MoS2光学性质的第一性原理计算
2022-04-17冯金娇范雅文
冯金娇,范雅文,赵 辉
(天津师范大学物理与材料科学学院,天津 300387)
近年来,MoS2作为最常见的过渡金属二元化合物半导体材料,一直备受关注.单层MoS2是一种直接带隙半导体,因其独特的电学和光学性质(如高光响应性和吸收能力)成为一种非常有潜力的光电材料[1-2].此外,单层MoS2的比表面积较高,使其在传感器领域具有广阔的应用前景.目前,实验制备单层MoS2最常见的方法是化学气相沉积法[3-4].所得材料的性能与沉积的薄膜厚度息息相关[5],如单层和双层MoS2晶体管对绿光的光响应非常好,而3层MoS2纳米片晶体管对红光的响应良好,因此,准确识别化学气相沉积生长的MoS2的层数非常重要.
电子结构的改变和缺陷的引入会影响材料的性能,因此,辐照通过改变二维材料的电子结构或产生缺陷对单层MoS2的光学性质产生影响[6].He等[7]通过实验证明采用Au+辐照单层MoS2可以产生多为空位密度可控的缺陷.Feng等[8]利用第一性原理平面波赝势方法研究了带电空位对单层MoS2电子结构和光学性质的影响,证明中性S空位的引入可以使单层MoS2由直接带隙变为间接带隙.因此,缺陷的引入会对材料电子结构和光学性能产生一定影响,而确定材料引入的主要缺陷类型是研究其对光学性质影响的关键.拉曼光谱是用于分析晶体结构的一种方法,通过对与入射光频率不同的散射光进行分析,得到分子振动和转动方面信息,是识别和研究层状材料缺陷类型的重要工具[9].本研究基于密度泛函理论,对1~3层MoS2的能带结构、拉曼光谱和光学性质以及具有空位缺陷的单层MoS2的拉曼光谱和光学性质进行计算和分析.
1 计算方法和模型构建
本研究的计算采用基于密度泛函理论平面波赝势方法的CASTEP软件完成.电子间相互作用的交换关联能采用局域密度近似(LDA)框架下的CA-PZ泛函.离子实与价电子之间的相互作用势采用模守恒赝势(norm conserving pseudopotential)描述,选取的电子组态为Mo:4d55s1和S:3s23p4.采用TPSD优化方法对所有模型进行几何结构优化,优化电子结构的收敛条件设置为:能量收敛标准为1×10-6eV/atom,原子间的相互作用力收敛标准为0.3 eV/nm,原子的最大位移收敛标准为1×10-4nm,晶体内应力收敛标准为0.05 GPa.平面波膨胀的截止能量为650 eV,S空位缺陷采用3×3×1超晶胞构型,Mo空位缺陷采用5×5×1超晶胞构型.为了防止因周期性计算方法引入相互作用,将层间的真空层厚度设定为1.8 nm.
图1为不同层数的MoS2结构示意图,其中图1(a)~图1(c)分别为单层MoS2、双层MoS2和3层MoS2,图1中紫色球表示Mo原子,黄色球表示S原子.
图1 MoS2的结构示意图Fig.1 Crystal structure diagram of MoS2
在单层MoS2晶胞基础上,构建3×3×1的S空位超晶胞构型和5×5×1的Mo空位超晶胞构型,结果如图2所示,图2中白色球表示S空位缺陷.
图2 单层MoS2的空位缺陷超晶胞结构示意图Fig.2 Structure diagram of vacancy defect supercell of monolayer MoS2
2 结果与讨论
2.1 1~3层MoS2的能带结构
已有的理论[10]和实验[11]结果均表明,MoS2的能带结构和性能与层数密切相关.不同层数MoS2的能带结构如图3所示.
由图3(a)可知,单层MoS2是带隙为1.826 eV的直接带隙半导体,价带最大值和导带最小值均位于布里源区K点.随着层数的增加,材料由直接带隙向间接带隙转变,并伴随着带隙的减小.由图3(b)和图3(c)可知,双层和3层MoS2是带隙为1.108 eV和0.741 eV的间接带隙半导体,价带最大值位于G点,导带最小值位于K~G范围内.
