APP下载

基于机器学习的棉花叶面积指数监测

2021-09-16马怡茹马露露祁亚琴侯彤瑜

农业工程学报 2021年13期
关键词:冠层叶面积波段

马怡茹,吕 新,易 翔,马露露,祁亚琴,侯彤瑜,张 泽

基于机器学习的棉花叶面积指数监测

马怡茹,吕 新,易 翔,马露露,祁亚琴,侯彤瑜,张 泽※

(石河子大学农学院/新疆生产建设兵团绿洲生态农业重点实验室,石河子 832003)

为实现基于机器学习和无人机高光谱影像进行棉花全生育期叶面积指数(Leaf Area Index, LAI)监测,该研究基于大田种植滴灌棉花,在不同品种及不同施氮处理的小区试验基础上,对无人机获取的高光谱数据分别采用一阶导(First Derivative, FDR)、二阶导(Second Derivative, SDR)、SG(Savitzky-Golay)平滑和多元散射校正(Multiplicative Scatter Correction, MSC)进行预处理,并结合Pearson相关系数法、连续投影(Successive Projections Algorithm, SPA)、随机蛙跳(Shuffled Frog Leaping Algorithm, SFLA)和竞争性自适应重加权(Competitive Adaptive Reweighting, CARS)筛选敏感波段,将筛选出的波段,使用偏最小二乘回归(Partial Least Squares Regression, PLSR)、支持向量回归(Support Vector Regression, SVR)和随机森林回归(Random Forest Regression, RFR)3种机器学习算法构建棉花LAI监测模型。结果表明:棉花冠层LAI敏感响应波段集中在可见光(400~780 nm)和近红外(900 nm之后)波段;对比3种机器学习算法,各预处理下RFR建立的LAI监测模型精度最高,稳定性最好,其中以FDR-SFLA-RFR模型最佳,在建模集的决定系数为0.74,均方根误差为1.648 3,相对均方根误差为26.39%;验证集的决定系数、均方根误差分别为0.67和1.622 0,相对均方根误差为25.97%。该研究基于无人机获取的棉花冠层光谱反射率,从不同光谱预处理、波段筛选及建模方法建立的模型中筛选出最佳估算模型用于棉花全生育期LAI监测,研究结果可为棉花大田精准管理及变量施肥提供依据。

棉花;无人机;高光谱;机器学习;叶面积指数

0 引 言

棉花是重要的经济作物[1],不同施氮水平对棉花长势有显著影响[2-4]。叶面积指数(Leaf Area Index ,LAI)是反应作物冠层结构及长势的重要指标之一[5-6],通过监测LAI变化可为棉花变量施肥提供依据[7-8],因此快速、准确、无损的监测棉花LAI对于指导作物施肥具有重要意义。传统的LAI监测主要靠人工取样,需要投入大量人力和时间成本,存在滞后性,无法满足实时监测的需要。

遥感技术能够实现及时、动态、宏观的监测,成为监测作物生长信息的重要手段。近年来,国内外大量研究通过遥感技术对作物生物量[9-11]、叶绿素含量[12-14]、水氮含量[15-18]等生理生化参数进行反演。而针对作物LAI的监测,也基于手持光谱仪、无人机和卫星等遥感手段开展了大量研究[19-22]。地面光谱监测具有无损、精确等优点,但由于拍摄范围以及仪器重量等因素限制,近地光谱不能实现空间尺度连续快速监测[23]。此外,有研究表明卫星影像在作物LAI监测方面具有一定潜力[24],但由于其影像分辨率在10~60m,多用于森林或大区域尺度的作物LAI监测[25-26]。无人机在作物监测方面具有快速、重复的捕获能力,且与卫星影像相比影像分辨率更高[27],更适应小地块精确监测。已有学者基于无人机获取的光谱图像对小麦、水稻、玉米等作物的LAI进行监测[28-31]。无人机可快速获取大量的高光谱数据,其中包含丰富的信息,同时也存在数据冗余的问题,机器学习算法因其强大的学习能力和对数据深层信息的挖掘和理解能力,越来越多与遥感技术相结合应用于作物生长监测[32-33]。国内外学者多从光谱信息中提取植被指数,利用机器学习算法提高监测模型精度[34-36]。

目前通过光谱数据进行LAI监测多基于植被指数建模,而植物冠层的高光谱反射率是对植被特征最直接的反应,与植被指数相比可以提供更详细,更丰富的信息,合理的光谱变换也能够在一定程度上消除光谱数据的背景和噪声。但高光谱数据也具有多重共线性,偏最小二乘模型是多元线性模型的一种延伸,能够减少数据变量间的共线性问题,支持向量机和随机森林具有较高的学习和预测能力,能够从不同角度克服变量间共线性的问题。因此,为提高棉花LAI监测模型精度,本研究使用不同方法对光谱影像数据进行预处理,再分别筛选敏感波段,采用3种不同机器学习算法构建LAI监测模型,寻找最佳模型,以期为新疆棉花大田精准管理及变量施肥提供依据。

