APP下载

济阳坳陷泥灰质纹层页岩脆性各向异性数值模拟研究

2021-09-03贾庆升钟安海张子麟

石油钻探技术 2021年4期
关键词:泊松比层理脆性

贾庆升,钟安海,张子麟,丁 然

(中国石化胜利油田分公司石油工程技术研究院,山东东营 257000)

济阳坳陷东营凹陷博兴洼陷北部页岩油储层主要位于沙三段下和沙四段上,埋深3 330~3650 m,岩性以深灰色泥岩、灰质泥岩、褐灰色灰质油泥岩和灰褐色油页岩为主;岩相为富含有机质纹层状泥灰岩夹条相。在该区块拟以水平井开发为主,水平井在钻完井、压裂施工过程中经历直井段、造斜段和水平段,与直井相比,水平井设计与储层具有各向异性岩石力学参数的关系更为密切[1-2]。

J.C.Jaeger[3]最早提出根据岩石各向异性剪切破坏准则研究横观各向同性破坏规律,此后,有众多学者基于岩石力学试验研究了页岩力学特性的各向异性,例如:H.Niandou[4]等人研究了Tunemire页岩在常规三轴加载和卸载试验下的力学参数与响应;U.Kuila 等人[5]通过研究复杂应力环境下页岩的各向异性特征,发现页岩本身具有固有的各向异性特征。陈天宇等人[6-11]采用试验方法,研究了页岩岩心力学特性的各向异性及深地应力对各向异性的影响规律。岩心力学特性的各向异性,也会导致储层脆性的各向异性。目前,国内外主要使用Rickman各向同性脆性计算公式计算岩石脆性指数,用归一化的静态杨氏模量与静态泊松比之和的平均值(即Rickman 脆性评价指数)表征脆性[12-13]。然而,评估储层脆性时,利用各向同性计算公式得到的“视杨氏模量”和“视泊松比”忽略了各向异性的影响,会导致设计误差[14]。近年来,国内学者研究认为,页岩储层的物理各向异性造成力学参数及脆性的差异对甜点圈定及压裂设计有重要影响[15-20]。

笔者采用胜利油田樊页X 井泥灰质纹层页岩岩心样品,以室内试验获得的岩心应力-应变曲线为基准标定岩石力学参数,与三维数值模拟方法结合,评价分析岩心的强度、弹性模量、泊松比及脆性指数的各向异性,提出了不同取心方向上静态岩石力学参数和脆性指数的优选方法,可为济阳坳陷陆相页岩油勘探开发的选井选层及可压性评价提供理论依据。

1 页岩岩心力学试验

选取济阳坳陷博兴洼陷北部樊页X 井的泥灰质纹层页岩,取心深度3 455~3 460 m。岩心纹层层理非常发育,为了研究纹层层理影响下页岩力学参数、破裂模式和脆性的各向异性特征,采用岩石力学试验和数值模拟试验相结合的方法,钻取φ25.0 mm×50.0 mm 的圆柱形岩样,进行不同层理角度、不同围压条件下弹性参数、强度参数和脆性指数的试验与计算分析。

按取心角度要求、岩心加载围压要求,并考虑试验数据的离散性,至少需要60 块以上的标准岩样,樊页X 井的实际取心数量有限,达不到物理模拟测试岩石力学参数的要求。因此,首先利用细观损伤有限元方法[21],以取心圆柱岩样的轴线与层理面夹角φ依次为0°,30°,45°,60°和90°,建立不同取心角度的数值岩心模型(见图1)。试验过程中,首先以0.05 MPa/s 的加载速率同步加载围压至0,10,20 和40 MPa,并保持围压恒定;然后采用一次连续加载法,以0.2 mm/min 的加载速度进行位移加载,逐级获取轴向载荷及轴向变形,并实时监测记录应力及应变,直至岩样破裂,测定岩样的纵横向应变、峰值应力;最后计算出岩样的静态弹性力学参数,得到数值岩心模型的应力-应变曲线。

图1 页岩岩样的取心方向及数值岩心模型Fig.1 Coring directions and numerical models of shale cores

为了对数值模拟结果进行校验和标定,选用垂直纹层层理面钻取的岩样,利用RTR-1500 高温高压快速岩石三轴仪,分别进行了单轴压缩(围压0 MPa)和围压20 MPa 下的三轴岩石力学试验,得到真实物理岩心的破裂模式和数值岩心模型的破裂模式(见图2,图中左为物理模拟结果,右为数值模拟结果)及对应的全应力-应变曲线(见图3)。施加不同围压(对数值岩心模型施加不同的围压),计算得到应力-应变曲线(见图4)。从图4 可以初步判断,页岩岩心的力学性质具有显著的各向异性。

图2 岩心单轴和三轴破裂模式及其与数值岩心模型的对比Fig.2 Core failure modes under uniaxial and triaxial loading and their comparison with those of numerical core models

