APP下载

采用UHPLC-QTOF-MS技术筛选亚麻籽油脂质分子标志物

2021-03-17廖敏和任皓威金日天康佳欣商佳琦宁雪楠姚思含

农业工程学报 2021年24期
关键词:小类酰基籽油

廖敏和,任皓威,金日天,康佳欣,商佳琦,宁雪楠,姚思含,刘 宁※

采用UHPLC-QTOF-MS技术筛选亚麻籽油脂质分子标志物

廖敏和1,2,3,任皓威1,2,3,金日天1,2,3,康佳欣1,2,3,商佳琦1,2,3,宁雪楠1,2,姚思含1,刘 宁1,2,3※

(1. 东北农业大学食品学院,哈尔滨 150030;2. 东北农业大学教育部乳品重点实验室,哈尔滨 150030;3. 哈尔滨腾凝科技有限公司,哈尔滨 150028)

为了探究亚麻籽油中脂质的真实属性和发掘其有价值的脂质分子,该研究基于超高效液相色谱-四级杆飞行时间质谱联用技术(Ultra High Performance Liquid Chromatography-Quadrupole Time-of-Flight Spectroscopy, UHPLC-QTOF-MS)表征了亚麻籽油的脂质轮廓。结果表明:在正离子模式下检测到15个脂质分子小类共668种脂质分子;在负离子模式下检测到31个脂质分子小类共404种脂质分子;共有7个脂质分子小类脂质在正、负离子下均被检测到;此外,该研究首次在亚麻籽油中发现甜菜碱脂、甘油糖脂、神经节苷脂、鞘磷脂、神经酰胺、羟基脂肪酸的脂肪酸酯、酰基肉碱和植物固醇,这些脂质都具有特殊的生物学功能。多元变量统计分析结果表明每两个品种亚麻籽油间相对定量值差异显著的脂质分子均超过200种(<0.05),并筛选出6种甘油磷酸肌醇、1种甘油磷酸胆碱、1种甘油磷酸乙醇胺和1种三酰基甘油作为亚麻籽A油的标志性脂质分子;6种三酰基甘油和1种半单酰基甘油磷酸酯作为亚麻籽B油的标志性脂质分子;1种神经节苷脂和1种硫代异鼠李糖甘油二酯作为亚麻籽C油的标志性脂质分子。总之,该研究在亚麻籽油中鉴定出39个脂质分子小类共1 072种脂质分子,其中有22个脂质分子小类共415种脂质分子首次在亚麻籽油中被检测到,此外不同品种亚麻籽油在脂质分子层面存在显著差异(<0.05),这些脂质分子作为标志物,可用于植物油的品质判别、营养评价,真伪鉴别和安全性评价等,也为其他植物油的分析提供方法参考。

油脂;主成分分析;亚麻籽;液质联用技术;脂质组学;正交偏最小二乘法判别分析

0 引 言

亚麻籽油是亚麻酸(C18∶3)含量较高的食用植物油[1],亚麻酸能够在人体内合成二十二碳六烯酸(Docosahexaenoic Acid,DHA)和二十碳五烯酸(Eicosapentaenoic Acid,EPA)等长链多不饱和脂肪酸,具有促进大脑发育、保护视力等生理学功能[2-3],因此在婴幼儿配方、特医和功能食品方面具有应用前景。目前对亚麻籽油的脂质成分的研究比较单一,La等[4]测定了亚麻籽油中的三酰基甘油(Triacylglycerols,TG)轮廓,Herchi等[5]对亚麻籽油中6类磷脂分子进行了鉴定分析,Danish等[6]分析了亚麻籽油中的脂肪酸组成,但是,目前并没有对亚麻籽油的脂质成分进行系统全面研究,此外,亚麻籽油已经应用于保健食品或特医食品,因此有必要准确且全面地表征它的脂质轮廓,这对其广泛应用有着重要的意义。