1 材料与方法

1.1 试验区及试验设计

本试验研究区域位于石河子大学农试场二连(44°19′N,85°59′E)。研究区为干旱半干旱区域,年平均降水量125.9~207.7 mm,昼夜温差大,前茬作物为棉花。试验区域如图1所示。

为使模型适应于多种环境,试验设置不同棉花品种和施氮处理。供试棉花品种为新陆早53号、新陆早45号和鲁研棉24号;每个品种设置6个氮处理分别为N0(0 kg/hm2)、N1(120 kg/hm2)、N2(240 kg/hm2)、NC(360 kg/hm2)、N3(480 kg/hm2)、N4(600 kg/hm2),每个处理重复3次,共54个小区,各小区面积为21 m²(2.1 m×10 m)。于2019年4月24日播种,2019年10月15日收获。新陆早系列按照“一膜三管六行”的机采棉种植模式;鲁研棉24号按“一膜三管三行”的模式种植。全生育期按新疆“矮、密、早、膜”的高产栽培技术进行大田管理,并注意预防病虫草害。

1.2 无人机高光谱图像获取和处理

利用无人机搭载Nano-Hyperspecal(美国)传感器获取出苗后第57、66、76、88、98、112及120天的高光谱图像。无人机使用大疆M600Pro(中国,深圳)六旋翼无人机,最大载负荷10 kg,配备6块电池,数据采集时飞行高度为100 m。Nano-Hyperspecal为推扫式成像光谱仪,基本参数如表1所示。无人机获取冠层光谱影像时每次航线一致,获取的影像为.hdr格式,将影像数据导入Nano自带的校正软件SpectralView进行校正,校正后的影像导入到ENVI5.1中进行图像拼接和并通过标准板计算反射率。

1.3 数据采集与预处理

1.3.1 棉花LAI采集

获取无人机高光谱图像后,在各小区内随机选择连续3株具有代表性的样株,取全株叶片利用LI-3000测量单株总叶面积,依据公式(1)计算叶面积指数LAI:

表1 Nano-Hyperspecal传感器主要参数

1.3.2高光谱数据预处理

无人机高光谱影像获取过程中由于环境因素的影响影像会产生噪音,这种噪音干扰在数据获取过程中是不可避免的,虽然在图像拼接过程中进行大气校正,但仍有部分干扰依然存在。为了有效提取对棉花LAI敏感的波段,常通过对原始光谱进行预处理以突出特征波段、去除背景噪音。本研究采用4种不同的方式:一阶导(First Derivative, FDR)、二阶导(Second Derivative, SDR)、SG(Savitzky-Golay)平滑及多元散射校正(Multiplicative Scatter Correction, MSC)进行光谱预处理。

1.3.3 特征波段筛选

高光谱影像中包括272个波段信息,使用全波段建模会出现数据冗余和共线性的问题,因此需要从中筛选出敏感波段以降低数据维度,减少冗余信息。本研究采用Pearson相关系数、连续投影算法(Successive Projections Algorithm, SPA)、随机蛙跳(Shuffled Frog Leaping Algorithm, SFLA)和竞争性自适应重加权(Competitive Adaptive Reweighting, CARS)4种方法筛选与棉花LAI相关性强的特征波段,其中相关系数法和SFLA选择了相关性最高、选择概率最高的10个波段进行建模。SPA是将各自波长投影到其他波长上计算其投影向量,并选择投影向量长的为特征波段,其结果为信息最多、共线性现象最少的波段组合[37]。SFLA算法是一种基于青蛙社会行为的群体智能算法,结合了确定性方法和随机性方法,是求解组合优化问题的有效工具。CARS算法通过自适应重加权采样选择出PLS模型中回归系数绝对值大的波长,利用交互验证选出RMSECV最低的子集,选择出最优变量组合[38],可根据信息量确定特征波段个数。

1.4 模型构建与验证

1.4.1 模型构建

为克服高光谱数据共线性问题,本文采用偏最小二乘回归(Partial Least Squares Regression, PLSR)、支持向量机回归(Support Vector Regression, SVR)和随机森林回归(Random Forest Regression, RFR)3种机器学习方法构建回归模型。机器学习被广泛应用于植物生理生化参数与遥感信息非线性关系建立,与简单线性回归相比,机器学习更适合基于多变量、多样本的结果预测,基于Matlab2016a实现。

1.4.2 精度验证

单次采样可获取54个数据集,每个数据集包括54个地面实测数据和一架次无人机数据。全生育期共获取345个样本,按训练集:验证集=2:1进行数据集划分,训练集230个样本,验证集115个样本。以决定系数(2)、均方根误差(Root Mean Square Error, RMSE)和相对均方根误差(Relative Root Mean Square Error, rRMSE)进行LAI估算模型的精度评估。其中,2越大,模型拟合性越好,RMSE和rRMSE越小,模型精度越高。其计算公式如下:

2 结果与分析

2.1 不同LAI值的棉花冠层反射率

图2a为高光谱影像中不同LAI值对应的冠层反射率,在760~1 000 nm内LAI越高冠层反射率越高,且差异明显。由图2b可知:在490~760 nm LAI值与冠层反射率呈现负相关;760~1 000 nm呈现正相关。由此表明,无人机获取的棉花冠层高光谱影像能够有效反应棉花LAI值变化。

