黑土有效磷阈值区间的磷形态特征及对土壤化学性质的响应
2022-02-01秦贞涵王琼张乃于金玉文张淑香
秦贞涵,王琼,张乃于,金玉文,张淑香
黑土有效磷阈值区间的磷形态特征及对土壤化学性质的响应
秦贞涵,王琼,张乃于,金玉文,张淑香
中国农业科学院农业资源与农业区划研究所/耕地培育技术国家工程实验室,北京 100081
【目的】土壤有效磷(Olsen P)的农学阈值及环境阈值是土壤磷素管理的重要依据,但不同阈值区间磷形态学特征尚不明确。研究黑土有效磷不同阈值区间的磷形态特征及其影响因素,有助于理解土壤磷的转化过程,为优化有效磷管理和提高磷资源利用效率提供参考。【方法】采集吉林公主岭市9个有效磷含量不同(11、21、31、40、57、69、128、331、490 mg·kg-1)的农田耕层(0—20 cm)土壤,利用Tiessen-Moir修正的Hedley磷分级法,对土壤无机磷和有机磷进行分级,并分析其与土壤有机质(SOM)、C/P、铁铝氧化物等土壤化学性质之间的关系,明确土壤有效磷不同阈值区间的磷形态特征及主控因素。【结果】黑土磷库以无机磷为主,占比为71.25%—96.19%,有机磷占比较小,约为3.81%—28.75%。有效磷水平低于农学阈值(7.4—13 mg·kg-1)时,活性态磷(LP)占比最小(19.89%);有效磷水平低于环境阈值(51.0—56.4 mg·kg-1)时,中活性态磷(ML-P)和稳定态磷(OP)占比接近,分别为36.03%和35.49%,均高于LP占比(28.48%);有效磷水平高于环境阈值时,LP占比最高(42.86%)。有效磷水平高于环境阈值时,土壤的LP、ML-P的含量显著高于有效磷水平低于环境阈值的土壤,树脂磷(Resin-P)是环境阈值前后区间变幅最大的磷形态。PAC、M3-Al、游离态铝(Ald)、络合态铁铝(Fep、Alp)、非晶质态铁铝(Feo、Alo)随有效磷水平的增加而显著增加,C/P随有效磷水平增加而显著降低。相关分析表明,有效磷水平低于环境阈值时,SOM和活性较高的无机态磷(Resin-P、NaHCO3-Pi、NaOH-Pi)呈显著正相关关系;有效磷水平高于环境阈值时,Fep+Alp与无机态磷(Resin-P、NaHCO3-Pi、NaOH-Pi、D.HCl-Pi、C.HCl-Pi)呈显著正相关关系。冗余分析结果表明,有效磷水平低于环境阈值时,SOM和M3-Fe是影响黑土磷形态变化的关键因子,分别解释了全部变异的50.2%和24.1%;有效磷水平高于环境阈值时,Fep+Alp是造成磷形态差异的关键因子,解释了全部变异的68.1%。【结论】活性态磷在有效磷水平低于农学阈值时占比最小,在有效磷水平超过环境阈值时,其占比最大,Resin-P是在环境阈值前后区间变幅最大的磷形态。SOM和M3-Fe是土壤有效磷水平低于环境阈值、Fep+Alp是高于环境阈值土壤影响磷形态变化的关键因子。
黑土;有效磷;农学阈值;环境阈值;磷形态;土壤化学性质
0 引言
【研究意义】磷是植物生长和发育的关键营养元素之一[1]。土壤中可被植物直接吸收利用的磷通常被定义为有效磷(Olsen P),是评估土壤磷素的重要指标[2]。为了增产稳产,长期大量的磷肥被投入到农田,土壤中有效磷含量明显增加[3-4]。当土壤有效磷含量超过某一临界值,作物产量不再随施磷量的增加而明显增加,该值即为土壤有效磷农学阈值[5]。当有效磷含量继续升高超过某一临界值,会显著增加磷素通过径流或淋失造成严重面源污染的风险,该值被称为土壤有效磷环境阈值[6]。目前我国农田土壤磷素水平多高于农学阈值甚至超过环境阈值[7],合理施用磷肥对保持农业高产和环境保护意义重大。研究有效磷不同阈值区间土壤磷素形态特征及其影响因素,可为土壤磷素高效利用提供科学依据。【前人研究进展】土壤磷素形态是影响土壤有效磷水平的重要因素[8]。土壤磷形态分级的分析方法为土壤磷形态研究提供了重要基础,1982年由Hedley等[9]提出,Tiessen等[10]修正的分级法是基于植物有效性大小和转化特征来表征不同无机(Pi)和有机(Po)磷形态最常用的方法,广泛应用于评价土壤有效磷库大小及土壤磷素的供应状况[11-12]。该方法将磷分为活性态磷(Resin-P,NaHCO3-Pi+Po),中活性态磷(NaOH-Pi+Po,D.HCl-Pi)和稳定态磷(C.HCl-Pi+ Po,Residual-P)[11]。其中,活性态磷有效性最高,可被植物直接吸收利用。土壤磷形态特征和转化受到多种因素的影响,如施肥措施、土壤类型、作物体系等。有研究表明,长期持续施用化学磷肥会增加Resin-P、NaHCO3-Pi等可利用态无机磷的含量和相对比例,降低残余态磷和有机磷的比例[13-14]。而化肥有机肥配施则会增加NaOH-Pi等中活性态磷含量[15]。有研究发现石灰性土壤上水稻-小麦体系的NaOH-Pi和D. HCl-Pi含量显著高于玉米-小麦和玉米连作体系[16]。另外长期的撂荒会显著降低活性态磷的含量及比例[17]。土壤化学性质也会对磷形态特征产生重要影响,如焦亚鹏等[18]通过RDA分析研究发现,土壤有机碳是影响甘肃黄绵土无机磷形态变化的主要因子。王蕾等[19]在红壤旱地上的研究认为,pH和CEC是影响磷素有效性的主控因子。而磷在土壤中的存在形态也会受到铁铝氧化物等的影响,如土壤中的磷会吸附在晶型较差的铁铝氧化物(络合态和非晶质态等)表面而形成NaOH-Pi等中活性态磷,当土壤中磷浓度下降,这部分磷也会解吸出来[20-21]。另外游离态铁铝氧化物的增加会增强对磷酸根的吸附,提高土壤最大吸磷量[22-23]。大量研究表明,土壤磷形态与有效磷含量存在较强的相关性[14,24],王琼等[25]认为有效磷含量的变化值与Resin-P、NaHCO3-Pi、NaOH-Pi、C.HCl-Po变化值间存在极显著的相关性。吴璐璐等[24]在潮土上的研究发现,除NaOH-Po外,其他形态磷含量均与有效磷含量极显著相关。【本研究切入点】东北黑土区是我国最主要的粮食生产基地之一,对国家粮食安全起着重要作用。目前该地区有效磷农学阈值为7.4—13.0 mg·kg-1[26],环境阈值为51.0—56.4 mg·kg-1[7, 27],由于长期不同用量的磷肥投入,造成土壤有效磷含量差异大[4],部分土壤有效磷水平高于农学阈值和环境阈值。现阶段关于磷形态的研究集中于不同施肥措施、土壤类型,但关于土壤有效磷不同阈值区间的磷形态特征及其影响因素的研究还不多见。【拟解决的关键问题】采集吉林公主岭经长期施磷后有效磷含量不同的土壤样品,采用Hedley等提出,经Tiessen等修正的连续浸提分级法进行磷形态测定,研究土壤有效磷阈值区间的磷形态特征及主控因素,以期为制定合理的磷素管理策略提供理论依据。