根据化学结构和功能,脂质在LIPID MAPS(http://www.lipidmaps.org/data)的LMSD数据库中被系统地分为8类(Category)[7]:脂肪酰基类(Fatty Acyls,FA)、甘油脂类(Glycerolipids,GL)、甘油磷脂类(Glycerophospholipids,GP)、鞘脂类(Sphingolipids,SP)、甾醇脂类(Sterol Lipids,ST)、孕烯醇酮类(Prenol lipids,PR)、糖脂类(Saccharolipids,SL)和多聚乙烯类(Polyketides,PK),每一类分为主类(Main class),每一主类又分子类(Sub class),子类下包含着很多的脂质分子小类。随着脂质组学的提出及其研究方法的不断发展,人们对含有脂类食物的脂质构成和种类的认识不断加深[8-9];凭借超高效液相色谱-四级杆飞行时间质谱联用技术(Ultra High Performance Liquid Chromatography- Quadrupole Time-of-Flight Spectroscopy,UHPLC- QTOF-MS)的高通量、高灵敏度和高准确性等优势,可以加深对脂质分子复杂性和组成广泛性的认识和了解。目前对亚麻籽油中脂质的全面系统研究较少,在一定程度上阻碍了亚麻籽油的广泛应用;此外,不同品种亚麻籽油间的脂质存在着差异,这种差异性使人们可以更加真实地了解亚麻籽油的脂质成分,并且使其应用方向更加精确。因此,利用UHPLC-QTOF-MS技术研究亚麻籽油的脂质轮廓、真实属性和标志性脂质分子,为更好的开发和利用亚麻籽油奠定科学的理论基础,也为使用脂质组学的方法研究其他植物油提供方法上的参考。

1 材料与方法

1.1 材料与试剂

亚麻籽A和C,武威西凉蔬菜种苗有限公司;亚麻籽B,兰州金桥种业有限公司(A、B、C代表3个不同品种的亚麻籽,分别来自于甘肃省内不同地区。);甲醇、乙腈、甲基叔丁基醚、甲酸铵、二氯甲烷、异丙醇(均为质谱级),德国CNW Technologies公司。

1.2 仪器与设备

高速粉碎机,天津市泰斯特仪器有限公司;恒温干燥箱,天津市中环实验电炉有限公司;全温振荡培养箱,天津市赖玻特瑞仪器设备有限公司;TGL-23型高速冷冻离心机,四川蜀科仪器有限公司;DK-98-1型电热恒温水浴锅,天津市泰斯特仪器有限公司;YRE-5299型旋转蒸发器,予华仪器有限责任公司;PB-10型酸度计,赛多利斯科学仪器(北京)有限公司;ExionLC超高效液相色谱仪和Triple TOF 5600四级杆飞行时间高分辨质谱仪,美国AB Sciex公司。

1.3 方法

1.3.1 亚麻籽油的提取

称取适量亚麻籽,筛除杂质和不饱满颗粒;亚麻籽在烘箱50 ℃热风干燥3 h,使用高速粉碎机粉碎(电机转速10 000 r/min),每粉碎1 min后冷却机器2 min再继续粉碎,防止因机器温度过高加剧油脂氧化,干燥后待用,粉碎粒度为60~200目。参考Tan等[10]的方法提取3个品种亚麻籽中的亚麻籽油。

1.3.2 样品前处理

样品前处理:取10L亚麻籽油样品,加入200L二氯甲烷-甲醇溶液(体积比1∶1)涡旋混匀30 s,冰水浴超声10 min后将样品4 ℃,12 000 r/min离心15 min,取75L上清液于进样瓶,上机检测,对每个样品重复进样6次。

1.3.3 色谱条件

色谱柱:Phenomen Kinetex C18(2.1 mm×100 mm,1.7m);柱温为55 ℃;流动相A:40%水+60%乙腈溶液+10 mmol/L甲酸铵溶液;流动相B:10%乙腈+90%异丙醇+10 mmol/L甲酸铵;流动相梯度洗脱程序为0~12 min,40% B;12~13.5 min,100%B;13.5~13.7 min,40%B;13.7~18 min,40%B;样品盘温度为6 ℃,进样体积为正离子0.5L,负离子1L;流速为300L/min。