2.2 特征波段筛选

以不同方法进行波段筛选,结果如表2所示,棉花LAI敏感波段在可见光及近红外区域均有分布。其中,原始光谱及SG平滑处理后以Pearson筛选出的特征波段在红光(700~720 nm)波段较为集中,多为相邻波段;而经过FDR、SDR及MSC预处理后以Pearson进行波段筛选后其特征波段在可见光(400~780 nm)波段均有分布。SFLA筛选出各预处理下的敏感波段均匀分布在可见光及近红外(400~1 000 nm)波段。SPA筛选出的敏感波段多集中在近红外(780~1 000 nm)波段,筛选结果较为集中。CARS在各预处理下筛选出的波段范围较广在可见光及近红外(400~1 000 nm)波段皆有选择,多集中在近红外波段,筛选出的波段数最多。由此可见,不同筛选方法针对不同预处理后的光谱特征可在一定程度上实现数据降维。

表2 特征波段筛选结果

注:FDR为一阶导,SDR为二阶导,MSC为多元散射校正,Pearson为皮尔逊相关系数法,SPA为连投影法,SFLA为随机蛙跳法,CARS为竞争性自适应重加权算法,下同。

Note: FDR is the first derivative, SDR is the second derivative, MSC is the multiplicative scatter correction, Pearson is the Pearson correlation coefficient method, SPA is the successive projections algorithm, SFLA is the shuffled frog leaping algorithm, and CARS is the competitive adaptive reweigh ting algorithm, the same below.

2.3 基于PLSR的棉花LAI监测模型

PLSR是多元线性回归、主成分分析以及典型相关分析的结合,它要求各变量与估算目标间具有较好的线性关系。结合表2中筛选出的敏感波段,使用PLSR建模并验证。如图3,模型建模结果中2由0.17提升到0.59,RMSE从2.717 2降低到1.911 9,rRMSE从43.50%降低到30.61%。在PLSR模型中的最佳模型为FDR-SFLA组合获取的光谱信息建立的模型,模型效果最差为SG-Pearson模型。模型验证结果如图4,与建模结果一致,以FDR-SFLA模型的拟合线更趋向于1∶1线,其2=0.59,RMSE=1.731 9,rRMSE=27.73%。

2.4基于SVR的棉花LAI监测模型

SVR是支持向量机的一种重要形式,能够有效、准确解决回归问题。如图5,不同处理下的SVR模型,其2由0.36提升到0.72,RMSE由2.579 2降低到1.570 8,rRMSE由41.29%降低到25.15%,SG-Pearson和SG-SFLA模型效果最好,但其验证精度与模型结果存在一定差异。由图6可知,SG-SFLA模型较SG-Pearson模型验证结果更好,是由于相比SFLA,Pearson筛选的敏感波段较为集中,而SG平滑降噪同时使部分特征信息被消除,出现共线性问题,导致建模效果较好,而验证结果较差。综合对比模型结果及验证结果,FDR-SFLA建模集的2=0.63,RMSE=1.890 8,rRMSE=30.27%,验证集的2=0.63,RMSE=1.7137,rRMSE=27.44%。虽然FD-SFLA的建模效果不是最佳,但建模集与验证集结果表现一致,且该模型真实值与预测值的线性拟合关系更趋向于1∶1线。因此,基于SVR算法构建的模型中,FDR-SFLA模型效果最好。

2.5 基于RFR的棉花LAI监测模型

随机森林是一种广泛应用于分类、回归等领域的机器学习算法,可以提供特征的重要性评估,从而能洞察特征选择的过程。图7所示,LAI监测模型2由0.47提升到0.74,RMSE由2.152 6降低到1.648 3,rRMSE由34.46%降低到26.39%,其验证与建模结果表现一致。综合对比,RFR构建的模型中FDR-SFLA模型效果最好,其2=0.74,RMSE=1.648 3,rRMSE=26.39%,从图8可看出其真实值和预测值的线性拟合更趋向于1∶1线,其2=0.67,RMSE=1.622 0,rRMSE=25.97%。

综上所述,对比不同建模方法的模型精度,RFR模型的模型和验证结果均优于PLSR和SVR;SVR效果优于PLSR,但信息冗余导致建模集和验证集结果出现偏差。RFR模型克服了这一问题,去除了冗余信息干扰,有效提升了模型精度。对比可知,非线性模型性能优于线性模型性能,而3种机器学习方法都以FDR-SFLA模型效果最好,相较于其他方法RFR的2提高了20.27%,RMSE降低了3.97%,rRMSE降低了3.90%;验证集的2提高了11.94%,RMSE降低了3.97%,rRMSE降低了3.90%。

