基于模糊评价的风电场有功功率分配算法研究
2021-07-12王治国杨印
王治国,杨印
(西安德纳检验检测有限公司,陕西 西安 710000)
0 引言
当前经济发展速度加快,化石能源日益短缺,加上化工生产造成严重的环境污染,急需寻找新型能源进行替代。风能作为可再生的清洁能源得到广泛应用,在电网中的比重逐渐增加,有效功率输出波动频繁,给电网安全性与稳定性造成不良的影响。因此,当前工程多采用模糊评价模式对风电场功率进行科学分配,对机组载荷、频繁启停等因素综合考虑,确保风电场的安全稳定运行。
1 机组功率调节能力模糊评价
对于风电场功率分配来说,快速准确的评价功率调节率属于关键内容。在风电场机组中,因受到生产与安装误差影响,导致数学模型不尽相同,加上长期使用导致叶片变形、材料老化等,使数学模型参数出现变化,增加功率评价误差。为了节约风电场维修成本,应结合机组运行状态合理分配功率,即优先调度状态良好的机组,减少状态不良机组的调度。当风速为切出风速时,可适当降低机组功率给定,避免叶片载荷增加;当为切入风速时,机组为启动状态,无需进行调度,避免并网接触器重复闭合。为了使每台机组的功率调节能力充分发挥出来,一些具有较强调节力的机组应承担更多的发电任务。根据机组动力学特点,采用模糊评价法对机组调节能力进行测评。
机组限功率运行模糊集包括变桨限功率运行(B)、联合限功率运行(WB)、变速限功率运行(W)三种。因机组功率在调节阶段运行稳定性受到限制,对于单一机组来说,可开展限功率控制实验,当B运行中,风速较小;当WB运行中,风速较大。因此,可将运行对应风速范围分成低速、中速与高速,隶属度由变速机构运行程度而定。调节能力可分为上升与下降两种,二者具有互补性。在B状态运行中,转速始终处于额定转速内,机组转速、最优转速的差异较大,升功率调节力越强,说明隶属度数值越高。当风速为4m/s时,在第i台机组运行中,当转速为每秒1.5rad时,达到最佳值。在功率调节力评价中,不但与风速相关,还关系到转速与桨距角等指标。为了提高功率分配合理性,应对上述指标综合分析,可通过改变桨距角或转速的方式进行功率调节,提高响应速度。但如若变桨系统的操作过于频繁,则会使机组的载荷提升,使转速调节功率被改变,响应速度减慢,但载荷值会由此减小。假设某风速状态下,桨距角用β表示,机组运行的最佳转速为w,与额定转速W相比较低,输出功率用L表示。可通过调整转速的方式,使机组输出功率的最大值、最小值变化。以升功率为例,可采用变速变桨的方式,将给定功率控制在合理范围内;也可通过主动改变转速的方式,对变桨功率进行调节[1]。
2 基于功率调节的风电场功率分配措施
2.1 分配技术基础
以永磁同步风电机组为力,有功功率分配框图如下图1所示。由功率控制器对各台机组风速与实际功率进行采集,风速为VW,1到VW,N,实际功率输出为P1到PN,采用功率控制分配法,分别为每个机组配置一个给定功率,即Pset1到PsetN,最后使风电场中各台机组输出功率的总值与调度给定功率相同,其中前者用Psum表示,后者用Psumset表示。
图1 风电场有功功率分配图
2.2 模糊控制流程
根据模糊控制器结构、推理规则、隶属度函数等创建模糊控制算办法,在对有功功率波动有效控制的同时,对风电功率进行平抑,具体流程如下:
第一步:对各参数变量进行初始化,明确电容器、电池运行范围、采样时间、风场容量、并网有功功率要求等,确保N时段内的有功功率波动处于△P之内;
第二步:在电容器与电池常规运行区间,制定隶属度函数、控制规则表,对t时段风电功率与t-N时段功率的最大波动率进行计算;
第三步:在当前电池能量状态下,以模糊控制规则为依据,输出比例系数,并计算出储能出力功率与并网分量值。在当前电容器能量状态下,根据控制规则,计算出电池与电容器的真实输出功率,并对二者的SOE情况进行估算;
第四步:在上述流程完毕后,获得特定时段内并网值、储能信号值与SOE变化曲线[2]。
2.3 升降分配算法