图3 物理岩心与数值岩心模型全应力-应变曲线对比Fig.3 Comparison between full stress-strain curves of physical cores and numerical core models

从图2 和图3 可以看出,二者的破裂模式及应力-应变曲线所反映的弹性模量、泊松比、峰值强度和残余强度都较为相近,以此标定页岩岩心细观力学参数,结果见表1。表1 中是岩心细观尺度的各向同性参数,但在宏观上受控于层理的影响,各个取心方向上岩心的弹性参数、强度参数和脆性指数必然表现出不同。在图2 数值岩心模型的基础上,

表1 页岩细观岩心力学参数的标定值Table 1 Calibrated meso-mechanical parameters of shale cores

2 页岩力学参数各向异性规律分析

将图4 中各个岩样试验数据中的弹性模量、泊松比和峰值强度提取出来,并按围压条件分组,绘制得到弹性模量、泊松比和抗压强度与层理倾角的关系曲线(见图5)。从图5 可以看出,围压和层理倾角对岩心力学参数各向异性的影响显著:

图4 不同围压和层理倾角数值岩心模型的应力-应变曲线Fig.4 Stress-strain curves of numerical core models with different confining pressure and bedding dips

图5 不同围压下页岩岩心弹性模量、泊松比和强度与层理倾角的关系曲线Fig.5 Relationship between elastic modulus,Poisson's ratio and compressive strength of shale core with the bedding dip under different confining pressure

1)围压的影响。随着围压增大,页岩岩心的弹性模量逐渐增大;泊松比的整体变化趋势也是逐渐增大,但受到层理面角度影响。例如,取心角度大于45°时,泊松比表现出一定差异性,主要原因是单轴压缩条件下,页岩层理和天然微裂隙容易在轴压作用下起裂和扩展,并逐渐贯通,造成泊松比不规则变化;施加围压后,围压削弱了层理和微裂缝的作用。岩心抗压强度是逐渐增大的,不同层理面角度均表现出相同的变化趋势。

2)层理角度的影响。随着层理角度增大,弹性模量受围压的影响越来越弱,主要原因是围压的施加方向与层理倾向逐渐趋于一致,削弱了各向异性的影响;在有围压条件下,泊松比的变化趋势与弹性模量的变化较为一致,从弹性模量和泊松比的变化趋势可以看出,页岩层理面的黏结力相对较弱、微裂缝发育,对岩心弹性参数有较大影响;岩心抗压强度表现出强烈的各向异性,整体上呈两侧高、中部低的U 形变化趋势,层理面角与内摩擦角接近时,抗压强度最低。

抗压强度、弹性模量和泊松比的各向异性度表达式可表示为:

式中:Rc为页岩抗压强度的各向异性度;RE为页岩弹性模量的各向异性度;Rν为页岩泊松比的各向异性度;pcmax,pcmin分别为页岩抗压强度的最大值和最小值,MPa;Emax,Emin分别为页岩弹性模量的最大值和最小值,MPa;νmax,νmin分别为页岩泊松比的最大值和最小值。

页岩岩心不同围压下抗压强度、弹性模量和泊松比的各向异性度如图6 所示。从图6 可以看出,随着围压增大,泊松比的各向异性度小幅上升,且逐渐趋于平稳;弹性模量的各向异性度呈显著上升趋势,这是因为页岩层理和天然微裂隙在围压作用下被压密;抗压强度的各向异性度呈小幅降低趋势,原因是高围压限制了层理面、微裂缝开启,使各向异性对抗压强度变化不敏感。因此,钻井完井时,应控制层理面、微裂缝的开启,提高井壁的稳定性;压裂施工时,应充分利用层理面、微裂缝的开启,从而优化体积裂缝长度、缝高和缝宽等参数。

图6 抗压强度、弹性模量和泊松比的各向异性度随围压的变化Fig.6 Variation in degree of anisotropy of compressive strength,elastic modulus and Poisson’s ratios with confining pressure

3 页岩脆性指数各向异性分析

页岩层理结构发育,不同方向的力学特征差异明显,不同方向损伤破裂前的弹性变形及破坏特征也有明显不同,使页岩的脆性表现出各向异性。基于上述岩石力学试验数据,以脆性指数为评价指标,分析不同取心方向页岩脆性的变化规律。

3.1 脆性指数计算方法

结合页岩物理力学参数测试结果和数值岩心模型模拟结果,选取了4 种常用的脆性指数计算方法计算页岩的脆性指数,研究其脆性的各向异性。

3.1.1 基于弹性力学参数的脆性指数计算方法

该计算方法的计算公式为:

式中:IB1为基于弹性力学参数计算出的脆性指数;Es为试样的弹性模量,MPa;Emax,Emin分别为研究区域的最大和最小弹性模量,MPa;vs为试样的泊松比;vmax,vmin分别为研究区域的最大和最小泊松比。