3 讨 论

本研究对LAI变化和其光谱响应进行分析,结果表明可见光区域LAI与冠层光谱反射率呈负相关,近红外区域LAI与冠层光谱反射率呈正相关,这与前人在冬小麦[39]、油菜[40]和玉米[41]研究中的结果一致。这是由于植被光谱反射率,在350~800 nm差异主要是由于植物体内叶绿素和其他色素的影响,800~1 000 nm的差异来源于植物细胞组织的散射,棉花生长茂盛多片叶子叠加辐射作用下,则会在近红外波段产生较高的反射率,因此不同的LAI值的冠层光谱在近红外区域差异更明显。

冠层原始光谱受太阳辐射通量,作物结构特征和土壤背景条件影响[42],光谱预处理可减少背景噪声信息,能够有效提高光谱信息精度[43]。前人研究表明,FDR处理可减轻作物冠层重叠对反射率的影响,也可最小化土壤或大气背景噪声[44]。王玉娜等[45]以不同方法处理原始光谱后估算冬小麦生物量,以FDR处理后的光谱反射率与生物量相关性更高。Li等[46]发现750 nm波长处的一阶导数与LAI具有较高的相关性,估算模型精度较高,与本研究结果表现一致。

高光谱分析包括特征波段筛选和回归建模2个步骤。波段筛选能够有效实现数据降维,缓解共线性的问题,本研究通过不同筛选方法筛选出的LAI敏感波段多集中在400~780 nm的可见光波段以及900 nm以后的近红外波段,这与孙晶京等[47]通过随机蛙跳法筛选出的敏感波段相似。本研究以SFLA法筛选出的敏感波段建模效果最好,Ren等[48]对比4种波段筛选方法进行红茶评级,得到相同结果。已有研究中的模型,波段筛选有效降低了数据维数,但传统的线性回归建模仍然会出现共线性问题。本研究基于不同机器学习算法建立LAI监测模型,其结果表现为:RFR最佳,SVR次之,PLSR最差。其中以FDR-SFLA-RFR模型精度最佳(模型的2=0.74,RMSE=1.648 3,rRMSE=26.39%;验证集2=0.67,RMSE=1.622 0,rRMSE=25.97%),说明RFR对于棉花LAI监测更有效。RFR是基于树的集成学习技术,抗过拟合能力较强,被广泛应用于长势指标监测,并具有更优的建模效果,如:Han等[49]通过机器学习算法估算玉米地上生物量;Lu等[50]基于RGB图像建立小麦生物量估算模型;Wang等[51]以不同建模方法监测氮营养指数,均以RFR模型的效果最优。RFR模型在大样本预测上要比其他算法具有优势,本研究中RFR模型也表现出较好的预测能力。

田明璐等[52]基于无人机获取的光谱数据建立植被指数用于棉花盛蕾期LAI监测,其模型验证集的2=0.85,RMSE=0.02,其结果优于本研究,但其模型仅适用于盛蕾期LAI监测。而本研究建立的模型,可用于棉花全生育期LAI监测,且涉及不同棉花品种。Chen等[53]基于无人机获取的多光谱数据建立棉花不同生育期LAI监测模型,其模型的2=0.65,RMSE=0.62,精度低于本研究基于棉花冠层光谱反射率建立的模型。近年来,为更好实现棉花生长信息监测,有学者引入了机器视觉、深度学习等技术,有效提高了监测模型精度[9,54]。为提高模型精度,未来可考虑引入更多监测技术以及建模手段。

综上所述,光谱数据采用FDR预处理,采用SFLA筛选敏感波段,可优化模型变量,提高模型精度。RFR能够有效对抗噪声,更适合针对遥感数据进行建模,FDR-SFLA-RFR模型在棉花全生育期LAI监测方面具有广阔的应用前景。本研究试验设置了不同氮处理和不同棉花品种,但本研究的方法是基于特定地点同一年份的棉花冠层光谱数据,这限制了模型对其他数据集或其他地域的预测能力。因此,要将FDR-SFLA-RFR模型优化至更稳定精确,还需要从更多年份、种植模式和地区收集更多的数据集进行模型校正。

4 结 论

本研究基于无人机获取棉花冠层高光谱数据,通过不同预处理和波段筛选方法筛选波段组合,使用偏最小二乘回归(Partial Least Squares Regression, PLSR)、支持向量回归(Support Vector Regression, SVR)和随机森林回归(Random Forest Regression, RFR)对棉花全生育期叶面积指数LAI进行估算,结果表明:不同LAI的冠层光谱在760~1 000 nm存在明显差异,冠层光谱与LAI存在明显的相关性。对比不同预处理下的波段筛选方法可知,基于相关系数进行波段筛选,筛选出的波段过于集中,会出现信息冗余和信息提取不全的现象;而随机蛙跳(Shuffled Frog Leaping Algorithm, SFLA)算法筛选出的敏感波段分布均匀,对棉花LAI敏感的波段多集中在400~780 nm的可见光波段以及900 nm以后的近红外波段。不同建模方法的棉花LAI估算模型结果表现为:RFR最佳,SVR次之,PLSR最差,FDR-SFLA-RFR模型最佳,其建模结果的2为0.74,RMSE为1.648 3,rRMSE为26.39%;验证结果的2为0.67,RMSE为1.622 0,rRMSE为25.97%。

[1] Khan M A, Wahid A, Ahmad M, et al. World Cotton Production and Consumption: An Overview[M]. Cotton Production and Uses. Pakistan: Multan, 2020: 1-7.