1.3.4 质谱条件

通过信息依赖性(Information Dependent Acquisition,IDA)模式进行高分辨质谱数据采集。在IDA这种模式下,数据采集软件(Analyst TF 1.7,AB Sciex)依据一级质谱数据和预先设定的标准,自动选择离子并采集其二级质谱数据。每个循环选取12个强度最强且大于100的离子进行二级质谱扫描,碰撞诱导解离的能量为45 eV,每张二级谱的积累时间为50 ms。离子源参数:离子源气体1压强和离子源气体2压强均为60 Pa;气帘气体为30 Pa;离子化温度为600 ℃;去簇电压为100 V;离子喷涂电压为5 000 V(正离子模式)/ -3 800 V(负离子模式)。

1.3.5 数据处理及脂质结构鉴定

使用ProteoWizard软件将质谱原始转成mzXML格式;再使用XCMS软件做保留时间矫正、峰识别、峰提取、峰积分、峰对齐等工作,其中minfrac设为0.5,cutoff设为0.3;最后利用lipid blast数据库进行脂质鉴定,并采用面积归一化法进行脂质分子的相对定量值测定。对鉴定后的脂质通过Lipid Maps的LMSD脂质数据库进行脂质分子小类的归类整理,每个脂质分子小类脂质的相对含量为该类脂质相对定量值占总相对定量值的百分比。

1.4 数据统计分析

所有测定重复3次,试验数据均以平均值±标准差表示,使用IBM SPSS Statistics 25软件进行单因素方差分析(ANOVA),并用Duncan法进行数据显著性分析(<0.05说明差异性显著)。

2 结果与分析

2.1 亚麻籽油脂质分子种类和相对定量值分析

从表1可以看出,利用UHPLC-QTOF-MS技术在亚麻籽油中鉴定出子类(Sub class)中39个脂质分子小类共1 072种脂质分子,其中正离子模式下检测到15个脂质分子小类共668种脂质分子,负离子模式下检测到31个脂质分子小类共404种脂质分子,共有7个脂质分子小类脂质在正、负离子都检测到,分别是硫化己糖神经酰胺(Sulfidehexose-ceramid,SHexCer)、单半乳糖二酰基甘油(Monogalactosyldiacylglycerols,MGDG)、非羟基脂肪酸-二氢鞘氨醇神经酰胺(Ceramide/Non-hydroxy Dihydro-sphingosine,Cer/NDS)、非羟基脂肪酸-鞘氨醇神经酰胺(Ceramide/Non-hydroxy Sphingosine,Cer/NS)、甘油磷酸甲醇(Phosphomethanol,PMeOH)、甘油磷酸乙醇(Phosphoethanol,PEtOH)和甘油磷酸乙醇胺(Phoethanolamines,PE)。在正负离子下检测到的39个脂质分子小类中,其中有30个脂质分子小类在LMSD数据库中可以检索得到,而有9个脂质分子小类目前在LMSD数据库中检索不到,这9个脂质分子小类分别为:酰基葡萄糖醛酸二酰基甘油(Acylglycosyldiacylglycerols,AcylGlcADG)、非羟基脂肪酸-鞘氨醇己糖神经酰胺(Hexose-ceramide/ Non-hydroxy Sphingosine,HexCer/NS)、SHexCer、PMeOH、半单酰基甘油磷酸酯(Hemibismonoacylglycerophosphate,HBMP)、PEtOH、双单酰基甘油磷酸酯(Bismonoacylglycerophosphate,BMP)和酰基肉碱(Fatty esters Acyl carnitine,ACar),说明这些脂类的研究较少。此外,有86个二酰甘油-N-三甲基高丝氨酸(Diacylgycerol-N-trimethylhomoserine, DGTS)分子、4种共129个甘油糖脂分子{葡萄糖醛酸二酰基甘油(Glycosyldiacylglycerols, GlcADG)、硫代异鼠李糖甘油二酯(Sulfoquinovosyldiacylglycerols, SQDG)、酰基葡萄糖醛酸二酰基甘油(Acylglycosyldiacylglycerols, AcylGlcADG)和单半乳糖二酰基甘油(Monogalactosyldiacylglycerols, MGDG)}、151个神经酰胺分子、3个鞘磷脂(Sphingomyelin, SM)分子、3个神经节苷脂(Gangliosides, GM3)分子、32个羟基脂肪酸的脂肪酸酯(Fatty Acyl Esters of Hydroxy Fatty Acid, FAHFA)分子、9个酰基肉碱(Fatty esters Acyl carnitine, ACar)分子和1个甾醇酯(Cholesterol, CE)分子在亚麻籽油中首次被检测到,总之共有22个小类共415个脂质分子在亚麻籽油中被首次检测到。亚麻籽油中共有15种游离脂肪酸,包括直链脂肪酸、支链脂肪酸及不饱和脂肪酸(C16∶0、C16∶1、C17∶0、C17∶1、C18∶0、C18∶2、C18∶3、C20∶0、C20∶1、C20∶2、C20∶5、C20∶6、C21∶0、C22∶0、C22∶1)。