济阳坳陷区域页岩的最大和最小泊松比分别取0.45 和0.10,储层的最大和最小弹性模量分别取56 GPa 和8 GPa。

3.1.2 基于能量守恒原理的脆性指数计算方法[22]

该计算方法的计算公式为:

式中:IB2为基于能量守恒原理计算出的脆性指数;IBpre为峰前脆性评价指数;IBpost为峰后脆性评价指数;dWet,dWp和dWr分别为图7 中的总弹性能量面积、塑性能量面积和断裂能量面积(图7 中,σf,σcd,σci,σr和σcc分别为峰值应力、屈服应力、起裂应力、残余应力和压密应力,Pa;εp,εe,εcd,εf,εer和εr分别为塑性应变、弹性应变、屈服应变、峰值应变、残余弹性应变和残余应变;E,H,M分别为特定段的斜率)。

3.1.3 基于能量守恒原理的脆性指数计算方法[23]

该计算方法的计算公式为:

式中:IB3为基于能量守恒原理计算出的脆性指数;dWe为消耗的弹性能面积。

3.1.4 基于应变特征的脆性指数计算方法[24]

该评价指数的计算方法为:

式中:IB4为 基于应变特征计算出的脆性指数;εel为弹性阶段应变;εtotal为试样总应变。

3.2 不同脆性评价方法岩心各向异性度的对比

为了对比分析不同脆性指数计算方法对页岩各向异性的评价效果,结合图4 所示页岩应力-应变曲线,并采用上述4 种脆性计算方法计算出各个岩心的脆性指数(见图8)。从图8 可以看出:随着层理角度增大,不同页岩岩心的脆性指数IB1整体先降低后升高,层理倾角为30°时最小;脆性指数IB2,IB3与IB1的变化趋势相似,随着层理角度增大,页岩的脆性指数整体先降低再升高,呈两侧高、中部低的变化趋势,脆性指数IB2和IB3对围压变化敏感,且在高围压时,脆性指数的最低点更接近于取心角度为内摩擦角的位置;脆性指数IB4整体先降低后升高、再降低又升高,呈W 形变化趋势,脆性评价指数IB4的变化规律与IB1、IB2和IB3存在显著差异,可能是因为脆性指数IB4仅考虑了页岩小于极限抗压强度的应变特征,未考虑超过极限抗压强度之后的应力、应变特征。

图8 层理倾角、地层围压对4 种脆性指数的影响Fig.8 Influence of bedding angle and formation confining pressure on 4 brittleness indices

页岩油气开发过程中,定量评价页岩脆性对于甜点区可压性评价、压裂生产施工参数优化设计等具有重要作用。由以上分析可知,层理倾角呈0°和90°时,页岩岩心的脆性指数相对较高,原位工程中的页岩层理倾角多为近水平或小角度分布,因此可按层理倾角为0°时的脆性指数校核实际储层的脆性指数;层理倾角与内摩擦角角度接近时,脆性指数最低。因此,评价层理发育页岩储层的脆性和可压性时需考虑其各向异性特征。对比4 种脆性指数计算方法的计算结果可知,基于能量守恒原理的脆性指数IB2和IB3全面考虑了不同围压作用下页岩破坏全过程的应力、应变响应,计算结果较为合理。

4 结论与建议

2)取心层理倾角为0°和90°时,弹性参数差异极大,而强度参数差异很小,因此计算井筒近场应力分布及井壁稳定性时,必须考虑页岩储层弹性参数的各向异性,可以忽略储层强度参数的各向异性。

3)随着围压升高,岩心脆性指数显著降低;随着层理倾角增大,岩心脆性指数总体上先降低、后升高,脆性指数在与内摩擦角角度接近的方向上最小,且基于能量守恒原理的脆性指数计算模型能够较为客观地评价页岩的脆性。

4)采用直井开发页岩油气时,建议选用0°倾角的脆性指数评价储层的可压性;采用水平井开发页岩油气时,建议选用90°倾角的脆性指数评价储层的可压性;页岩油气斜井进行压裂设计时,需要参照直井,根据井斜角折算脆性指数。

1)随着围压升高,页岩岩心各力学参数各向异性度都呈下降趋势,且弹性参数较强度参数的各向异性对围压变化更为敏感。因此,建议采用弹性参数评价页岩的力学各向异性度。

猜你喜欢

泊松比层理脆性
原煤受载破坏形式的层理效应研究
动态和静态测试定向刨花板的泊松比
具有负泊松比效应的纱线研发
含层理面煤试样的巴西圆盘劈裂实验及数值模拟研究
基于复杂系统脆性的商渔船碰撞事故分析
考虑粘弹性泊松比的固体推进剂蠕变型本构模型①
固体推进剂粘弹性泊松比应变率-温度等效关系
储层非均质性和各向异性对水力压裂裂纹扩展的影响
考虑初始损伤的脆性疲劳损伤模型及验证
页岩力学性质各向异性初探