APP下载

基于改进算法的空调冷负荷组合预测研究

2021-12-08张晨晨丛意林田野郭安柱刘涛马永志

关键词:修正粒子精度

张晨晨 丛意林 田野 郭安柱 刘涛 马永志

摘要:  针对单一的预测方法难以综合描述冷负荷变化的规律性问题,本文以初投入使用的青岛市某自习室空调系统为研究对象,对基于改进算法的空调冷负荷组合预测进行研究。为获得动态负荷数据,搭建了TRNSYS模拟仿真平台,对扰动因子经平均影响值(mean impact value,MIV)和Spearman相关性分析及特征变量筛选后,对预测算法进行优化。通过引入随机粒子和混沌算法,建立基于标准粒子群算法的组合粒子群算法(combined particle swarm optimization, CPSO),得到组合粒子群优化后向传播网络(back propagation, BP)负荷预测模型CPSOBP,并引布谷鸟搜索(cuckoo search,CS),确立布谷鸟搜索支持向量回归(support vector regression,SVR)负荷预测模型CSSVR,建立基于遗传寻优的灰色预测模型GAGM(1,N)。同时,将各模型的负荷预测值带入模糊系统中,建立实时模糊组合预测模型(fuzzy combination,FC),并采用Markov(M)对组合误差进行修正。结果表明,基于Markov的模糊组合预测算法FCM优于CPSOBP、CSSVR和FC,组合精度与3个优化模型相比分别提高了26.32%,62.16%,94.68%,说明基于马尔可夫的模糊组合预测算法FCM可以弥补各算法的不足,降低了预测误差,提高了预测准确率。该研究为空调节能运行策略的制定提供了理论参考。

关键词:  模糊系统; GAGM(1,N); CPSOBP; CSSVR; Markov

中图分类号: TP391.9; TU831.6 文献标识码: A

世界能源需求的增加带来了能源消耗的激增[1]。由于建筑工程约占世界能源消耗的30%[2],而采暖、通风和空调系统(heating ventilation and air conditioning,HVAC)在建筑能耗中所占比例最大[3],且与其他部分能源消耗相比,通过将能源供应与实际负荷需求相匹配[4],减少能源消耗具有更大的潜力。因此,提高暖通空调的运行效率对降低能耗至关重要,而准确预测冷却负荷在此意义重大[5]。全球气候和人类生命行为的复杂性,导致空调负荷呈现非线性、多变性和动态性的特点[3],这对空调负荷的预测精度提出了更高的要求。负荷预测的方法包括物理建模法、参数模型和非参数模型法。物理建模是利用传热机制搭建模拟平台,但是其无法保证实时性[6-9];参数模型是通过分析影响因素与冷负荷之间的关系,建立数学模型或统计模型,统计模型的方法主要包括统计回归[10]和时间序列,统计回归算法结构简单,但评价指标难以确定,时间序列通过分析历史负荷的规律性以预测冷负荷[11],其只用于负荷均匀变化的系统[12]。非参数模型因其囊括智能算法而受到广泛关注,主要有决策树[13]、灰色预测[14]、遗传算法[15]、粒子群算法[16]、布谷鸟算法[17]、神经网络[18]和支持向量机[19]。决策树算法又称判定树,是多分枝有向、无环的树状结构,算法效率高,计算量小,但处理不好时间序列与非线性数据;灰色预测(Grey)在训练参数较少时,可得到较为准确的预测结果,但对随机性强,离散度大的建筑负荷,预测精度低[20];支持向量机(support vector machine, SVM)泛化能力强,在解决维度灾难问题和局部最小问题上有天然的优势,结构简单,鲁棒性强,但不适用于大量样本;BP神经网络具有强大的非线性映射能力和自学习能力,但其容易陷入局部极小,收敛速度慢,对网络初值样本数量较为敏感,对复杂的非线性问题预测精度低。因此,许多学者提出了改进算法。Wei L Y等人[21]提出了自适应期望遗传算法,优化自适应网络模糊推理系统,并通过对比证实了模型的有效性;D. Sedighizadeh等人[22]提出了一种结合随机最优粒子的广义粒子群优化算法,与其他混合粒子群算法在均值和標准差方面均体现了优越性;N. Kumar等人[16]提出了一种基于改进布谷鸟搜索(cuckoo search)算法和自适应高斯量子行为粒子群优化算法的混合算法;Li D L等人[23]采用自适应PSOSVM方法,建立新的自适应短期负荷预测模型,自适应PSOSVM方法预测精度高,泛化能力强,可行性强;D. Tien Bui等人[24]建立了遗传算法和帝国主义竞争算法,优化人工神经网络在节能住宅热负荷和冷负荷估算中的权值和偏差,取得了较好的预测精度。而单一的混合算法很难表现出优化模型的全部信息,单一的预测方法难以综合描述冷负荷变化的规律性。因此,本文采用多个混合算法,分别优化各个预测模型的参数,再将各预测模型放入模糊推理系统,分段动态地提取组合权重,并将各预测模型组合起来,同时考虑到模拟负荷过程中产生的随机误差,采用马尔科夫链对误差进行了修正,降低了预测误差,提高了预测准确率。