1 材料与方法
1.1 试验地概况
试验地点位于吉林省公主岭市(43.5047° N,124.8228° E),该地区地势平坦,海拔为600 m,属于温带大陆性季风气候,长期平均年降水量为572 mm,年平均气温为4—5℃,年积温2 800℃。土壤为壤质黏土,成土母质为第四纪黄土状沉积物。试验区耕层(0—20 cm)土壤有机质含量平均为22.8 g·kg-1、全氮1.40 g·kg-1、全磷0.60 g·kg-1、全钾18.42 mg·kg-1、有效磷11.80 mg·kg-1、容重1.20 g·cm-3,pH 5.60。
1.2 试验设计
该定位试验始于2013年,设置6个施磷量水平,按P2O5计分别为0、67.5、135、180、225、360 kg·hm-2,重复3次。各处理氮肥用量180 kg·hm-2,钾肥用量100 kg·hm-2。供试作物为玉米连作,一年一季。玉米品种为郑丹958,于4月末播种,9月末收获,化肥在播种期前一次性施入。土壤样品采集于2016—2019年的不同施磷水平的土壤,每个处理均采用“S”形布点采集耕层土样5点,充分混匀,拣去石砾和动植物残体,风干并过2 mm及0.149 mm目筛备用。共采集土壤样品162个,在分析基本化学性质的基础上,选择有效磷梯度(Olsen P含量11—490 mg·kg-1)土壤样品9组(P1、P2、P3、P4、P5、P6、P7、P8、P9),各组土壤Olsen P水平分别为:11、21、32、40、57、69、128、331、490 mg·kg-1,其中P1低于该地区的农学阈值(At=7.4—13.0 mg·kg-1)[26],P2—P5处于农学阈值和环境阈值(Et= 51.0—56.4 mg·kg-1)[7, 27]之间,P6—P9高于环境阈值。选择3个Olsen P含量变异系数小于5.79%的土壤样本作为同一水平的重复,共有土壤样品27个。
1.3 样品分析
采用Olsen方法测定土壤有效磷(Olsen P);氢氧化钠熔融钼锑抗比色法测定全磷(TP);重铬酸钾-外加热法测定土壤有机质(SOM);玻璃电极pH计测定pH,土水比为1﹕2.5;用连二亚硫酸钠-柠檬酸钠-碳酸氢钠(DCB),酸性草酸铵、焦磷酸钠及Mehlich3分别浸提游离铁铝氧化物(Fed、Ald)、非晶质铁铝氧化物(Feo、Alo)、络合态铁铝(Fep、Alp)及M3-Fe、M3-Al、M3-Ca和M3-Mg,并用ICP-AES测定。土壤磷素分级采用了TIESSEN修正HEDLEY提出的磷素分级方法[10]。简要操作步骤如下:称取0.5000 g过0.149 mm筛的风干土壤样品于50 mL离心管中,依次用1.00 g阴离子交换树脂加30 mL去离子水、0.5 mol·L-1NaHCO3(pH 8.50)、0.1 mol·L-1NaOH、1 mol·L-1稀盐酸(HCl)、12 mol·L-1浓盐酸分别提取,每次振荡提取16 h,每次提取后离心,过滤分离上清液。其中树脂去离子水(Resin-P)、稀盐酸(D.HCl-Pi)提取的磷使用钼蓝比色法测定,NaHCO3(NaHCO3-Pi+ Po)、NaOH(NaOH-Pi+Po)、浓盐酸(C.HCl-Pi+Po)提取的磷包括无机磷和有机磷,无机磷采用钼蓝比色法测定,同时,取一定体积提取液用过硫酸铵+浓硫酸高温((120±1)℃)消化,测定提取液中的总磷,有机磷含量即为总磷和无机磷之差。剩余的样用浓硫酸与双氧水进行消煮,钼蓝比色法测定残余态磷(Residual-P)。
1.4 数据处理与分析
1.4.1 土壤磷活化系数(PAC)
1.4.2 数据分析 采用Excel 2016软件进行数据整理,采用SPSS 20软件对数据进行差异显著性检验(LSD法),采用Origin 2018软件进行主成分分析(PCA),采用R4.1.1进行相关分析,采用Canoco5软件进行冗余分析(RDA)。
2 结果
2.1 不同阈值区间土壤各形态磷相对含量
图1为不同阈值区间黑土各形态磷相对含量。不同有效磷含量的黑土磷库组成以无机磷为主(图1-a),占土壤总磷的71.25%—96.19%。有效磷水平低于环境阈值(≤Et)时,无机磷占比平均为78.72%,显著低于有效磷含量>Et土壤的无机磷平均占比(90.47%,<0.05)。随着有效磷水平的增加,黑土活性态和中活性态磷含量占总磷比例呈上升趋势,稳定态磷占比呈下降趋势(图1-b)。当有效磷水平低于农学阈值(<At)时,土壤中稳定态磷占比最大为43.99%,显著高于其他水平(<0.05),LP占比最小,为19.89%,显著低于其他水平(<0.05)。当有效磷水平低于环境阈值(≤Et)时,土壤中的ML-P和OP占比接近,平均占比分别为36.03%和35.49%;LP平均占比最少,为28.48%。当有效磷水平高于环境阈值(>Et)时,LP占比为39.54%— 48.38%,平均占比42.86%,相比于≤Et部分,显著增加了14.38%(<0.05);ML-P占比次之为36%— 43.57%,平均占比40.16%;OP占比为24.46%—8.05%,平均占比16.97%,相比于≤Et部分显著降低了18.52%(<0.05)。
LP:活性态磷Labile phosphorus;ML-P:中活性态磷Middle-labile phosphorus;OP:稳定态磷Occlude phosphorus;At:农学阈值Agronomy threshold;Et:环境阈值Environmental threshold;Pi:总无机磷Total inorganic phosphorus;Po:总有机磷Total organic phosphorus。P1—P9:Represents nine groups of soils with different levels of Olsen P。下同 The same as below
2.2 不同阈值区间土壤各形态磷含量
