APP下载

超低密度水泥固井质量评价方法

2022-03-14吴天乾宋文宇谭凌方张军义杨春文郭胜来

石油钻探技术 2022年1期
关键词:水泥石声速固井

吴天乾, 宋文宇, 谭凌方, 张军义, 杨春文, 郭胜来

(1.中石化华北石油工程有限公司技术服务公司, 河南郑州 450006;2.中国石油大学(华东)石油工程学院, 山东青岛 266580)

随着固井技术的发展,超低密度水泥浆得到广泛应用[1–2],尤其是针对低压易漏、密度窗口窄的层位,超低密度水泥浆解决了水泥返高不够、固井漏失等问题,并显著提高了固井质量[3]。如东胜气田储层是典型的低压、低渗、致密层段,由于地层承压能力低,钻井、固井过程中易发生漏失,杭锦旗区块刘家沟组、石千峰组等地层的承压当量密度最低达1.10 kg/L,通过应用超低密度水泥浆,降低了固井漏失率,保证了水泥返高。但超低密度水泥浆的应用也给固井质量评价带来了一系列难题[4–5]。首先是超低密度水泥环的强度、声学特性与测井响应的关系不明确,一方面,随着水泥环密度的降低,其强度和声速也降低,套管与水泥环交界面的声耦合性就会变差,声幅测井响应表现为套管波变强,地层波变弱[6–8];另一方面,漂珠等减轻材料对水泥环的强度和声学特性有一定的影响。其次是超低密度水泥浆固井质量评价指标不明确[9–11],现有标准《固井质量评价方法》(SY/T 6592—2016)只给出了水泥浆密度在1.30 kg/L以上的固井质量评价相对声幅,对于密度低于1.30 kg/L的超低密度水泥浆无明确的评价指标[6];国内外学者针对低密度水泥浆固井质量评价方法进行了大量研究,但未系统研究超低密度水泥浆固井质量评价方法。为此,笔者通过开展室内试验研究,揭示超低密度水泥石的强度和声学特性,结合理论分析,开展了超低密度水泥浆固井质量评价方法研究,得出了科学的评价指标,可准确评价超低密度水泥浆固井质量,为后续作业决策提供科学依据,为安全成井提供技术支持。

1 试验材料与方法

1.1 试验材料和仪器

试验材料主要包括G级油井水泥、漂珠1、漂珠2、漂珠3、微硅、降滤失剂、分散剂和水等,全部材料及配方均与现场保持一致。

试验仪器主要包括高速搅拌器、密度计、六速旋转黏度仪、稠化仪、高温高压滤失仪、恒温养护釜、抗压强度测试仪和声速测试仪等。

1.2 试验方法

首先,设计不同密度的水泥浆配方(设计的7种配方见表1),并配制得到水泥浆;然后,按照《油井水泥性能试验方法》(SY/T 6466—2016)测试和验证不同密度水泥浆的基础性能,包括密度、流变性、滤失量和稠化时间等[12];最后,将配制好的水泥浆体注入多组5cm×5cm×5cm养护模具中,分别置于25,50 和 80 ℃ 的水浴中养护 18,24,48,72,120,240和720 h后,测量养护试块的抗压强度、纵波声速和横波声速。

表1 声学和强度特性试验用超低密度水泥浆配方Table 1 Formula of ultra-low-density cement slurry for measurement of acoustic and strength properties

2 水泥石强度与声学特性影响因素分析

2.1 温度

温度是影响超低密度水泥石强度和声学特性发展规律的重要因素[13–15]。以密度1.33 kg/L的超低密度水泥浆为例,按照1.2节所述试验方法,得出各项试验数据,并绘制得到水泥石抗压强度和纵横波声速发展曲线(见图1和图2)。从图1和图2可以看出,水泥石的抗压强度、纵波声速和横波声速均与养护时间正相关,且在较短时间内抗压强度和声速就会达到较大值,之后抗压强度和声速增大趋势变缓并逐渐趋于稳定。水泥石抗压强度和声速的发展速率与温度同样呈正相关关系,即温度越高,水泥石抗压强度和声速趋于稳定的时间越短。水泥石在50和80 ℃温度下养护 72 h后,其抗压强度和声速基本可达到养护720 h时的85%以上;但在25 ℃温度下养护200 h时的抗压强度和声速才能达到养护720 h时的 85% 以上;养护 200 h以后,抗压强度和声速不同养护温度下的发展规律基本一致。

图1 密度 1.33 kg/L水泥石抗压强度发展曲线Fig.1 Compressive strength of cement stone with a density of 1.33 kg/L

图2 密度1.33 kg/L水泥石纵横波声速发展曲线Fig.2 Acoustic velocities of P-waves and S-waves of cement stone with density of 1.33 kg/L