1数据来源与处理

1.1TRNSYS模拟平台

本文以初投入使用的青岛市某自习室空调系统为研究对象,基于Trnsys动态仿真平台,获得了动态逐时负荷,并对多功能自习室负荷模拟参数进行设置。青岛市多功能自习室负荷模拟参数如表1所示。

1.2输入变量筛选

本文采用MIV与spearman系数结合的方式,提取外扰和内扰特征变量因素反复计算,取MIV均值绝对值,选择贡献率大的成分,再充分考虑自习室内的负荷,呈周期性变化的历史负荷对当前时刻t负荷的影响,以及内扰和外扰的延迟作用,经过试错法反复比较,进而计算不同时刻每个成分的spearman系数,最终选择确定度大于0.6的成分作为输入。

2组合预测模型

2.1CPSOBP预测

粒子群搜索BP网络最优的阈值和权值初值,以提高BP对初值的敏感度。针对标准粒子群收敛慢、易早熟的问题,引入改进算法。本文首先改进速度更新公式,再引进混沌算法流程,形成组合算法。

1)改進粒子群。改进的粒子群为

2)混沌算法。混沌映射具有随机性和遍历性的特点,将最优解映射到logistic方程的定义域[0,1]中,经过有限次迭代得到混沌序列后,将其逆映射到原解空间,计算得到混沌序列可行解的适应度值,保留混沌最优可行解。CPSOBP结构流程图如图1所示。

2.2CSSVR预测

核函数参数和正则化系数是控制SVR预测精度的关键。CS算法具有搜索能力强和搜索路径优的特点,对SVR的核参数和正则系数寻优能够有效的提高精度。CS算法通过维持Levy飞行产生随机解[16],即

2.3GAGrey预测

灰色模型通过将原始序列转变为规律性,弱化原数据的随机性,深入挖掘预测对象的演化规律。参数a和参数b影响灰色预测结果,当矩阵接近退化时,最小二乘法求参预测精度低。本文采用遗传算法代替最小二乘法求解参数优化模型。

GA通过选择、交叉和变异完成进化过程,是一种高效的全局优化算法。采用遗传算法优化灰色模型参数,GAGrey结构流程图如图3所示。

2.4组合预测

不同偏差的预测模型反应不同信息,组合预测将各模型的有效信息整合优化,得到最优解的近似解。传统的权重分配未考虑权重的动态特性,不同段各优化预测模型的有效信息不同,因此将权重分段分配,分段提取有效信息。将预测结果模糊化,并根据模糊规则建立自适应模糊组合预测模型。模糊推理数据列表如表2所示。

3马尔可夫链误差修正

4案例分析

4.1组合预测

模糊系统组合优化模型,马尔可夫修正组合结果算法流程如图4所示,各模型相对误差分布如图5所示,两种组合预测方式的相对误差分布如图6所示。由图5可以看出,各优化和组合后的预测模型,其性能更佳,比PSOBP模型精度提高26.32%,比CSSVR的预测精度提高62.16%,比GAGrey预测精度提高94.68%,且优于线性组合模型;由图6可以看出,各优化和组合后的预测模型依旧存在峰值误差,因此马尔科夫系统可以对误差进行修正。

4.2误差修正

按照聚类原理,将45个时间点相对误差数据确定为6个中心,根据中心划分成6个状态区间,Kmeans计算聚类中心和状态区间划分结果如表3所示,各点所属状态区间分布如图7所示,修正前后相对误差对比如图8所示。