图2为不同阈值区间黑土各形态磷含量。总体来看,随有效磷水平的增加,各形态磷含量均有不同程度的变化,相比于OP,LP和ML-P的变幅较大。对于LP,其变幅为82.85—1 282.14 mg·kg-1(图2-a),有效磷水平低于农学阈值(<At)时,LP含量为81.54 mg·kg-1,其中Resin-P、NaHCO3-Pi含量分别为44.13、10.54 mg·kg-1,显著低于其他水平,NaHCO3-Po含量为26.88 mg·kg-1,显著高于其他水平(<0.05)。有效磷水平低于环境阈值(≤Et)LP的均值为145.71 mg·kg-1,显著小于有效磷水平高于环境阈值(>Et)土壤的均值(623.36 mg·kg-1,<0.05),其中Resin-P变幅最大,为44.13—917.86 mg·kg-1。NaHCO3-Pi和NaHCO3-Po的变幅依次为10.54—280.99和11.6— 26.88 mg·kg-1。ML-P的变幅为150.27—1 069.68 mg·kg-1(图2-b),有效磷水平<At时,ML-P含量为148.01 mg·kg-1,其中NaOH-Pi、D.HCl-Pi的含量分别为42.93、45.76 mg·kg-1。有效磷水平低于环境阈值土壤(≤Et)ML-P的均值为183.22 mg·kg-1,显著低于>Et土壤的均值(547.77 mg·kg-1,<0.05),其中NaOH-Pi的变幅最大,为42.93— 811.51 mg·kg-1,D.HCl-Pi和NaOH-Po的变幅依次为44.79—220.40和52.2—57.45 mg·kg-1。OP变幅较小,为155.40—201.39 mg·kg-1(图2-c),环境阈值前后区间土壤的OP未出现显著性差异。
图中不同小写字母表示同一形态磷含量在不同土壤样品间差异显著(P<0.05),不同大写字母表示同一形态磷的平均含量在环境阈值(Et)区间差异显著(P<0.05)
2.3 土壤各形态磷和有效磷的关系
为进一步探讨环境阈值(Et)区间的土壤有效磷含量和各形态磷含量的关系,对土壤有效磷含量和不同磷形态进行拟合(表1)。不论有效磷水平高于还是低于Et值,土壤无机磷(Pi)含量均与有效磷含量显著正相关(2分别为0.97和0.99,<0.01)。无机磷中除Residual-P外,其他形态磷在Et前后区间均与有效磷含量呈正相关关系(<0.01)。Resin-P和NaOH-Pi与有效磷的相关斜率(K)最大,说明它们对有效磷的贡献最大。随着有效磷含量的增加,不同形态磷含量的斜率在环境阈值区间存在差异,其中Resin-P的斜率变化最大,相比于≤Et(K=2.93),>Et(K=1.62)降低了80.86%,其他形态斜率变幅依次为D.HCl-Pi(26.32%)>NaHCO3-Pi(15.38%)>NaOH-Pi(5.33%)。
2.4 不同阈值区间土壤化学性质的差异特征
由表2可知,当有效磷水平低于农学阈值(At时,全磷(TP)、有机质(SOM)、土壤磷活化系数(PAC)、Feo、Alo、Fep、Alp、M3-Fe、M3-Al出现最小值,其中SOM、PAC、Feo显著低于其他水平(<0.05)。随有效磷水平的增加SOM、pH、M3-Ca、M3-Mg、M3-Fe和Fed未出现规律性变化,且在环境阈值(Et)前后区间无显著变化。Olsen P、PAC和全磷随着有效磷水平的增加呈上升趋势,且有效磷水平>Et土壤的均值显著高于有效磷水平≤Et土壤(<0.05),在P9下出现最大值,分别为490.25 mg·kg-1、16.84%和3.12 g·kg-1。C/P表现相反趋势,在P9下出现最小值,为4.23,且>Et土壤的均值(10.30)显著低于≤Et的土壤(23.70,<0.05)。对于≤Et的土壤,Ald、Alp、Alo、Fep及Feo含量在不同有效磷水平间差异较小;对于>Et的土壤,Ald、Alp、Alo、Fep及Feo随有效磷水平的增加而显著增加(<0.05),相比于P1增幅依次为:Fep(61.08%—178.94%)>Alp(32.76%—145.84)>Alo(47.97%—106.47%)>Feo(40.30%—74.32%)>Ald(18.81%—81.32%)。M3-Al、Fed、Ald、Fep、Alp、Feo和Alo在>Et土壤的均值显著高于≤Et的土壤(<0.05)。
表1 黑土不同形态磷含量与有效磷含量的回归方程
*:<0.05; **:<0.01. Et: 环境阈值Environmental threshold
表2 不同阈值区间黑土性质的差异
不同小写字母表示同一土壤化学性质在不同土壤样品间差异显著(<0.05);不同大写字母表示同一土壤化学性质的均值在环境阈值区间差异显著(<0.05),Mean:≤Et及>Et部分的均值。TP:全磷
Different lowercase letters indicate significant differences in the same soil chemical properties among different soil samples at 5% level; Different capital letters indicate significant differences for the mean value in the same soil chemical properties above and below the environmental threshold region at 5% level. Mean: Mean values of≤Et and >Et . TP: Total phosphorus
由图3主成分分析表明,第一主成分和第二主成分分别解释了51.5%和22.8%的土壤化学性质变化,对于有效磷水平≤Et的P1—P5土壤,因C/P、M3-Ca含量和pH较高且相互之间存在正相关关系而聚在一起。有效磷水平>Et的P6、P7土壤中M3-Mg、M3-Al、M3-Fe和SOM的含量较高且相互之间有较强正相关关系,均与M3-Ca呈负相关;Ald、Fep、Alp、Feo、Alo和PAC在P8、P9水平下较高且相互之间有较高的相关性,均与C/P和pH存在负相关关系。
图3 土壤化学性质的主成分分析
2.5 环境阈值区间的黑土磷形态对土壤化学性质的响应
对环境阈值(Et)前后区间的土壤化学性质与磷组分相互关系进行了冗余分析(图4)。结果表明,有效磷水平≤Et时(图4-a),土壤化学性质能解释磷组分全部变异的92.3%,排序轴1(RDA1)解释了82.12%,排序轴2(RDA2)解释了6.59%。SOM和M3-Fe是造成磷组分差异的主要因素,分别解释了全部变异的50.2%(<0.01)和24.1%(<0.05)。SOM与Resin-P、NaHCO3-Pi和NaOH-Pi呈显著的正相关关系,M3-Fe与Resin-P、NaHCO3-Pi、NaOH-Pi、D.HCl-Pi和C.HCl-Pi之间存在显著的正相关关系(图5-a)。有效磷水平>Et时,土壤化学性质能解释磷组分全部变异的99%(图4-b),排序轴1和排序轴2的解释量分别为74.46%和18.45%。Alp+Fep是影响磷组分变化的最重要因子,对方差的解释率为68.1%。Fep+Alp与Resin-P、NaHCO3-Pi、NaOH-Pi、D.HCl-Pi和C.HCl-Pi呈显著的正相关关系(图5-b)。
3 讨论
3.1 黑土不同有效磷阈值区间的磷形态特征