表1 通过UHPLC-QTOF-MS技术在亚麻籽油中检测到的脂质分子数量及相对定量值

注:“[--]”表示这类脂质目前在LMSD数据库中检索不到;相对定量值是该类脂质分子的峰面积;POS指在正离子模式下检测到的脂质数量;NEG指在负离子模式下检测到的脂质数量;“-”表示在该扫描模式下未检出;所有样品重复测定6次取平均值,同一行数据右上标不同字母表示样品间差异显著(<0.05)。Note: “[--]” indicated that this subclass lipid cannot be retrieved from LMSD database at present. The relative quantitative value is the peak area of the lipid molecule. POS refers to the amount of lipids detected in positive ion mode; NEG refers to the amount of lipids detected in negative ion mode; “-” indicates that it is not detected in this scanning mode; All samples were repeated for 6 times to take the average value, and different letters on the right superscript of the same row indicated significant differences among samples (<0.05).

在亚麻籽油中检测到的这些脂质分子小类中,471个TG分子的相对含量最高,为67.93%~68.91%,二酰基甘油(Diacylglycerols,DG)相对含量为15.94%~17.64%,二酰甘油-N-三甲基高丝氨酸(Diacylgycerol- N-Trimethylhomoserine,DGTS)相对含量为4.80%~5.10%,葡萄糖醛酸二酰基甘油(Glycosyldiacylglycerols,GlcADG)相对含量为1.09%~1.42%,非羟基脂肪酸-鞘氨醇己糖神经酰胺(Hexose-ceramide/Non-hydroxy Sphingosine,HexCer/NS)相对含量为0.78%~1.10%,HBMP相对含量为0.81%~1.03%,PEtOH相对含量为0.96%~1.18%,羟基脂肪酸的脂肪酸酯(Fatty Acyl Esters of Hydroxy Fatty Acid,FAHFA)相对含量为0.86%~1.29%,其他31个脂质分子小类的脂质相对含量均小于1%。此外,3个品种亚麻籽油的脂质种类相同,对亚麻籽油脂类的相对定量值的方差分析表明:亚麻籽C油的总相对定量值显著高于其他两种亚麻籽油(<0.05);此外,对比39个脂质分子小类在3种亚麻籽油中的含量差异,发现除了神经节苷脂(Gangliosides,GM3)和FAHFA在3种亚麻籽油间有显著差异外,而其他的37个脂质分子小类在亚麻籽油样本间不存在显著差异(>0.05)。但是,对脂质类别的差异分析不能全面和准确地反映不同亚麻籽油之间的差异,需要建立多元变量统计分析模型筛选不同亚麻籽油间的差异脂质分子。

2.2 多元变量统计分析亚麻籽油差异脂质

为探究不同品种亚麻籽油之间的脂质分子差异,将数据矩阵导入SIMCA16.0.2软件进行差异脂质的多重分析,分别建立了无监督的主成分分析(Principal Component Analysis, PCA)模型和有监督的OPLS-DA(Orthogonal Partial Least Squares Discrimination Analysis)模型进行多元变量统计分析。

2.2.1 主成分分析(PCA)