[2] 忠智博,翟国亮,邓忠,等. 水氮施量对膜下滴灌棉花生长及水氮分布的影响[J]. 灌溉排水学报,2020,39(1):67-76.

Zhong Zhibo, Zhai Guoliang, Deng Zhong, et al. The impact of N application and drip irrigation amount on cotton growth and water and N distributions in soil mulched with film[J]. Journal of Irrigation and Drainage, 2020, 39(1): 67-76. (in Chinese with English abstract)

[3] 马腾飞,李杰,陈志,等. 施氮对膜下滴灌棉花生长发育及土壤硝态氮的影响[J]. 新疆农业科学,2020,57(2):245-253.

Ma Tengfei, Li Jie, Chen Zhi, et al. Simulating effects of nitrogen application on growth and development and soil nitrate nitrogen of cotton under mulched drip irrigation[J]. Xinjiang Agricultural Sciences, 2020, 57(2): 245-253. (in Chinese with English abstract)

[4] Muharam F M, Delahunty T, Maas S J. Evaluation of nitrogen treatment effects on the reflectance of cotton at different spatial scales[J]. International Journal of Remote Sensing, 2018, 39(23): 8482-8504.

[5] 张宏鸣,刘雯,韩文霆,等. 基于梯度提升树算法的夏玉米叶面积指数反演[J]. 农业机械学报,2019,50(5):258-266.

Zhang Hongming, Liu Wen, Han Wenting, et al. Inversion of summer maize leaf area index based on gradient boosting decision tree algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 258-266. (in Chinese with English abstract)

[6] 陶惠林,徐良骥,冯海宽,等. 基于无人机高光谱长势指标的冬小麦长势监测[J]. 农业机械学报,2020,51(2):180-191.

Tao Huilin, Xu Liangji, Feng Haikuan, et al. Monitoring of winter wheat growth based on UAV hyperspectral growth index[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 180-191. (in Chinese with English abstract)

[7] 尹佳硕. 变量施肥夏玉米高光谱与农学参数关联模型研究[D]. 保定:河北农业大学,2018.

Yin Jiashuo. Study on Correlation Model of Hyperspectral and Agronomic Parameters of Summer Maize with Variable Fertilization[D]. Baoding: Hebei Agricultural University, 2018. (in Chinese with English abstract)

[8] 邓江,谷海斌,王泽,等. 基于无人机遥感的棉花主要生育时期地上生物量估算及验证[J]. 干旱地区农业研究,2019,37(5):55-61,69.

Deng Jiang, Gu Haibin, Wang Ze, et al. Estimation and validation of above-ground biomass of cotton during main growth period using Unmanned[J]. Agricultural Research in the Arid Areas, 2019, 37(5): 55-61, 69. (in Chinese with English abstract)

[9] 刘金然. 基于无人机遥感影像的棉花主要生长参数反演[D]. 济南:山东师范大学,2019.

Liu Jinran. Inversion of Cotton Main Growth Parameters Based on Unmanned Aerial Vehicle (UAV) Sensing Image[D]. Jinan: Shandong Normal University, 2019. (in Chinese with English abstract)

[10] Zhu Y, Zhao C, Yang H, et al. Estimation of maize above-ground biomass based on stem-leaf separation strategy integrated with LiDAR and optical remote sensing data[J]. PeerJ, 2019, 7: e7593.

[11] Haldar D, Dave V, Misra A, et al. Radar vegetation index for assessing cotton crop condition using RISAT-1 data[J]. Geocarto International, 2020, 35(4): 364-375.

[12] 依尔夏提·阿不来提,白灯莎·买买提艾力,买买提·沙吾提等. 基于高光谱和BP神经网络的棉花冠层叶绿素含量联合估算[J]. 光学学报,2019,39(9):372-380.

Ershat Ablet, Baidengsha Maimaitiail, Mamat Sawut, et al. Combined estimation of chlorophyll content in cotton canopy based on hyperspectral parameters and back propagation neural network[J]. Acta Optica Sinica, 2019, 39(9): 372-380. (in Chinese with English abstract)

[13] Xie Q, Dash J, Huete A, et al. Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 80: 187-195.

[14] 张卓然,常庆瑞,张廷龙,等. 基于支持向量机的棉花冠层叶片叶绿素含量高光谱遥感估算[J]. 西北农林科技大学学报:自然科学版,2018,46(11):39-45.

Zhang Zhuoran, Chang Qingrui, Zhang Yanlong, et al. Hyperspectral estimation of chlorophyll content of cotton canopy leaves based on support vector machine [J]. Journal of Northwest A&F University: Natural Science Edition, 2018, 46(11): 39-45. (in Chinese with English abstract)

[15] 刘馨月. 基于荧光参数的棉花水分状况的高光谱遥感监测研究[D]. 石河子:石河子大学,2018.