(a)、(b)分为有效磷水平低于环境阈值(Et)和高于环境阈值时的冗余分析
在本研究中,有效磷水平超过环境阈值时,土壤以活性态磷(LP)为主,稳定态磷(OP)占比下降(图1),颜晓军等[35]在果园酸性土壤上得到了类似的结果,他认为在酸性土壤中磷大量累积时,闭蓄态磷(OP)占全磷比例降低,而以有效性较好的Al-P、Fe-P(中活性态磷)为主。可能的原因是土壤吸附磷位点的饱和状况(DPS)受有效磷的影响,随有效磷含量的增加而增加[33,36],当土壤有效磷水平超过环境阈值,磷的高能吸附点位趋于饱和[37]。土壤吸附磷位点越接近饱和,土壤固相的磷越容易解吸进入液相[38],而Resin-P和NaHCO3-Pi是分别是土壤溶液处于平衡状态的土壤固相无机磷及吸附在土壤颗粒表面有效性较高的磷[39-40],此时土壤对磷的吸附能力已经接近最大值,土壤中含有更高的溶解态磷[41]。对于NaHCO3-Po,其含量在有效磷水平低于农学阈值(At)时显著高于其他水平(图2)。本研究P1水平土壤采自不施磷处理,而刘瑾在对27年磷亏缺黑土的研究中发现,各形态有机磷出现了累积[42],在美国俄亥俄州土壤中有机磷水平在11年磷肥限制后也呈增加趋势[42],与本结果一致。可能的原因是,作物在收获后植物残体及根部残留在土壤中[43-44],这些作物残体中的有机化合物会作为土壤微生物的基质,从而增加了土壤微生物生物量磷含量,进而提高了土壤有机磷[45]。中活性态磷(ML-P)的含量和比例随着有效磷水平的增加也有所增加(图2、3)。当有效磷水平超过环境阈值时,土壤ML-P的含量和平均占比显著高于环境阈值前(<0.05),主要来自于NaOH-Pi和D.HCl-Pi的增加(图2、3)。闫金垚等[30]研究结果表明,NaOH-Pi含量随Olsen P水平的提高显著增加,与本结果基本相符。NaOH-Pi和D.HCl-Pi分别是吸附在非晶质态Fe、Al氧化物上以及与钙结合的原生矿物态磷[46-47]。有研究表明,随着对磷酸根吸附的增加,会促进结晶性铁氧化物向非晶型氧化物转化[48],在本研究中,有效磷水平超过环境阈值时,络合态(Fep、Alp)等活性较高的铁铝氧化物含量显著增加(表2),Fep、Alp有较大的吸磷表面,对土壤磷素有很强的吸附能力[49],而NaOH-Pi是易于吸附在铁铝化合物表面的磷[50],受到土壤中铁铝氧化物的类型和含量的影响[48],这部分磷在受到环境因素的影响时也会解吸到土壤溶液中[20],这可能是导致ML-P在有效磷水平超过环境阈值后显著增加的原因。
(a)、(b)分为有效磷水平≤Et和>Et的相关分析。“*”代表在P<0.01水平显著
稳定态磷(OP)的绝对含量在环境阈值区间未出现显著性变化(图2),说明其含量是相对稳定的。并且其中除C.HCl-Pi与Olsen P存在显著的正相关关系外,其他两种形态(C.HCl-Po和Residual-P)与Olsen P之间相关性不显著(表1)。闫金垚等[30]在长江流域也得到了相似结论,但也有研究认为,Olsen P变化值与C.HCl-Pi变化量之间无显著关系[25]。可能的原因是,C.HCl-Pi和Residual-P均属于闭蓄态磷,分别被纤维素包被和与难溶性的钙结合,一般情况下难以被植物利用。短期内其含量相对稳定,同时也有研究表明,这部分磷极端缺磷的情况下也会通过活化作用,转化为有效性较高的磷,因此长时间内对植物是有效的[51]。
3.2 环境阈值区间土壤化学性质的特征及与磷形态的响应关系
土壤中不同形态的磷的转化在很大程度上受到有机质和金属氧化物如铁、铝氧化物等的影响[52-53]。以往研究多集中于不同施肥措施下土壤性质对磷形态的影响[18-19],但土壤对磷形态的影响十分复杂,往往受到多因素的共同影响,且在不同磷水平的土壤上其影响因素往往存在差异[54]。SOM、M3-Fe和Fep+Alp分别是环境阈值区间影响磷形态变化的关键因子(图5),有研究表明黑土中铁铝氧化物含量丰富,它们在控制磷素吸收方面发挥着重要作用[55-56]。有效磷水平低于环境阈值时,SOM与活性较高的磷形态(Resin-P、NaHCO3-Pi和NaOH-Pi)呈显著的正相关关系(图5-a)。可能的原因是,有机质的分解产物(小分子有机酸、腐殖酸等)一方面可以与土壤溶液中磷酸根竞争铁铝氧化物表面的吸附位点;同时可以通过改变铁铝氧化物的表面电荷对磷酸盐产生排斥从而降低其对磷的吸附作用[53,57]。有效磷水平高于环境阈值时,Alp+Fep含量显著增加且与各形态无机磷(Resin-P、NaHCO3-Pi、NaOH-Pi、D.HCl-Pi和C.HCl-Pi)呈显著正相关关系(表2、图5-b),此时土壤中含大量的磷酸根离子,可能的原因是随着磷酸根吸附量的增加,晶型的铁矿表面形成无定型磷酸铁沉淀,促进结晶性铁氧化物向非晶型氧化物转化[48],另外有机质会紧密吸附在水合氧化物表面而阻碍晶核的形成,也促进非晶质铁铝氧化物形成的原因之一[58]。而在铁铝氧化物中,晶型较差的铁铝氧化物表现出巨大的吸磷能力,可增加对磷的吸附量[21,59]。当非晶质态铁铝氧化物表面吸附点位接近饱和时,土壤对磷素的固定能力下降[60],磷素在土壤中以活性较高的形态累积,可能是造成环境阈值后土壤各形态无机磷增加的原因。
综上,针对土壤有效磷含量不同的土壤应采取不同的磷肥管理策略。对于低于农学阈值的土壤,可增加磷肥投入,提高活性态磷含量。对于低于环境阈值的土壤,可以考虑增加有机物的投入,适当减少磷肥投入,提高土壤有机质,促进磷的活化,提高磷素有效性。对于高于环境阈值的土壤,建议不施磷肥,充分利用土壤中大量的活性态磷,以减少磷素损失和保护环境[61-62]。
4 结论
在不同有效磷水平下,活性无机磷是黑土玉米种植区最有效的磷源。在有效磷水平低于农学阈值和环境阈值时,土壤以中活性态和稳定态磷为主,SOM和M3-Fe是影响黑土磷形态变化的关键因子;在有效磷水平高于环境阈值时,土壤以活性态磷为主,Fep+Alp是影响土壤磷形态变化的关键因子。因此,在有效磷水平较低时可通过增加土壤有机质来提高活性磷含量和促进中活性态及稳定态磷的活化,对于有效磷水平接近或高于环境阈值的土壤,应减少磷的投入,充分利用土壤中大量活性态磷。
[1] DALY K, STYLES D, LALOR S, WALL D P. Phosphorus sorption, supply potential and availability in soils with contrasting parent material and soil chemical properties. European Journal of Soil Science, 2015, 66(4): 792-801. doi:10.1111/ejss.12260.