PCA是将样品数据通过正交变换转换为低维度的线性不相关变量(即主成分),从而解释数据的内部结构,并能够更好的解释数据变量。图1 a表明3种亚麻籽油在PCA模型中可以很好的分离,数据均在95%的置信区间内,且同种亚麻籽油有良好的聚集效果,直观地说明3种亚麻籽油中的脂质存在显著差异。图1 b、c、d表明3种亚麻籽油在两两对比时也能够完全分离,数据也均在95%的置信区间内,但是重复样本间分布较为分散,这是由于PCA是一种无监督的多元统计方法,不能忽略样本的组内差异,因此需要有监督的多元判别分析统计方法进一步分析。

2.2.2 正交偏最小二乘法判别分析(OPLS-DA)

OPLS-DA是一种有监督的多元判别分析统计方法,通过降低组内差异和增大组间差异实现对不同样品的有效预测[11]。3个品种亚麻籽油两两对比的OPLS-DA模型对变量的解释性(2)均大于0.99,模型的可预测性(2)均大于0.88,说明这些模型非常符合样本的真实情况,并能很好地解释和预测每两组样本之间的差异。从OPLS-DA模型得分散点图(图2 a、b和c)可以看出,3个品种亚麻籽油两两对比明显的区分开,样本全部处于95%置信区间内;虽然数据的分布仍然较为分散,但是第一主成分预测得分均大于正交主成分得分,说明3组样本组间差异大于组内差异。

OPLS-DA的置换检验是通过随机改变分布变量Y的排列顺序,多次建立(该研究为200次)对应的OPLS-DA模型以获取随机模型的2值和2值去判断反映模型是否存在过拟合现象。结果表明(图2 d、e和f):置换检验模型的2值和2值均小于原模型;2的回归线与纵轴的截距均小于0;同时随着置换保留度逐渐降低,置换的变量比例增大,随机模型的2逐渐下降,说明原模型具有良好的稳健性,不存在过拟合现象。

2.2.3 亚麻籽油样本间差异脂质分子筛选和分析

结合单变量统计方法检验(Student's t test)和多元变量统计方法OPLS-DA对3个品种亚麻籽油间的差异脂质分子进行筛选,并以火山图的形式直观展示(图3)。

在同时满足< 0.05和VIP > 1条件下筛选每两组亚麻籽油样本间差异显著的脂质分子。筛选结果为:亚麻籽B油对亚麻籽A油有312种差异显著的脂质分子,其中140个脂质分子显著上调,172个脂质分子显著下调(图 3a);亚麻籽C油对亚麻籽A油有504种差异显著的脂质分子,其中317个脂质分子显著上调,187个脂质分子显著下调(图3b);亚麻籽C油对亚麻籽B油有338种差异显著的脂质分子,其中246个脂质分子显著上调,92个脂质分子显著下调(图3c)。结果表明,亚麻籽C油和亚麻籽A油间差异显著脂质分子的数量最多,而亚麻籽B油和亚麻籽A油间差异显著脂质分子的数量最少。说明亚麻籽A油与亚麻籽B油的差异较小,而与亚麻籽C油间的差异较大。由于初步筛选出的三种亚麻籽油间的差异显著脂质分子数量较多,不能够明显地反映三种亚麻籽油的特征,因此需要进一步筛选,找到三种亚麻籽油的标志性脂质分子。

