[19]提到bIOP是根据角膜形态、角膜厚度及生物组织特性,矫正生物力学参数,反映受检者实际眼压,独立于CCT的参数;同时也可能受到测量的时间和其他因素的影响。以往的研究[20]表明角膜生物力学参数与角膜厚度和眼压显著相关,SSI参数几乎独立于bIOP和角膜厚度,角膜生物组织的应力应变是非线性,角膜在不同的压力负荷下表现出生物力学特性的变化[12,21];本研究中显示低角膜厚度组术前后SSI变化不大,较为稳定,高度角膜厚度组术前后SSI变化显著,可能解释有两个方面,一是与Zhang等[22]提到的角膜生物力学的代偿效应有关,角膜厚度越薄的患者在SMILE术后SSI越需要将角膜材料性刚度维持相对稳定,为维持术后角膜生物力学稳定而呈现出的一种代偿效应。第二种解释是SSI参数设计的模型针对正常的角膜,而近视激光术后或者扩张性疾病的角膜可能超出模型假设的限制,有研究[23-24]提出现扩张性疾病进展或者经治疗后SSI会发生改变。目前的研究[25]也有提到Corvis®ST测量的角膜生物力学参数受到很多混杂因素的影响,SMILE术后3个月角膜处在伤口愈合期,所测量的角膜生物力学参数表征术后伤口愈合期的角膜生物力学反应,这些变化可以解释为术后早期产生一个更复杂的生物力学稳定结构。在应用新一代Corvis®ST测量的生物力学参数解释生物力学特性的改变时应谨慎,或者需要更全面、更长期的研究数据支持。

综上所述,成人SMILE术后3个月中央和周边区域的CV、眼压、CCT较术前均显著降低;并且越往周边区域CV减少量增加。SMILE术后3个月角膜生物力学新型参数较术前发生了显著的变化。不同区域CV与新一代Corvis®ST角膜生物力学新型参数存在一定的相关性,预期SMILE术后不同区域的CV可以表征术后部分角膜生物力学特性的改变,CV可能成为表征预测角膜扩张发展的因素,为临床提供科学依据。

开放获取声明

本文适用于知识共享许可协议(Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/。

猜你喜欢

屈光负相关眼压
纯电动汽车绝缘电阻仿真检测系统设计
眼压自测法——指测法
看书后头晕、眼发糊, 赶紧查查“屈光参差”
注射胰岛素后眼花怎么办
轻压眼球自测眼压
惠州地区脑卒中发生与天气变化的相关性分析
幼儿教师职业倦怠及主观幸福感状况研究
不同抗青光眼眼药对开角型青光眼 h眼压的影响观察
近视激光手术,小孩也能做
翻译心理与文本质量的相关性探析