Liu Xinyue.Hyperspectral Remote Sensing Monitoring of Cotton Moisture Status Based on Fluorescence Parameters[D]. Shihezi: Shihezi University, 2018. (in Chinese with English abstract)

[16] Tavakoli H, Gebbers R. Assessing nitrogen and water status of winter wheat using a digital camera[J]. Computers and Electronics in Agriculture, 2019, 157: 558-567.

[17] 马岩川. 基于高光谱遥感的棉花冠层水氮参数估算[D].北京:中国农业科学院,2020.

Ma Yanchuan. Estimation of Water and Nitrogen Parameters in Cotton Canopy Based on Hyperspectral Remote Sensing[D]. Beijng: Chinese Academy of Agricultural Sciences, 2020. (in Chinese with English abstract)

[18] Thorp K R, Thompson A L, Harders S J, et al. High-throughput phenotyping of crop water use efficiency via multispectral drone imagery and a daily soil water balance model[J]. Remote Sensing, 2018, 10(11): 1682.

[19] Fang H, Baret F, Plummer S, et al. An overview of global leaf area index (LAI): Methods, products, validation, and applications[J]. Reviews of Geophysics, 2019, 57(3): 739-799.

[20] Yu L, Shang J, Cheng Z, et al. Assessment of cornfield LAI retrieved from multi-source satellite data using continuous field LAI measurements based on a wireless sensor network[J]. Remote Sensing, 2020, 12(20): 3304.

[21] Singh P, Pandey P C, Petropoulos G P, et al. Hyperspectral remote sensing in precision agriculture: Present status, challenges, and future trends[M]. Hyperspectral Remote Sensing. Netherlands: Elsevier, 2020: 121-146.

[22] Cañete-Salinas P, Zamudio F, Yáñez M, et al. Evaluation of models to determine LAI on poplar stands using spectral indices from Sentinel-2 satellite images[J]. Ecological Modelling, 2020, 428: 109058.

[23] Caballero D, Calvini R, Amigo J M. Hyperspectral Imaging in Crop Fields: Precision Agriculture[M]. Data Handling in Science and Technology. Netherlands: Elsevier, 2020: 453-473.

[24] 易秋香. 基于Sentinel-2多光谱数据的棉花叶面积指数估算[J]. 农业工程学报,2019,35(16):189-197.

Yi Qiuxiang. Remote estimation of cotton LAI using Sentinel-2 multispectral data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(16): 189-197. (in Chinese with English abstract)

[25] Pasqualotto N, Delegido J, Van Wittenberghe S, et al. Multi-crop green LAI estimation with a new simple sentinel-2 LAI index (SeLI)[J]. Sensors, 2019, 19(4): 904.

[26] Li S, Yuan F, Ata-UI-Karim S T, et al. Combining color indices and textures of UAV-based digital imagery for rice LAI estimation[J]. Remote Sensing, 2019, 11(15): 1763.

[27] Wang J, Xiao X, Bajgain R, et al. Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154: 189-201.

[28] Tao H, Feng H, Xu L, et al. Estimation of crop growth parameters using UAV-based hyperspectral remote sensing data[J]. Sensors, 2020, 20(5): 1296.

[29] Zhu W, Sun Z, Huang Y, et al. Improving Field-scale wheat LAI retrieval based on UAV remote-sensing observations and optimized VI-LUTs[J]. Remote Sensing, 2019, 11(20): 2456.

[30] 陈晓凯,李粉玲,王玉娜,等. 无人机高光谱遥感估算冬小麦叶面积指数[J]. 农业工程学报,2020,36(22):40-49.

Chen Xiaokai, Li Fenling, Wang Yuna, et al. Estimation of winter wheat leaf area index based on UAV hyperspectral remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(22): 40-49. (in Chinese with English abstract)

[31] Peng Y, Li Y, Dai C, et al. Remote prediction of yield based on LAI estimation in oilseed rape under different planting methods and nitrogen fertilizer applications[J]. Agricultural and Forest Meteorology, 2019, 271: 116-125.

[32] Rehman T U, Mahmud M S, Chang Y K, et al. Current and future applications of statistical machine learning algorithms for agricultural machine vision systems[J]. Computers and electronics in agriculture, 2019, 156: 585-605.

[33] Zha H, Miao Y, Wang T, et al. Improving unmanned aerial vehicle remote sensing-based rice nitrogen nutrition index prediction with machine learning[J]. Remote Sensing, 2020, 12(2): 215.

[34] Duan B, Liu Y, Gong Y, et al. Remote estimation of rice LAI based on fourier spectrum texture from UAV image[J]. Plant Methods, 2019, 15(1): 1-12.

[35] Mao H, Meng J, Ji F, et al. Comparison of machine learning regression algorithms for cotton leaf area index retrieval using Sentinel-2 spectral bands[J]. Applied Sciences, 2019, 9(7): 1459.

[36] Cao J, Zhang Z, Tao F, et al. Integrating Multi-Source Data for Rice Yield Prediction across China using Machine Learning and Deep Learning Approaches[J]. Agricultural and Forest Meteorology, 2021, 297: 108275.