图3 MoS2的能带结构Fig.3 Energy band structure of MoS2
2.2 1~3层MoS2的拉曼光谱
拉曼光谱可用于识别少数层MoS2,通过2个拉曼特征峰的波数差来确定MoS2的层数.文献[12]中,利用拉曼光谱对CVD法生长的不同厚度MoS2纳米片进行表征,每条MoS2薄膜拉曼光谱约在380 cm-1和400cm-1处观察到2个明显的特征峰[12].拉曼峰的位置与厚度密切相关,随着层数的变化,2个拉曼峰的峰位发生明显位移.为了识别出单层MoS2,本研究计算得到1~3层MoS2的拉曼光谱,结果如图4所示.通过与实验值[12]进行比较,可以确定图4中由上到下的曲线分别对应3层MoS2、双层MoS2和单层MoS2.
图4 1~3层MoS2的拉曼光谱Fig.4 Raman spectra of 1-3 layer MoS2
由图4可以看出,随着层数的减少,1~3层MoS2在380 cm-1处的峰发生蓝移,400 cm-1处的峰发生红移.发生蓝移和红移的原因是随着层数的减少,范德华力逐渐增大,而由于层与层之间的范德华相互作用,多层MoS2的A1g振动模式受到抑制,单层MoS2的A1g振动模式不受影响[13].实验研究[14]表明可以通过2个拉曼峰的频率差来确定MoS2的层数,单层MoS2的2个拉曼峰的频率差≤20.00 cm-1,这与本研究的计算结果一致.
此外,从群论的角度分析,单层MoS2的空间群为P-6m2,属于D3h点群,根据其所属的空间群的群论分析可知,gamma点振动模的对称性结果为
拉曼活性的大小与拉曼峰值的强弱息息相关.单层MoS2在380 cm-1和400 cm-1处具有拉曼活性且活性较强才会出现2个明显的特征峰,其中380 cm-1处的拉曼峰为一种平面内振动模式,即E′模式,由2个硫原子与钼原子振动方向相反产生;400 cm-1附近的拉曼峰为一种平面外振动模式,即A1′模式,由2个硫原子垂直于平面的反向振动产生.
2.3 缺陷模型的拉曼光谱
实验研究中[15],中子辐照后的单层MoS2拉曼光谱的峰位相较于完整晶体发生明显红移,拉曼峰的峰宽增加至18 cm-1,且在440~460 cm-1附近出现新的峰,峰宽达到20 cm-1以上.图5为计算所得单层MoS2的S空位和Mo空位拉曼光谱.
图5 单层MoS2晶体S空位和Mo空位拉曼光谱Fig.5 S-vacancy and Mo-vacancy Raman spectra of monolayer MoS2 crystal
为了更好地与实验结果[15]对比,仅讨论360~480 cm-1的拉曼峰.S空位MoS2晶体在375、410和464 cm-1处出现3个拉曼峰,其中464 cm-1处拉曼峰的峰位略高于实验数据440~460 cm-1处的拉曼峰,但仍在误差允许的范围内,说明464 cm-1处的拉曼峰是S空位缺陷的标志.Mo空位MoS2晶体的拉曼峰出现在369、389和401 cm-1处,其中389 cm-1处的拉曼峰强度低于401 cm-1处的拉曼峰强度,且与实验结果中380 cm-1和400 cm-1处拉曼光谱符合较好,说明在380 cm-1和400 cm-1处的拉曼峰有Mo空位的贡献.
此外,从群论的角度分析,具有S空位的单层MoS2属于C3v点群,gamma点振动模的对称性结果为
由群论分析可知,具有S空位的单层MoS2应该有52个拉曼峰,有的峰没有拉曼活性或拉曼活性强度较弱,在拉曼光谱中并不能被观察到.本研究对360~480 cm-1处的拉曼峰进行群论分析,375 cm-1附近的拉曼峰由E振动模式产生;410 cm-1附近的拉曼峰较为平缓,峰宽达到12 cm-1左右;400~420 cm-1处有8个峰具有拉曼活性,且活性强度接近,因此在拉曼光谱图中表现为1个比较平缓的拉曼峰,峰值宽度变大;464 cm-1处的拉曼峰是S空位的标志,由A1振动模式产生.