[2] SIMS J T, EDWARDS A C, SCHOUMANS O F, SIMARD R R. Integrating soil phosphorus testing into environmentally based agricultural management practices. Journal of Environmental Quality, 2000, 29(1): 60-71. doi:10.2134/jeq2000.00472425002900010008x.
[3] 康日峰, 任意, 吴会军, 张淑香. 26年来东北黑土区土壤养分演变特征. 中国农业科学, 2016, 49(11): 2113-2125.
KANG R F, REN Y, WU H J, ZHANG S H. Changes in the nutrients and fertility of black soil over 26 years in Northeast China. Scientia Agricultura Sinica, 2016, 49(11): 2113-2125. (in Chinese)
[4] 马星竹, 周宝库, 郝小雨, 陈雪丽, 高中超, 迟凤琴. 小麦-大豆-玉米轮作体系长期不同施肥黑土磷素平衡及有效性. 植物营养与肥料学报, 2018, 24(6): 1672-1678.
MA X Z, ZHOU B K, HAO X Y, CHEN X L, GAO Z C, CHI F Q. Phosphorus balance and availability in black soil under long-term wheat-soybean-maize rotation and fertilization. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1672-1678. (in Chinese)
[5] MALLARINO A P, BLACKMER A M. Comparison of methods for determining critical concentrations of soil test phosphorus for corn. Agronomy Journal, 1992, 84(5): 850-856. doi:10.2134/agronj1992. 00021962008400050017x.
[6] LI H G, LIU J, LI G H, SHEN J B, BERGSTRÖM L, ZHANG F S. Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses. Ambio, 2015, 44(Suppl 2): S274-S285. doi:10.1007/s13280-015-0633-0.
[7] ZHOU J, ZHANG Y F, WU K B, HU M P, WU H, CHEN D J. National estimates of environmental thresholds for upland soil phosphorus in China based on a meta-analysis. Science of the Total Environment, 2021, 780: 146677. doi:10.1016/j.scitotenv. 2021.146677.
[8] 张林, 吴宁, 吴彦, 罗鹏, 刘琳, 陈文年, 胡红宇. 土壤磷素形态及其分级方法研究进展. 应用生态学报, 2009, 20(7): 1775-1782.
ZHANG L, WU N, WU Y, LUO P, LIU L, CHEN W N, HU H Y. Soil phosphorus form and fractionation scheme: A review. Chinese Journal of Applied Ecology, 2009, 20(7):1775-1782. (in Chinese)
[9] HEDLEY M J, STEWART J W B, CHAUHAN B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 1982, 46(5): 970-976. doi:10.2136/sssaj1982. 03615995004600050017x.
[10] TIESSEN H, MOIR J O. Characterization of Available P by Sequential Extraction. Boca Raton: CRC Press, 1993.
[11] CROSS A F, SCHLESINGER W H. A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma, 1995, 64(3/4): 197-214. doi:10.1016/0016-7061(94) 00023-4.
[12] NEGASSA W, LEINWEBER P. How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: a review. Journal of Plant Nutrition and Soil Science, 2009, 172(3): 305-325. doi:10.1002/jpln.200800223.
[13] 金欣, 姚珊, Batbayar Javkhlan, 贾丽洁, 张树兰, 杨学云. 冬小麦–夏休闲体系作物产量和土壤磷形态对长期施肥的响应. 植物营养与肥料学报, 2018, 24(6): 1660-1671.
JIN X, YAO S, JAVKHLAN B, JIA L J, ZHANG S L, YANG X Y. Response of wheat yield and soil phosphorus fractions to long-term fertilization under rainfed winter wheat–summer fallow cropping system. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1660-1671. (in Chinese)
[14] SHI Y C, ZIADI N, MESSIGA A J, LALANDE R, HU Z Y. Changes in soil phosphorus fractions for a long-term corn-soybean rotation with tillage and phosphorus fertilization. Soil Science Society of America Journal, 2013, 77(4): 1402-1412. doi:10.2136/sssaj2012. 0427.
[15] YAN Z J, CHEN S, LI J L, ALVA A, CHEN Q. Manure and nitrogen application enhances soil phosphorus mobility in calcareous soil in greenhouses. Journal of Environmental Management, 2016, 181: 26-35. doi:10.1016/j.jenvman.2016.05.081.
[16] PRIYADARSHI R, KUMAR S, CHOUDHARY C. Phosphorus fraction dynamics in soil as affected by tillage and cropping system under irrigated agro-ecosystem. Journal of Pharmacognosy and Phytochemistry, 2018, 7: 392-396.
[17] 贾莉洁, 李玉会, 孙本华, 杨学云. 不同管理方式对土壤无机磷及其组分的影响. 土壤通报, 2013, 44(3): 612-616. doi:10.19336/j.cnki. trtb.2013.03.017.