由图8可以看出,马尔可夫修正后,在7月27日~29日这3天中,每天分别有76.47%,92.86%,85.71%个时刻的预测性能均有所提高,误差峰值大大降低,修正后的模型FCM比组合模型FC的预测精度提高57.14%。

采用平均绝对误差(mean absolute error,MAE)和均方根误差(root mean aquare error,RMSE)对优化预测和修正结果进行综合评价。修正前后性能对比如图9所示。由图9可知,通过修正前后性能对比,FCM预测模型的RMSE和MAE均小于各优化预测模型。

5结束语

本文以初投入使用的青岛市某自习室空调系统为研究对象,主要对基于改进算法的空调冷负荷组合预测进行研究。以自然启发的CS,CPSO,GA全局优化算法为基础,以神经网络BP,SVR,Grey为主体,分别建立了CPSOBP优化预测模型、CSSVR优化预测模型和GAGrey优化预测模型,基于模糊理论将3个优化预测模型带入模糊系统中,从而建立了动态马尔可夫组合预测模型FCM,最后将组合预测模型应用于空调系统的冷负荷预测案例中,修正后的模型FCM比组合模型FC的预测精度提高了57.14%,验证了本文所提出算法的有效性,由预测误差分析可知,本文预测算法精度较高。该研究为空调的节能运行策略提供了具有实际意义的参考。

参考文献:

[1]Sarbu I, Adam M. Experimental and numerical investigations of the energy efficiency of conventional air conditioning systems in cooling mode and comfort assurance in office buildings[J]. Energy and Buildings, 2014, 85: 4558.

[2]Kilic U, Tugrul A B. Identification and analysis of risks associated with gas supply security of turkey[C]∥Energy Systems and Management. Istanbul: Springer International Publishing, 2015: 241252.

[3]Shi H, Xu M H, Li R. Deep learning for household load forecastinga novel pooling deep RNN[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 52715280.

[4]Jing Z, Liu X. A hybrid method of dynamic cooling and heating load forecasting for office buildings based on artificial intelligence and regression analysis[J]. Energy and Buildings, 2018, 174: 293398.

[5]Fan C, Xiao F, Zhao Y. A shortterm building cooling load prediction method using deep learning algorithms[J]. Applied Energy, 2017, 195: 222233.

[6]Li N, Wang K, Cheng J. A research on a following day load simulation method based on weather forecast parameters[J]. Energy Conversion and Management, 2015, 103(6): 691704.

[7]Li Z, Huang G. Reevaluation of building cooling load prediction models for use in humid subtropical area[J]. Energy and Buildings, 2013, 62: 442449.

[8]Dahanayake K W D K C, Chow C L. Studying the potential of energy saving through vertical greenery systems: Using EnergyPlus simulation program[J]. Energy and Buildings, 2017, 138: 4759.

[9]Lim H S, Kim G. Prediction model of cooling load considering timelag for preemptive action in buildings[J]. Energy and Buildings, 2017, 151: 5365.

[10]Asadi S, Hassan M, Beheshti A. Development and validation of a simple estimating tool to predict heating and cooling energy demand for attics of residential buildings[J]. Energy and Buildings, 2012, 54: 1221.

[11]Zhou C G, Fang Z S, Xu X N, et al. Using long shortterm memory networks to predict energy consumption of airconditioning systems[J]. Sustainable Cities and Society, 2020, 55: 1020.

[12]Brockwell P J, Davis R A, Berger J O, et al. Time series: theory and methods[M]. Berlin: SpringerVerlag, 1987.

[13]Yu Z, Haghighat F, Fung B C M, et al. A decision tree method for building energy demand modeling[J]. Energy and Buildings, 2010, 42(10): 16371646.

[14]Harb H, Boyanov N, Hernandez L, et al. Development and validation of greybox models for forecasting the thermal response of occupied buildings[J]. Energy and Buildings, 2016, 117: 199207.

[15]Mauro C, Ales P, Leonardo T, et al. Prediction of energy performance of residential buildings: A genetic programming approach[J]. Energy and Buildings, 2015, 102: 6774.