首先,确定各个风电机组所在的调节区,采集机组现行功率、变速功率的升降调节能力;其次,对功率调节区域内机组实时输出功率的综合进行计算,并与给定功率调节区的机组功率相一致;最后,将两组区域的总给定功率相减,判断机组功率需要提升或者下降。在升功率分配中,根据机组WB控制策略,事先按照变转速上升措施进行分配,如若功率调节Ⅰ区与Ⅱ区功率变化情况超出变转速升功率范围,则会受到变桨距角功率增加的影响,使机组整体的升分配能力增强。对变速功率上升能力区间P进行计算时,P为两个区间内机组变转速功率提升力的总和。在降功率分配中,按照变转速下降措施进行分配,如若功率调节Ⅰ区与Ⅱ区功率变化情况低于变转速升功率范围,则会受到变桨距角功率降低的影响,使机组整体的降分配能力降低。对变速功率下降能力区间P进行计算时,P为两个区间内机组变转速功率下降力的总和。在机组能力调节基础上,风电场有功功率的分配措施如下:一是采集场内全部运行机组转速、风速与桨距角信息,依靠以往经验或者查询表,获取现有机组转速最大值与最优值;二是采用机组调节力模糊评价法,结合机组运行状态计算出每台机组升功率调节力,则降功率调节力为前者的模糊补集;三是根据场内有功功率输出与电网调度指令的差值,计算有功功率的偏差,如若偏差超过0,则对场内全部机组进行升功率分配,反之则对全体机组进行降功率分配,为每台机组发布有功功率的给定指令。
3 仿真分析
3.1 基本参数
该风力机组的主要参数为:空气密度1.251kg/m3,桨叶半径为2.5m,额定风速为13.5m/s,风轮额定转速为3.5rad/s,桨距角范围在0~27°之间、变桨系统时间为5min,发电机额定功率为1.3MW。为检验算法的准确性,以10台风电机组为对象,根据某地风电场以往的风速数据,绘制机组1min内的曲线图,发现1~10号机组的风速均值依次提升。
3.2 仿真结果
假设初始桨距角度为0,转速为每秒1rad,有功功率调度指令为5MW。在风速权重下进行分配,计算公式为:
式中,P1代表的是风速权重分配功率;vi代表的是第i台风电机组的总功率。将其与按照调节力权重分配算法相比,有功功率输出曲线与偏差曲线对比明显。采用调节力权重分配的输出效果可使电网功率配置需求得到满足,且场内功率波动值较小,根据功率平滑度定义,有功功率平滑度计算公式为:
式中,Pl代表的是有功功率平滑度;d代表的是功率波动值;dt代表的是功率标准值。将实际值代入公式后可知,按照风速权重计算出的平滑度为68.362,根据调节力权重计算的平滑度为21.584。根据平滑度指标可知,后一种算法的功率分配与输出效果优于前一种。将两种算法的机组转速变动情况对比可知,二者的变化趋势大致相同,但按照调节力权重分配的转速平滑度更高,这意味着该算法的应用可使轴系载荷有效降低,使发电机的效率与寿命得到显著提升。采用上述两种方式进行功率分配,10台机组桨距角曲线不尽相同,以βi作为桨距角,在t时间内角度的最大值可用公式表示为:
式中,βi代表的是第i台机组的桨距角;t代表的是时间段。将真实值代入公式后,可得出按照风速权重算法分配的桨距角为11173.24°,按照调节力权重分配算法的行程为239.55°。根据两幅桨距角曲线图可知,10号机组的风速达到最大值,按照调节力得出的角幅度为13°,而按照风速得出的角幅度为8°,且角幅度与叶片载荷具有反比关系。采用按照调节力权重分配的方式,机组整体桨距角的动作幅度相对较低,可使机组载荷显著降低,延长机组变桨系统寿命。根据调度中心以往调度指令可知,风电场中的有功指令位于3~6MW之间,内部机组桨距角的初始值与转速无变化,仍分别为0和1rad/s,根据机组风速曲线可知,两种功率分配模式下的算法误差较大,且按照调节力分配功率的算法与电网调度指令的控制要求更加贴近,有功功率的输出更为平滑,且桨距角的行程减少[3-5]。
4 结语
综上所述,风电机组作为风力发电的核心设备,当期发生故障时会为人们生产生活带来诸多不便。对此,本文根据机组能力提出一种新的有功功率分配算法,以机组状态信息对依据评价功率调节能力。最后开展仿真分析,对10太机组的有功功率进行分配。根据结果可知,此种方式的效果优于按照风速权重分配,可充分满足电网调度要求。