以上研究表明,温度是影响水泥水化反应速率的重要因素,温度越高,水化反应速率越大,这就导致前期水泥石的抗压强度和声速变化速率受温度影响较大;但不同温度条件下的水泥水化产物类型基本相同,随着养护时间增长,水泥水化反应趋于稳定,表现为不同温度条件下抗压强度和纵横波声速的变化速率较小,且无限接近水泥石的最终抗压强度和声速,即养护后期其抗压强度和声速受温度影响不大[11]。

2.2 水泥浆密度

密度是影响超低密度水泥石强度和声学特性变化规律的另一重要因素。在养护温度80 ℃、养护时间72 h条件下,按照1.2节所述试验方法,测量表1中7个配方所对应水泥石的抗压强度和声速,根据所得数据绘制得到水泥石抗压强度和声速随水泥浆密度的变化曲线,见图3和图4。由图3和图4可以看出,在其他条件相同的情况下,超低密度水泥石的抗压强度和声速与水泥浆密度正相关,即水泥浆密度越高,抗压强度和纵横波声速越大。

图3 抗压强度与水泥浆密度的关系曲线Fig.3 Relationship between compressive strength and cement slurry density

图4 纵横波声速与水泥浆密度的关系曲线Fig.4 Relationship between cement slurry density and acoustic velocities of P-waves and S-waves

分析认为,水泥浆的密度越高,水泥浆中的水泥含量越高,而漂珠等减轻材料含量就会越少,且水泥石更加致密,孔隙度更低,导致其抗压强度和纵横波声速随水泥浆密度升高而升高[13]。

2.3 水泥石声学特性与强度特性之间的关系

水泥石抗压强度与声速正相关,通常抗压强度越高,对应的声速也越高。统计分析不同养护条件下的全部试验数据,对不同密度超低密度水泥浆形成水泥石的抗压强度和纵横波声速进行拟合,结果如图5和图6所示。从图5和图6可以看出,超低密度水泥石抗压强度与纵波、横波声速均呈指数关系。

对图5和图6的水泥石抗压强度与纵波、横波声速进行拟合,可得:

图5 纵波声速与抗压强度的关系曲线Fig.5 Relationship between acoustic velocity of P-wave and compressive strength

图6 横波声速与抗压强度的关系曲线Fig.6 Relationship between acoustic velocity of S-wave and compressive strength

式中:p为水泥石的抗压强度,MPa;vp为水泥石的纵波声速,m/s;vs为水泥石的横波声速,m/s。

根据试验所得数据,得出抗压强度与纵横波声速的拟合关系,见表2。

表2 纵横波声速与抗压强度的拟合关系式Table 2 Fitting relationship between compressive strength and acoustic velocity of P-waves and S-waves

分析认为,水泥水化过程中,固相水化产物含量逐渐增多,孔隙度不断减小,抗压强度和声速均增大。水化反应前期,固相含量增加迅速,水泥石的孔隙度快速减小,造成声速快速增大,但此时水泥石整体骨架结构较弱,且水泥水化产物本身强度偏低,造成抗压强度的发展速率要慢于声速;水泥水化反应中后期,水泥石的固相含量已经趋于稳定,孔隙度变化小,但是水化产物本身的强度更高,水泥石的骨架结构也变得较强,导致水泥石声速增加较小,而抗压强度增幅较大。同时,减轻材料的种类和加量会对水泥石的强度和声速产生一定的影响,表现为不同体系水泥浆形成水泥石的强度和声学特性存在一定的差别[14]。

3 超低密度水泥固井质量评价改进方法

超低密度水泥石声学特性的差异性会影响测井响应,进而对固井质量评价指标的科学性造成一定影响[16],因此通过对比不同胶结指数下的声幅,对超低密度水泥浆固井质量评价相对声幅进行了定量校正。该超低密度水泥浆固井质量评价相对声幅改进算法原理为:根据不同密度水泥石的强度和声学特性进行模拟计算,找出不同胶结情况下超低密度水泥浆固井测井响应和常规密度水泥浆固井测井响应的差别,结合常规密度水泥浆固井质量评价指标,对超低密度水泥浆固井质量评价相对声幅进行校正。其具体过程如下:

1)计算水泥完全胶结时的泄露兰姆波衰减率,计算公式为[16]:

式中: αT为泄漏兰姆波衰减率,dB/m;ρ为固井水泥浆密度,g/cm3;h为套管平板厚度,cm。

为了建立固井质量评价相对声幅与抗压强度的关系,将式(1)、式(2)代入式(3),得到修正后的泄露兰姆波衰减率表达式:

2)计算胶结中等的上限和下限声幅。分别计算胶结指数为0.8和0.6时的测井声幅:

式中:l为测井源距,m;Af0.8为胶结指数为0.8时接收到的理论声幅,mV;Af0.6为胶结指数为0.6时接收到的理论声幅,mV;A0为发射器发射声波的声幅,mV。

3)计算校正系数。根据式(1)—式(6),分别计算待校核密度水泥浆固井的理论测井声幅和常规密度水泥浆固井的理论测井声幅,并进行对比分析,得到改进系数:

