对话卡尼曼:个人投资者如何避免市场的噪声
2021-10-01丹尼尔·卡尼曼奥利维耶·西博尼何刚
丹尼尔·卡尼曼 奥利维耶·西博尼 何刚
绘图/《巴伦周刊》
在颠覆我们对人类决策机制的理解,刷新我们对金钱观念的认知方面,也许没有人能够超过以色列裔美国心理学家丹尼尔·卡尼曼,他的上一本行为经济学著作《思考,快与慢》,让许多人对人类决策过程中的非理性因素醍醐灌顶,并且颠覆了对人类理性的迷信。
在接近十年思考之后,他的新著《噪声》即将出版,这又是一本能够颠覆对人类决策过程认知的著作。近日,《巴伦周刊》中文版主编何刚通过Zoom采访了《噪声》的两位作者丹尼尔·卡尼曼和奥利维耶·西博尼,跟他们探讨了为什么噪声如此重要,它跟偏差有什么不同,以及为什么群体决议反而可能会增加决策中的噪声,如何才能降低决策中的噪声。
何刚:我是来自《财经》杂志和《巴伦周刊》中文版的何刚。几个月前,我们的美国同事采访了您,讨论了《噪声》这本书,现在,它的中文版即将在中国出版,在您出版了著名畅销书《思考,快与慢》之后,为什么会开始关注噪声?噪声对我们决策来说有多重要?
丹尼尔·卡尼曼:是的,我认为我们绝对应该从定义我们所说的“偏差” 和“噪声”来开始这次对话。
最简单的方法是从测量的角度来思考,因为我们认为判断也是一种测量,使用的仪器就是人类的大脑。当你在测量某样东西时,例如,用一把很好的直尺来测量一条直线的长度,你会发现两种误差,其中一种误差是偏差(bias),也就是误差的平均值。
如果你在测量一条直线时,没有任何偏差,也就是说平均而言,你的测量是完全正确的,但即使在完全没有偏差的情况下也仍然存在一种误差,因为你所做的每一个测量都与其他的测量略有不同,有一半时间你在正确的长度之上,有一半时间你在正确的长度之下,这种变异性就是噪声(noise)。
偏差是误差的平均值。在我的整个职业生涯中,我一直致力于研究心理偏差,也就是导致人们测量结果过高或者过低的系统性判断误差。有各种各样的原因会导致人们犯下可以预测的系统性误差,比如过度自信、乐观主义、悲观主义和锚定效应等等,这些就是我研究了50年的东西。
几年前我注意到,事实上,几乎没有人关注另一种类型的误差,也就是判断的变异性,而事实证明,判断的变异性也很大。当不同的法官看待同一个被告、或者不同的承保人看待同样的风险时,他们得出的判断也大不相同,这就是噪声,噪声无处不在。
每个人都知道当被告被宣判时,不同的法官会有不同的判决,但是促使我们写这本书的原因并不是法官的判决会有所不同,因为这是人尽皆知的事情,而是法官在判断上的分歧比人们预期的要多得多。在一些研究中,实际结果大约是人们预期的五倍,这是一个很大的数字,也是我们写这本书的原因。
何刚:谢谢卡尼曼教授,我想问问西博尼教授,对于像我这种没有统计学背景的读者来说,我们如何理解偏见和噪声的区别?为什么噪声如此重要?
奥利维耶·西博尼:首先,噪声并非更加重要,它只是和偏差一样重要。正如丹尼尔所说,我们之所以关注这个问题,是因为偏差已经得到了很多关注,而噪声却没有得到任何关注。所以我们试图重新解读这种不平衡。我们并不是说噪声比偏差更重要,我们想说的是,它跟偏差同样重要,但却没有受到太多关注。
接下来,如果你对统计学一无所知,这里有一个例子可以让丹尼尔所描述的情况生动起来。假设早上你踩着浴室磅秤称体重,根据你的经验,你知道,一般来说你的浴室磅秤对你来说有点太大方了,它告诉你的重量比你实际的重量轻了一磅。所以你已经习惯了你的磅秤减少一磅,你知道平均来说,加上一磅才是真实重量。这就是偏差,这是你的浴室秤的平均误差。
如果你在同一个早晨快速连续两次或三次踩上你的体重秤,你会发现读数并不完全一模一样。这种无法解释的变化不是平均误差,平均误差是你所知道减少的那一磅,这就是噪声,它会出现在每一次测量中。
发生在你浴室磅秤上的事情也会发生在我们的判断中,平均误差是偏差,在这种情况下如果还存在着随机误差或瞬态误差,那就是噪声。
何刚:人们可能会说,这是由于人类的局限性,科技和人工智能能够帮助减少我们的偏差和噪声的影响吗?
丹尼爾·卡尼曼:帮助减少噪声的基本原理是纪律,而纪律可以通过不同的方式来产生。纪律意味着你在做判断或决定时要遵守规则。当你决定是否录取一个学生进入大学时,你要考虑学生的平均成绩,这就是接受了一个纪律规则,它比人们只是跟随他们的主观判断或者印象要减少一些噪声。
在许多领域,更复杂的规则来自人工智能或算法,规则为判断问题和作出决策提供了答案,规则的一个最大优点就是它们没有噪声。如果我向同一个算法提出两次同样的问题,我会得到相同的答案。如果我在不同的场合问同一个人同样的问题,他可能会给出不同的答案,人类是会受到噪声影响的,而规则不受噪声干扰。
在某些情况下通过用算法代替判断,在另一些情况下通过对判断加强纪律性,用更有组织、更加系统的方式作出判断,我们就可以减少噪声。
何刚:卡尼曼教授,你在这本书中提到一种非常有趣的现象,也就是所谓的“群体极化”现象,这意味着一个群体在彼此交流之后会变得更加极端,我们如何解决这样的问题?
丹尼尔·卡尼曼:噪声和偏差之间有一个非常重要的区别:当你用尺测量一条线、或者用秤测量你的体重时,你在对多次测量结果进行平均之后,测量结果比单次测量结果的噪声要小。
举个例子,如果我在测量仪器上取了四次平均值,然后我在测量仪器上又取了四次平均值,这两个平均值之间的差值,将会小于任何两个测量值之间的平均差值,正如我们所解释的。