[16]Kumar N, Shaikh A A, Mahato S K, et al. Applications of new hybrid algorithm based on advanced cuckoo search and adaptive Gaussian quantum behaved particle swarm optimization in solving ordinary differential equations[J]. Expert Systems with Applications, 2021, 172: 118.

[17]Yang X S, Deb S. Cuckoo search: recent advances and applications[J]. Neural Computing and Applications, 2014, 24(1): 169174.

[18]Deb C, Eang L S, Yang J J, et al. Forecasting diurnal cooling energy load for institutional buildings using Artificial Neural Networks[J]. Energy and Buildings, 2016, 121: 284297.

[19]Jain R K, Smith K M, Culligan P J, et al. Forecasting energy consumption of multifamily residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy[J]. Applied Energy, 2014, 123: 168178.

[20]Zhang Y, Fang C, Li T J, et al. Research on shortterm load forecast of shopping mall based on similar day selection and bp neural network[C]∥Proceedings of 2018 3rd International Conference on Automation, Mechanical and Electrical Engineering. Shanghai: DEStech, 2018: 289295.

[21]Wei L Y. A hybrid model based on ANFIS and adaptive expectation genetic algorithm to forecast TAIEX[J]. Economic Modelling, 2013, 33: 893899.

[22]Sedighizadeh D, Masehian E, Sedighizadeh M, et al. GEPSO: A new generalized particle swarm optimization algorithm[J]. Mathematics and Computers in Simulation, 2021, 179: 194212.

[23]Li D L, Zhang X F, Qiao M Z, et al. A shortterm load forecasting method of warship based on PSOSVM method[C]∥Applied Mechanics and Materials. Wuhan: Trans Technology Publications LTD, 2012: 569574.

[24]Tien D, Bui H, Moayedi D, et al. Predicting heating and cooling loads in energyefficient buildings using two hybrid intelligent models[J]. Applied Sciences, 2019, 9(17): 35433568.

作者簡介:  张晨晨(1994),女,硕士研究生,主要研究方向为优化算法对空调负荷的预测。

通信作者:  马永志(1972),男,博士,副教授,主要研究方向为大数据与云计算技术。 Email: hiking@126.com

Research on Combined Forecasting of Air Conditioning Cooling Load Based on Improved Algorithm

ZHANG Chenchen, CONG Yilin, TIAN Ye, GUO Anzhu, LIU Tao, MA Yongzhi

(College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China)

Abstract:  In order to solve the problem that it is difficult to comprehensively describe the regularity of cooling load change with a single forecasting method, this article takes the cooling load in a study room in Qingdao, China, which has been put into use for the first time, as the research object, and establishes a TRNSYS simulation platform to obtain sufficient dynamic load data. After using the mean influence value (MIV) and Spearman correlation coefficient to screen the characteristic variables, the prediction models are optimized: the random particle and chaos algorithm are introduced to establish the combined particle swarm optimization (CPSO) algorithm based on standard particle swarm optimization (PSO) algorithm. This is done in order to optimize back propagation (BP) and establish CPSOBP forecasting model;The cuckoo search support vector regression (CSSVR) forecasting model is established by introducing cuckoo search (CS);The grey prediction model GAgrey (1, N) based on genetic optimization(GA) is established; Load prediction values of each model are brought into the fuzzy system to establish the realtime fuzzy combination (FC) model. Finally, Markov(M) is used to correct the combination error. The results show that FCM is superior to CPSOBP, CSSVR and FC, and accuracy is respectively, 26.32%, 62.16%, 94.68% higher than the three optimization models. It gives full play to the advantages of each algorithm, makes up for the shortcomings of each algorithm, and greatly reduces the prediction error, increases the reliability of forecasting system. This study provides a theoretical reference for the formulation of energysaving operation strategy of air conditioning.

Key words: fuzzy system; GAGM(1, N); CPSOBP; CSSVR; Markov

猜你喜欢

修正粒子精度
数控车床加工精度的工艺处理及优化试析
对微扰论波函数的非正交修正
近似边界精度信息熵的属性约简
虚拟校园漫游中粒子特效的技术实现
一种用于抗体快速分离的嗜硫纳米粒子的制备及表征
电力系统短期负荷预测方法与预测精度
惯性权重动态调整的混沌粒子群算法
问:超对称是什么?
修正2015生态主题摄影月赛
修正2015生态主题摄影月赛