JIA L J, LI Y H, SUN B H, YANG X Y. Effect of diverse soil managements on inorganic phosphorus and its fractions in a loess soil from a long-term experiment. Chinese Journal of Soil Science, 2013, 44(3): 612-616. doi:10.19336/j.cnki.trtb.2013.03.017. (in Chinese)
[18] 焦亚鹏, 齐鹏, 王晓娇, 姚一铭, 武均, 蔡立群, 张仁陟. 氮磷配施对黄土高原旱作农业区典型农田土壤无机磷形态的影响. 植物营养与肥料学报, 2020, 26(8): 1459-1472.
JIAO Y P, QI P, WANG X J, YAO Y M, WU J, CAI L Q, ZHANG R Z. Effects of nitrogen and phosphorus fertilization on inorganic phosphorus forms of typical farmland soil in the dry farming area of the Loess Plateau. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1459-1472. (in Chinese)
[19] 王蕾, 王艳玲, 李欢, 石嘉琦, 周亦靖. 长期施肥下红壤旱地磷素有效性影响因子的冗余分析. 中国土壤与肥料, 2021(1): 17-25.
WANG L, WANG Y L, LI H, SHI J Q, ZHOU Y J. Redundancy analysis of influencing factors of phosphorus availability in red soil upland under long-term fertilization. Soil and Fertilizer Sciences in China, 2021(1): 17-25. (in Chinese)
[20] YAN Y P, LIU F Jr, LI W, LIU F, FENG X H, SPARKS D L. Sorption and desorption characteristics of organic phosphates of different structures on aluminium (oxyhydr)oxides. European Journal of Soil Science, 2014, 65(2): 308-317. doi:10.1111/ejss.12119.
[21] CELI L, PRATI M, MAGNACCA G, SANTORO V, MARTIN M. Role of crystalline iron oxides on stabilization of inositol phosphates in soil. Geoderma, 2020, 374: 114442. doi:10.1016/j.geoderma.2020. 114442.
[22] 颜晓, 卢志红, 魏宗强, 周春火. 几种典型酸性旱地土壤磷吸附的关键影响因素. 中国土壤与肥料, 2019(3): 1-7.
YAN X, LU Z H, WEI Z Q, ZHOU C H. Key factors influencing phosphorus sorption for several acid upland soils. Soil and Fertilizer Sciences in China, 2019(3): 1-7. (in Chinese)
[23] 徐明岗. 土壤离子吸附1.离子吸附的类型及研究方法. 土壤肥料, 1997(5): 3-7.
XU M G. Soil ion adsorption 1. Types of ion adsorption and research methods. Soil and Fertilizer Sciences in China, 1997(5): 3-7. (in Chinese).
[24] 吴璐璐, 张水清, 黄绍敏, 杜伟, 柳小琪, 王晓红, 吕家珑. 长期定位施肥对潮土磷素形态和有效性的影响. 土壤通报, 2021, 52(2): 379-386.
WU L L, ZHANG S Q, HUANG S M, DU W, LIU X Q, WANG X H, LÜJ L. Effect of long-term fertilization on phosphorus fraction and availability in fluvo-aquic soil. Chinese Journal of Soil Science, 2021, 52(2): 379-386. (in Chinese)
[25] 王琼, 展晓莹, 张淑香, 彭畅, 高洪军, 张秀芝, 朱平, Colinet Gilles. 长期有机无机肥配施提高黑土磷含量和活化系数. 植物营养与肥料学报, 2018, 24(6): 1679-1688.
WANG Q, ZHAN X Y, ZHANG S X, PENG C, GAO H J, ZHANG X Z, ZHU P, GILLES C. Increment of soil phosphorus pool and activation coefficient through long-term combination of NPK fertilizers with manures in black soil. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1679-1688. (in Chinese)
[26] 沈浦. 长期施肥下典型农田土壤有效磷的演变特征及机制[D]. 北京: 中国农业科学院, 2014.
SHEN P. Evolution characteristics and mechanisms of soil available phosphorus in typical croplands under long-term fertilization[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese)
[27] BAI Z H, LI H G, YANG X Y, ZHOU B K, SHI X J, WANG B R, LI D C, SHEN J B, CHEN Q, QIN W, OENEMA O, ZHANG F S. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant and Soil, 2013, 372(1/2): 27-37. doi:10.1007/s11104-013-1696-y.
[28] SHEN P, HE X H, XU M G, ZHANG H M, PENG C, GAO H J, LIU H, XU Y M, QIN S, XIAO H J. Soil organic carbon accumulation increases percentage of soil Olsen-P to total P at two 15-year mono-cropping systems in Northern China. Journal of Integrative Agriculture, 2014, 13(3): 597-603. doi:10.1016/S2095-3119(13) 60717-0.
[29] 张鑫, 谷会岩, 陈祥伟. 择伐干扰对小兴安岭阔叶红松林土壤磷形态及有效性的影响. 应用生态学报, 2018, 29(2): 441-448. doi:10.13287/j.1001-9332.201802.009.
ZHANG X, GU H Y, CHEN X W. Effects of selective cutting on soil phosphorus forms and availability in Korean pine broad-leaved forest in Xiaoxing'an Mountains of China. Chinese Journal of Applied Ecology, 2018, 29(2): 441-448. doi:10.13287/j.1001-9332.201802.009. (in Chinese)
[30] 闫金垚, 郭丽璇, 王昆昆, 廖世鹏, 陆志峰, 丛日环, 李小坤, 任涛, 鲁剑巍. 长江流域稻-油轮作区土壤磷库现状及环境风险分析. 土壤学报, 2021: 1-13.
YAN J Y, GUO L X, WANG K K, LIAO S P, LU Z F, CONG R H, LI X K, REN T, LU J W. Status of soil phosphorus pool and environmental risk assessment in rice oilseed rape rotation area in the Yangtze River Basin. Acta Pedologica Sinica, 2021: 1-13. (in Chinese)
LI R N, WANG Z P, BATBAYAR J, ZHANG D J, ZHANG S L, YANG X Y. Relationship between soil available phosphorus and inorganic phosphorus forms under equivalent organic matter condition in a tier soil. Scientia Agricultura Sinica, 2019, 52(21): 3852-3865. (in Chinese)
[32] ZHANG W W, ZHAN X Y, ZHANG S X, IBRAHIMA K H M, XU M G. Response of soil Olsen-P to P budget under different long-term fertilization treatments in a fluvo-aquic soil. Journal of Integrative Agriculture, 2019, 18(3): 667-676. doi:10.1016/S2095-3119(18) 62070-2.
[33] 刘彦伶, 李渝, 张艳, 张雅蓉, 黄兴成, 张萌, 张文安, 蒋太明. 长期施用磷肥和有机肥黄壤微生物量磷特征. 中国农业科学, 2021, 54(6): 1188-1198.