式中: λ0.8为胶结指数为0.8时对应的胶结质量中等下限的改进系数; λ0.6为胶结指数为0.6时对应的胶结质量中等上限的改进系数;A1为胶结指数为0.8时常规密度水泥浆固井接收到的理论声幅,mV;A2为胶结指数为0.6时常规密度水泥浆固井接收到的理论声幅,mV;A3为胶结指数为0.8时待校核密度水泥浆固井接收到的理论声幅,mV;A4为胶结指数为0.6时待校核密度水泥浆接收到的理论声幅,mV。

4)校正超低密度水泥浆固井质量评价相对声幅。综合考虑改进系数和常规密度水泥浆固井质量评价相对声幅,得出改进后的超低密度水泥浆固井质量评价相对声幅。相对声幅≤0.15 λ0.8时,为优质;0.15 λ0.8<相对声幅≤0.30 λ0.6时,为中等;相对声幅>0.30λ0.6时,为不合格。

4 相对声幅校正图版建立与验证

以东胜气田三级井身结构为参考,选取计算参数如下:测井源距 1.00 m,套管外径 177.8 mm,套管壁厚10.36 mm。结合表2中超低密度水泥石抗压强度与声速关系的拟合关系式,校正超低密度水泥浆固井质量评价相对声幅,得到基于抗压强度的超低密度水泥浆固井质量评价相对声幅校正图版(见图7)。

从图7可以看出:1)对于同一密度水泥浆,固井质量评价相对声幅随抗压强度升高而减小,即抗压强度越高,相对声幅越小,但当抗压强度升至一定值时,相对声幅趋于稳定;2)相同抗压强度条件下,固井质量评价相对声幅随着水泥浆密度升高而减小,即水泥浆密度越高,相对声幅越小。

图7 基于抗压强度的超低密度水泥固井质量评价相对声幅校正图版Fig.7 Calibration type-curve of relative acoustic amplitude for cementing quality evaluation of ultra-lowdensity cement based on compressive strength

为了验证该方法的可靠性,用其校核密度为1.33 kg/L的超低密度水泥浆固井质量评价相对声幅,按照井底温度为80 ℃、测井时间为72 h计算,此时评价中等的相对声幅在23.0%~43.5%,与行业标准《固井质量评价方法》(SY/T 6592—2016)给出的评价中等的相对声幅22%~45%较为接近,且校核后的评价相对声幅范围更小,具有较好的针对性。

实际应用时,首先根据井内温度设置水泥石试块养护条件;然后根据现场测井时间安排,测量同等养护时间下水泥石的抗压强度;最后根据图版校核评价相对声幅。如东胜气田72井区某井为二开结构定向井,二开钻井过程中多次发生漏失,为了防止固井漏失,采用密度1.15 kg/L的水泥浆作为领浆,封固0~2 332 m井段,固井过程中未见明显漏失,水泥浆一次上返至地面。根据测井时间为72 h和井底温度为70℃等固井质量评价条件,可知室内同等养护条件下水泥石的抗压强度约为7.3 MPa,应用校核图版,得到超低密度水泥浆封固段固井质量评价优质的相对声幅为不大于27%,评价中等的相对声幅为27%~44%,评价差的相对声幅大于44%。

采用此评价相对声幅进行该段固井质量评价,0~340 m井段相对声幅平均为41%,评价为中等;340~1 060 m 井段相对声幅平均为 32%,评价为中等;1 060~1 990 m 井段相对声幅平均为 20%,评价为优质;1 990~2 332 m 井段相对声幅平均为 10%,评价为优质。超低密度水泥浆固井的优质井段占比达46.7%,固井质量整体评价为优质。该井固井施工过程中未见漏失,后期测试、采气等作业环节中未发现管外气窜和井口带压现象,说明固井质量满足生产要求。

5 结 论

1)通过室内试验,揭示了超低密度水泥石的抗压强度、纵横波声速与温度和密度等参数正相关,且超低密度水泥石的纵横波声速与抗压强度存在较好的指数关系。但对于不同密度的水泥浆体系,回归出的关系式存在着一定的差异。

2)根据理论分析结果,建立了校核超低密度水泥浆固井质量评价相对声幅的方法,并给出了具体操作步骤,操作简单、方便,与水泥浆的对应性强。

3)建立了基于抗压强度的超低密度水泥浆固井质量评价相对声幅校核图版,明确了相对声幅与抗压强度和密度的关系,现场应用方便,可根据测井时间和井内环境精确计算出超低密度浆固井质量评价相对声幅,提高固井质量评价的准确性和时效性。

猜你喜欢

水泥石声速固井
提高超低密度水泥石抗压强度的方法
复合纤维增强高温油井水泥石的力学性能研究
CO2埋存条件下SO42-对油井水泥石腐蚀的影响
CO2盐水层埋存条件下Mg2+对油井水泥石腐蚀的影响
提高石油固井施工质量的技术措施
贝克休斯SealBond固井隔离液
声速剖面未知条件下的平均声速计算方法∗
固井数据实时采集系统及运用
声速是如何测定的
跨声速风洞全模颤振试验技术