具有Mo空位的单层MoS2属于D3h点群,gamma点振动模的对称性结果为
Γ=33E″+41E′+21A2″+12A1″+18A2′+23A1′
由群论分析可知,具有Mo空位的单层MoS2应该有148个拉曼峰,有的峰没有拉曼活性或拉曼活性强度较弱,并不会形成拉曼峰,因此在拉曼光谱中观察不到.在拉曼光谱中主要观察到10个拉曼峰,且它们的振动模式主要是E′模式和A1′模式.本研究主要对360~480 cm-1处的拉曼峰进行分析.在这个区间内,具有拉曼活性且拉曼活性较强的峰值有22个,其中369、389和401 cm-1处峰的拉曼活性较强,因此在拉曼光谱图中表现出较明显的特征峰.364 cm-1~370 cm-1处有5个活性强度较接近的拉曼峰,因此在此区间出现1个较为平缓的拉曼峰.400 cm-1附近存在7个活性强度相近的拉曼峰,因此400 cm-1处的拉曼峰比较平缓.
2.4 空位缺陷形成能
为了进一步确定构型的产生,计算Mo空位和S空位的缺陷形成能[16]
式(1)中:Esys和Epristine为缺陷系统和原始系统的能量;m为缺陷数量;μi为i原子的化学势.
缺陷形成能的数值直接反映了形成缺陷的难易程度.单层MoS2空位缺陷的形成能如表1所示.由表1可知,在富S条件下,S空位的形成能为2.69 eV;在富Mo条件下,Mo空位的形成能为7.98 eV.Mo空位的形成能远高于S空位形成能,说明在相同条件下S空位更容易形成.与文献[17-19]对比,本研究结果均在误差允许范围内,说明在单层MoS2中,Mo空位和S空位是比较容易形成的.
表1 单层MoS2空位缺陷的形成能Tab.1 Formation energy of vacancy defects in single layer MoS2
2.5 光学性质
为了研究1~3层MoS2的光学性质以及缺陷对单层MoS2光学性质的影响,通过计算其复介电函数虚部来描述材料的光学性质,结果如图6所示.
图6 MoS2介电函数虚部示意图Fig.6 Diagram of the imaginary part of the dielectric function of MoS2
由图6(a)可以看出,单层MoS2介电函数虚部在0~18 eV能量范围出现的结构峰是价带到导带的吸收跃迁产生的.而在3.0 eV附近出现强度较高的峰说明单层MoS2晶体具有很高的光学吸收能力,这与Hieu等[20]的计算结果(2.9 eV)比较接近.2~3层MoS2的介电函数虚部与单层MoS2的介电函数虚部具有相似的外形,但3层MoS2的介电函数虚部在3.0 eV附近的峰值强度更高,表明3层MoS2的光学吸收能力更好.由图6(b)可以看出,含有S空位和Mo空位缺陷的单层MoS2介电函数虚部也有与单层MoS2相似的外形,但由于空位缺陷的局域效应,发生略微红移.含有Mo空位缺陷的单层MoS2介电函数虚部在0.6~1.2 eV附近出现新的峰是原子被移除后形成的悬挂键和缺陷态造成的[8],但Mo空位缺陷浓度较低,出现的新峰峰强较低.Kunstmann等[21]研究发现,S空位的吸收起始点略低于理想体系吸收边缘,这与本研究结果符合良好.
3 结论
本研究基于密度泛函理论的第一性原理,计算了1~3层MoS2的能带结构、拉曼光谱以及空位缺陷的单层MoS2的拉曼光谱,并对其光学性质进行分析,得到以下结论:
(1)对于1~3层MoS2的能带结构,单层MoS2是带隙为1.826 eV的直接带隙半导体,双层MoS2是带隙为1.108 eV的间接带隙半导体,3层MoS2是带隙为0.741 eV的间接带隙半导体
(2)对于层数较少的MoS2的拉曼光谱,随着层数的减少,其380 cm-1处的拉曼峰发生蓝移,400 cm-1处的峰值发生红移,这与实验结果相符.与实验拉曼光谱相比,Mo空位和S空位是快中子辐照单层MoS2后的主要构型,S空位的形成能为2.69 eV,Mo空位的形成能为7.98 eV.
(3)S空位和Mo空位单层MoS2的介电函数虚部与1~3层MoS2介电函数虚部具有相似的外形,但由于缺陷的局域效应,发生略微红移.