LIU Y L, LI Y, ZHANG Y, ZHANG Y R, HUANG X C, ZHANG M, ZHANG W A, JIANG T M. Characteristics of microbial biomass phosphorus in yellow soil under long-term application of phosphorus and organic fertilizer. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198. (in Chinese)
[34] YANG X, POST W M. Phosphorus transformations as a function of pedogenesis: a synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences, 2011, 8(10): 2907-2916. doi: 10.5194/bg-8-2907-2011.
[35] 颜晓军, 苏达, 郑朝元, 叶德练, 吴良泉. 长期施肥对酸性土壤磷形态及有效性的影响. 土壤, 2020, 52(6): 1139-1144. doi:10.13758/j. cnki.tr.2020.06.006.
YAN X J, SU D, ZHENG C Y, YE D L, WU L Q. Effects of long-term fertilization on phosphorus forms and availability in acid soils. Soils, 2020, 52(6): 1139-1144. doi:10.13758/j.cnki.tr.2020.06. 006. (in Chinese)
[36] SIDDIQUE M T, ROBINSON J S. Phosphorus sorption and availability in soils amended with animal manures and sewage sludge. Journal of Environmental Quality, 2003, 32(3): 1114-1121. doi:10. 2134/jeq2003.1114.
[37] 王琼, 展晓莹, 张淑香, 彭畅, 高洪军, 张秀芝, 朱平, GILLES Colinet. 长期不同施肥处理黑土磷的吸附-解吸特征及对土壤性质的响应. 中国农业科学, 2019, 52(21): 3866-3877. doi:10.3864/j.issn. 0578-1752.2019.21.015.
WANG Q, ZHAN X Y, ZHANG S X, PENG C, GAO H J, ZHANG X Z, ZHU P, COLINET G. Phosphorus adsorption and desorption characteristics and its response to soil properties of black soil under long-term different fertilization. Scientia Agricultura Sinica, 2019, 52(21): 3866-3877. doi:10.3864/j.issn.0578-1752.2019.21.015. (in Chinese)
[38] BLAKE L, HESKETH N, FORTUNE S, BROOKES P C. Assessing phosphorus ‘Change-Points’ and leaching potential by isotopic exchange and sequential fractionation. Soil Use and Management, 2002, 18(3): 199-207. doi:10.1111/j.1475-2743.2002.tb00240.x.
[39] 许艳, 张仁陟. 陇中黄土高原不同耕作措施下土壤磷动态研究. 土壤学报, 2017, 54(3): 670-681. doi:10.11766/trxb201607220250.
XU Y, ZHANG R Z. Dynamics of soil phosphorus as affected by tillage on the loess plateau in central Gansu, China. Acta Pedologica Sinica, 2017, 54(3): 670-681. doi:10.11766/trxb201607220250. (in Chinese)
[40] VERMA S, SUBEHIA S K, SHARMA S P. Phosphorus fractions in an acid soil continuously fertilized with mineral and organic fertilizers. Biology and Fertility of Soils, 2005, 41(4): 295-300. doi:10.1007/ s00374-004-0810-y.
[41] 夏海勇, 王凯荣. 有机质含量对石灰性黄潮土和砂姜黑土磷吸附-解吸特性的影响. 植物营养与肥料学报, 2009, 15(6): 1303-1310.
XIA H Y, WANG K R. Effects of soil organic matter on characteristics of phosphorus adsorption and desorption in calcareous yellow fluvo-aquic soil and lime concretion black soil. Plant Nutrition and Fertilizer Science, 2009, 15(6): 1303-1310. (in Chinese)
[42] WADE J, CULMAN S W, SHARMA S, MANN M, DEMYAN M S, MERCER K L, BASTA N T. How does phosphorus restriction impact soil health parameters in Midwestern corn–soybean systems? Agronomy Journal, 2019, 111(4): 1682-1692. doi:10.2134/agronj2018. 11.0739.
[43] LIU J, YANG J, CADE-MENUN B J, HU Y, LI J, PENG C, MA Y. Molecular speciation and transformation of soil legacy phosphorus with and without long-term phosphorus fertilization: insights from bulk and microprobe spectroscopy. Scientific Reports, 2017, 7: 15354. doi:10.1038/s41598-017-13498-7.
[44] MCDOWELL R W, CONDRON L M, STEWART I. Variation in environmentally- and agronomically-significant soil phosphorus concentrations with time since stopping the application of phosphorus fertilisers. Geoderma, 2016, 280: 67-72. doi:10.1016/j.geoderma.2016. 06.022.
[45] TIECHER T, DOS SANTOS D R, CALEGARI A. Soil organic phosphorus forms under different soil management systems and winter crops, in a long term experiment. Soil and Tillage Research, 2012, 124: 57-67. doi:10.1016/j.still.2012.05.001.
[46] YANG X, POST W M. Phosphorus transformations as a function of pedogenesis: a synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences, 2011, 8(10): 2907-2916. doi:10.5194/bg-8-2907-2011.
[47] ZHANG T Q, MACKENZIE A F, LIANG B C, DRURY C F. Soil test phosphorus and phosphorus fractions with long-term phosphorus addition and depletion. Soil Science Society of America Journal, 2004, 68(2): 519-528. doi:10.2136/sssaj2004.5190.
[48] WANG X M, HU Y F, TANG Y D, YANG P, FENG X H, XU W Q, ZHU M Q. Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces. Environmental Science: Nano, 2017, 4(11): 2193-2204. doi:10.1039/c7en00705a.
[49] HAVLIN J L, TISDALE S L, NELSON W L BEATON J D. Soil fertility and fertilizers: an introduction to nutrient management. Soil Fertility & Fertilizers an Introduction to Nutrient Management, 1999.
[50] HEDLEY M J, STEWART J W B, CHAUHAN B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 1982, 46(5): 970-976. doi:10.2136/sssaj1982. 03615995004600050017x.
[51] WRIGHT R B, LOCKABY B G, WALBRIDGE M R. Phosphorus availability in an artificially flooded southeastern floodplain forest soil. Soil Science Society of America Journal, 2001, 65(4): 1293-1302. doi:10.2136/sssaj2001.6541293x.
[52] YAN X, WANG D J, ZHANG H L, ZHANG G, WEI Z Q. Organic amendments affect phosphorus sorption characteristics in a paddy soil. Agriculture, Ecosystems & Environment, 2013, 175: 47-53. doi:10. 1016/j.agee.2013.05.009.
[53] YAN Z J, CHEN S, DARI B, SIHI D, CHEN Q. Phosphorus transformation response to soil properties changes induced by manure application in a calcareous soil. Geoderma, 2018, 322: 163-171. doi:10.1016/j.geoderma.2018.02.035.