[37] Araújo M C U, Saldanha T C B, Galvao R K H, et al. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2001, 57(2): 65-73.

[38] Li H, Liang Y, Xu Q, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J]. Analytica chimica acta, 2009, 648(1): 77-84.

[39] 郭建彪,马新明,时雷,等. 冬小麦叶面积指数的品种差异性与高光谱估算研究[J]. 麦类作物学报,2018,38(3):340-347.

Guo Jianbiao, Ma Xinming, Shi Lei, et al. Variety variation and hyperspectral estimate model of leaf area index of winter wheat[J]. Journal of Triticeae Crops, 2018, 38(3): 340-347. (in Chinese with English abstract)

[40] 李岚涛,李静,明金,等. 冬油菜叶面积指数高光谱监测最佳波宽与有效波段研究[J]. 农业机械学报,2018,49(2):156-165.

Li Lantao, Li Jing, Ming Jin, et al. Selection optimization of hyperspectral bandwidth and effective wavelength for predicting leaf area index in winter oilseed rape[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 156-165. (in Chinese with English abstract)

[41] 程雪,贺炳彦,黄耀欢,等. 基于无人机高光谱数据的玉米叶面积指数估算[J]. 遥感技术与应用,2019,34(4):775-784.

Cheng Xue, He Bingyan, Huang Yaohuan, et al. Estimation of corn leaf area index based on UAV hyperspectral image[J]. Remote Sensing Technology and Application, 2019, 34(4): 775-784. (in Chinese with English abstract)

[42] Baldocchi D D, Ryu Y, Dechant B, et al. Outgoing near‐infrared radiation from vegetation scales with canopy photosynthesis across a spectrum of function, structure, Physiological Capacity, and Weather[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(7): 1-17.

[43] Li L, Lin D, Wang J, et al. Multivariate analysis models based on full spectra range and effective wavelengths using different transformation techniques for rapid estimation of leaf nitrogen concentration in winter wheat[J]. Frontiers in plant science, 2020, 11: 755.

[44] Ihuoma S O, Madramootoo C A. Sensitivity of spectral vegetation indices for monitoring water stress in tomato plants[J]. Computers and Electronics in Agriculture, 2019, 163: 104860.

[45] 王玉娜,李粉玲,王伟东,等. 基于连续投影算法和光谱变换的冬小麦生物量高光谱遥感估算[J]. 麦类作物学报,2020,40(11):1389-1398.

Wang Yuna, Li Fenling, Wang Weidong, et al. Hyper-spectral remote sensing estimation of shoot biomass of winter wheat based on SPA and transformation spectra[J]. Journal of Triticeae Crops, 2020, 40(11): 1389-1398. (in Chinese with English abstract)

[46] Li X, Zhang Y, Bao Y, et al. Exploring the best hyperspectral features for LAI estimation using partial least squares regression[J]. Remote Sensing, 2014, 6(7): 6221-6241.

[47] 孙晶京,杨武德,冯美臣,等. 基于随机蛙跳和支持向量机的冬小麦叶面积指数估算[J]. 山西农业大学学报:自然科学版,2020,40(5):120-128.

Sun Jingjing, Yang Wude, Feng Meichen, et al. Estimation of winter wheat leaf area index based on random leapfrog and support vector regression approach[J]. Journal of Shanxi Agricultural University: Natural Science Edition, 2020, 40(5): 120-128. (in Chinese with English abstract)

[48] Ren G, Wang Y, Ning J, et al. Highly identification of keemun black tea rank based on cognitive spectroscopy: Near infrared spectroscopy combined with feature variable selection[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 230: 118079.

[49] Han L, Yang G, Dai H, et al. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data[J]. Plant Methods, 2019, 15(1): 1-19.

[50] Lu N, Zhou J, Han Z, et al. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system[J]. Plant Methods, 2019, 15(1): 1-16.

[51] Wang X, Miao Y, Dong R, et al. Machine learning-based in-season nitrogen status diagnosis and side-dress nitrogen recommendation for corn[J]. European Journal of Agronomy, 2021, 123: 126193.

[52] 田明璐,班松涛,常庆瑞,等. 基于低空无人机成像光谱仪影像估算棉花叶面积指数[J]. 农业工程学报,2016,32(21):102-108.

Tian Minglu, Ban Songtao, Changqingrui, et al. Use of hyperspectral images from UAV-based imaging spectroradiometer to estimate cotton leaf area index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(21): 102-108. (in Chinese with English abstract).

[53] Chen P. Cotton Leaf Area Index Estimation Using Unmanned Aerial Vehicle Multi-Spectral Images[C]. IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019: 6251-6254.

[54] Paul A, Ghosh S, Das A K, et al. A review on agricultural advancement based on computer vision and machine learning[M]. Emerging Technology in Modelling and Graphics. Springer, Singapore, 2020: 567-581.