[54] NOBILE C M, BRAVIN M N, BECQUER T, PAILLAT J M. Phosphorus sorption and availability in an andosol after a decade of organic or mineral fertilizer applications: importance of pH and organic carbon modifications in soil as compared to phosphorus accumulation. Chemosphere, 2020, 239: 124709. doi:10.1016/j. chemosphere.2019.124709.
[55] 孟思明. 长期施肥对土壤粘粒矿物组成及其演变特征的影响[D]. 武汉: 华中农业大学, 2014.
MENG S M. Effect of long-term fertilization on soil clay mineral composition and its evolution characteristics[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese)
[56] MA J, MA Y L, WEI R F, CHEN Y L, WENG L P, OUYANG X X, LI Y T. Phosphorus transport in different soil types and the contribution of control factors to phosphorus retardation. Chemosphere, 2021, 276: 130012. doi:10.1016/j.chemosphere.2021. 130012.
[57] ZAMUNER E C, PICONE L I, ECHEVERRIA H E. Organic and inorganic phosphorus in Mollisol soil under different tillage practices. Soil and Tillage Research, 2008, 99(2): 131-138. doi:10.1016/j.still. 2007.12.006.
[58] ABDALA D B, DA SILVA I R, VERGÜTZ L, SPARKS D L. Long-term manure application effects on phosphorus speciation, kinetics and distribution in highly weathered agricultural soils. Chemosphere, 2015, 119: 504-514. doi:10.1016/j.chemosphere.2014. 07.029.
[59] CELI L, DE LUCA G, BARBERIS E. Effects of interaction of organic and inorganic p with ferrihydrite and kaolinite-iron oxide systems on iron release. Soil Science, 2003, 168(7): 479-488. doi:10. 1097/01.ss.0000080333.10341.a4.
[60] CELI L, PRATI M, MAGNACCA G, SANTORO V, MARTIN M. Role of crystalline iron oxides on stabilization of inositol phosphates in soil. Geoderma, 2020, 374: 114442. doi:10.1016/j.geoderma.2020. 114442.
[61] WU Q H, ZHANG S X, REN Y, ZHAN X Y, XU M G, FENG G. Soil phosphorus management based on the agronomic critical value of Olsen P. Communications in Soil Science and Plant Analysis, 2018, 49(8): 934-944. doi:10.1080/00103624.2018.1448410.
[62] 张淑香, 徐明岗. 中国土壤磷素演变与高效利用. 北京: 中国农业科学技术出版社, 2020: 71-111.
ZHANG S X, XU M G. Evolution and Efficient Use of Phosphorus in Chinese Soils. Beijing: China Agricultural Science and Technology Press, 2020: 71-111. (in Chinese)
Characteristics of Phosphorus Fractions and Its Response to Soil Chemical Properties Under the Threshold Region of Olsen P in Black Soil
QIN ZhenHan, WANG Qiong, ZHANG NaiYu, JIN YuWen, ZHANG ShuXiang
Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Improving Quality of Arable Land, Beijing 100081
【Objective】Agronomic and environmental thresholds of Olsen phosphorus (P) are the most important parameters for soil P management, but the characteristics of phosphorus fractions under the different threshold regions are not clear. This research evaluated the characteristics of the P fraction under the different threshold regions of Olsen P and its influencing factors in black soils for enabling to understand the transformation process of soil P, so as to provide a reference for optimizing the Olsen-P management strategy and improving the efficiency of P resource utilization .【Method】9 Olsen P levels (11, 21, 31, 40, 57, 69, 128, 331, and 490 mg·kg-1) of agricultural fields plow layer (0-20 cm) soil samples were collected in Gongzhuling, Jilin Province. Tiessen-Moir modified Hedley phosphorus classification method was used to classify soil inorganic phosphorus and organic phosphorus. The relationship between the phosphorus fractions and soil chemical properties, such as soil organic matter (SOM), C/P, Fe, and Al oxides, was also analyzed to clarify the characteristics of phosphorus fractions and the main controlling factors under the different threshold regions of soil Olsen P.【Result】The P pool was dominated by Pi, accounting for 71.25%-96.19%, with Po accounting for 3.81%-28.75%. When the Olsen P level was below the agronomic threshold (7.4-13 mg·kg-1), the proportion of liable P (LP) of 19.89% was the lowest in comparation with other P fractions. When the Olsen P level was below the environmental threshold (51.0-56.4 mg·kg-1), the proportion of medium active phosphorus (ML-P) and stable phosphorus (OP) is close, 36.03% and 35.49% respectively, both higher than the proportion of LP (28.48%). The highest proportion of LP (42.86%) was observed when the Olsen P level was above the environmental threshold. When the Olsen P level is higher than the environmental threshold, the content of LP and ML-P in the soil is significantly higher than that in the soil where the Olsen P level is lower than the environmental threshold, and the resin-P showed the greatest variation with Olsen P above and below the environmental threshold. The value of P activation coefficient (PAC), and the concentration of Mehlich-3 extractable aluminum (M3-Al), free Al oxide (Ald), organic-bound Fe, Al oxide (Fep, Alp), and amorphous Fe, Al oxide (Feo, Alo) increased significantly, while a significant decrease in C/P was observed with increasing Olsen P levels. The correlation analysis shows that when the Olsen P level was below the environmental threshold, the soil organic matter was positively and significantly correlated with the highly active inorganic P fractions (Resin-P, NaHCO3-Pi, NaOH-Pi) above the environmental threshold; when the Olsen P level was above the environmental threshold, Fep+Alp showed a strong positive correlation with each inorganic P fraction blow the environmental threshold. The redundancy analysis results showed that when the Olsen P level was below the environmental threshold, SOM and M3-Fe were the key factors for affecting the change of P fractions in black soils, explaining 50.2% and 24.1% of the total variation, respectively; when the Olsen P level was above the environmental threshold, Fep+Alp was the main factor influencing the change of P fractions, explaining 68.1% of the total variation.【Conclusion】When the Olsen P level was below the agronomic threshold, the liable P accounted for the lowest proportion; however, which was the greatest proportion when the Olsen P level was above the environmental threshold. In addition, the Resin-P is the phosphorus fraction with the largest variation below and above the environmental threshold. SOM, M3-Fe, and Fep+Alp were the key factors affecting the change of P fractions below and above the environmental threshold, respectively.
black soil; available phosphorus; agronomic threshold; environmental threshold; phosphorus fractions; soil chemical properties
10.3864/j.issn.0578-1752.2022.22.008
2021-12-19;
2022-02-22
国家重点研发计划(2021YFD1500205)、国家自然科学基金项目(41977103)
秦贞涵,E-mail:qzh7017@163.com。通信作者张淑香,E-mail:zhangshuxiang@caas.cn
(责任编辑 李云霞)