Monitoring of cotton leaf area index using machine learning

Ma Yiru, Lyu Xin, Yi Xiang, Ma Lulu, Qi Yaqin, Hou Tongyu, Zhang Ze※

(/,832003,)

Leaf area index (LAI) is one of the most important indicators that characterize canopy structure and growth of crops. LAI changes can therefore greatly contribute to the variable rate fertilization of cotton. It is of great significance to monitor LAI quickly, accurately, and non-destructively, thereby guiding crop fertilization in modern agriculture. The traditional LAI monitoring relies mainly on manual sampling with high labor intensity and time-consuming. Furthermore, the lagging data cannot meet the needs of real-time monitoring. Most studies on crop LAI have also been made using remote sensing in recent years, such as hand-held spectrometers, unmanned aerial vehicles, and satellites. Nevertheless, the near-earth surface spectrum cannot be used to continuously and rapidly monitor at the spatial scale, due to the limited shooting range and the weight of the instrument. Satellite images are mostly used for the plant LAI monitoring at forest or large regional scale, particularly on the resolution of 10-60m. Alternatively, an Unmanned Aerial Vehicle (UAV) has the potential to fast capture high resolution images repeatedly, suitable for accurate crop monitoring of small plots. Many efforts have been made to monitor the LAI of wheat, rice, corn and others using spectral images under UAVs. Since spectral technology can monitor timely and dynamically, and in macro mode, the resulting LAI spectral data really determines the vegetation index. As such, the hyperspectral reflectance of plant canopy can provide much richer information of vegetation characteristics, compared with vegetation index. However, a large amount of hyperspectral data under UAVs normally presents data redundancy and high multicollinearity. Reasonable spectral transformation can also be utilized to remove the background and noise of hyperspectral data. Correspondingly, machine learning has widely been applied to crop growth monitoring for deep information in data, particularly combined with remote sensing. Great ability of learning and prediction can be achieved using the partial least squares (PLS) model (an extension of multicollinearity model), Support Vector Machine (SVM), and Random Forest (RF), in order to reduce the collinearity between variables in different ways. In this study, the UAV hyperspectral data was preprocessed using the First Derivative (FDR), the Second Derivative (SDR), Savitzky-Golay(SG) smoothing, and Multiple Scatter Correction (MSC) under the plot experiments of different varieties and nitrogen treatments. Sensitive bands were also selected using the Pearson correlation coefficient, Successive Projections Algorithm (SPA), Shuffled Frog Leaping Algorithm (SFLA), and Competitive Adaptive Reweighting (CARS). A cotton LAI monitoring model was finally constructed to calculate the reflectance of selected bands using the Partial Least Square Regression(PLSR), Support Vector Regression (SVR), and Random Forest Regression (RFR). The results showed that the canopy spectra of different LAI were significantly different from 760-1000 nm, where there was a significant correlation between the canopy spectrum and LAI. The sensitive response band of LAI in the cotton canopy was concentrated in the visible light (400-780 nm) and near-infrared (after 900 nm). The highest precision and stability were achieved in the RFR model under each pretreatment for LAI monitoring. Among them, the FDR-SFLA-RFR model performed the best, where the determination coefficient, Root Mean Square Error (RMSE), and relative RMSE for the modeling dataset were 0.74, 1.648 3, and 26.39%, respectively. In the verification dataset, the determination coefficient, RMSE and relative RMSE were 0.67, 1.622 0, and 25.97%, respectively. Consequently, the optimal estimation model can be rationally selected to represent the UAV spectral reflectance of the canopy using various pretreatments, band selecting, and modeling. The findings can provide the potential basis to accurately manage the variable fertilization in cotton fields.

cotton; UAV; hyperspectral; machine learning; leaf area index

马怡茹,吕新,易翔,等. 基于机器学习的棉花叶面积指数监测[J]. 农业工程学报,2021,37(13):152-162.

10.11975/j.issn.1002-6819.2021.13.018 http://www.tcsae.org

Ma Yiru, Lyu Xin, Yi Xiang, et al. Monitoring of cotton leaf area index using machine learning[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(13): 152-162. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.13.018 http://www.tcsae.org

2021-01-07

2021-06-10

兵团重点领域科技攻关计划(2020AB005);兵团重大科技计划项目(2018AA004)

马怡茹,研究方向为农业信息化。Email:mayiru@stu.shzu.edu.cn

张泽,博士,副教授,硕士生导师,研究方向为农业信息化技术及应用。Email:zhangze1227@163.com

10.11975/j.issn.1002-6819.2021.13.018

S147.2

A

1002-6819(2021)-13-0152-11

猜你喜欢

冠层叶面积波段
水稻叶面积指数与产量关系研究进展
六种冠层阻力模型在冬小麦蒸散估算中的应用
密度与行距配置对向日葵冠层结构及光合特性的影响
Ku波段高隔离度双极化微带阵列天线的设计
最佳波段组合的典型地物信息提取
基于无人机和地面图像的田间水稻冠层参数估测与评价
新型X波段多功能EPR谱仪的设计与性能
不同灌溉条件下一个春小麦重组自交系(RIL)冠层温度与产量性状的相关性
2种水培观叶植物叶面积回归测定①
最佳波段选择的迁西县土地利用信息提取研究