在同时满足< 0.05和VIP > 1的基本筛选条件下,根据差异显著的脂质分子在两个样品间的log2FC大于1或者小于-1,进一步筛选三种亚麻籽油的标志性脂质分子。选取每两组亚麻籽油样品差异显著上调和下调最显著的10个脂质分子见表2。通过对比B-A组和C-A组中含量显著下调的脂质分子,其中相同的脂质分子说明该脂质分子在亚麻籽A油中的含量显著高于其他两种亚麻籽油,即为亚麻籽A油的标志性脂质分子,同理可得亚麻籽B、C油的标志性脂质分子。通过对比筛选出的差异显著的脂质分子发现:亚麻籽A油含量显著高于其他两种亚麻籽油的脂质分子有PI(16∶0/18∶2)、PI(16∶0/18∶3)、PI(16∶0/18∶1)、PI(18∶2/18∶2)、PI(20∶5/20∶5)、PI(18∶1/18∶1)、PE(18∶2/18∶3)和PC(18∶2/18∶2)8种磷脂分子和TG(14∶0/14∶0/16∶0),由于磷脂在细胞膜的完整性、可渗透性和流动性方面的有益功能,那么亚麻籽A油可用于药物的乳化剂、载体及婴儿食品中的营养强化剂;亚麻籽B油含量显著高于其他两种亚麻籽油的脂质分子有TG(13∶0/13∶0/16∶0)、TG(12∶0/14∶0/14∶0)、TG(12∶0/12∶0/16∶0)、TG(12∶0/12∶0/18∶2)、TG(12∶0/12∶1/16∶0)、TG(12∶1/16∶0/18∶1)和HBMP(14∶1/14∶1/14∶1)7种,可以看出亚麻籽B油中TG含量较高,并且其中饱和脂肪酸占较大比例,因此可用于补充能量的食品;亚麻籽C油含量显著高于其他两种亚麻籽油的脂质分子有GM3(d40∶3)和SQDG(20∶4/22∶6),这两种脂质作为功能性脂质,可以用于神经方面的医学治疗,如促进神经传导和用于周围神经损伤。这些脂质分子作为3种亚麻籽油的标志物,可用于植物油的品质判别、营养评价、真伪鉴别和安全性评价[12]。

表2 三种亚麻籽油样本间差异最显著脂质分子筛选表

注:表中所列的均是差异显著的脂质分子的化学式,以TG(14∶0/14∶0/16∶0)为例:TG表示三酰基甘油,属于一种脂质小类,括号内的数字表示连接在该脂质分子上的脂肪酸,如14∶0/14∶0/16∶0表示该三酰基甘油分子上连接了3个脂肪酸,分别是2个十四碳烯酸(14∶0)和1个十六碳烯酸(16∶0)。

Note: Listed in this table were the chemical formulas of lipid molecules with significant differences, taking TG (14:0/14:0/16:0) as an example: TG was the symbol of triacylglycerol, which belongs to a lipid subclass, and the fatty acids in parentheses represent the fatty acids attached to the lipid molecule, for example, 14:0/14:0/16:0 means that three fatty acids were attached to the triacylglycerols molecule, were two tetradecenoic acids (14:0) and one hexadecenoic acid (16:0), respectively.

2.3 亚麻籽油脂质轮廓分析

本研究利用UHPLC-QTOF-MS技术在亚麻籽油中鉴定出常见的TG、DG、MG、FA和13个脂质分子小类的磷脂,还发现了87种DGTS、129种甘油糖脂(GlcADG、AcylGlcADG、SQDG和MGDG)、151种神经酰胺、3种GM3、3种SM、32种FAHFA、9种ACar和1种CE,这些脂类在机体内具有多种生物功能,其中DGTS是一类在藻类中常见的甜菜碱脂[13-14],在体内具有抗炎活性和抑制一氧化氮形成的作用[15-16]。在亚麻籽油中发现了甘油糖脂中的4个脂质分子小类(GlcADG、AcylGlcADG、SQDG和MGDG),这类脂质不仅在植物中起协调作用,而且还具有抗病毒、抗氧化[17]、抗肿瘤[18]和抗动脉粥样硬化[19]等生物学功能。亚麻籽油中神经酰胺的多样化是由不同的长链碱基链接不同碳链长度、不饱和度和羟基的脂肪酸组成[20-21],并且其主要在神经元中起结构性作用,并参与调节细胞通讯、神经元分化和成熟[22]。GM3和SM这两个脂质分子小类脂质在动物细胞中比较常见,并与人体内疾病,如癌症和糖尿病密切相关[23-24]。亚麻籽油中甘油磷脂类和鞘脂类的分布具有相似的特点:脂质种类较多,但是每类中的脂质分子较少;研究表明甘油磷脂类对维持细胞膜的完整性、渗透性和流动性发挥重要作用[4,25]。亚麻籽油中FA均是长链脂肪酸(C16~22);FAHFA是一种由两分子的脂肪酸组成的脂肪酸低聚物[26],也是由长链脂肪酸组成(如C18∶2、C18∶3、C20∶0、C22∶4、C22∶5、C22∶6、C26∶2和C26∶4等),有研究表明FAHFA类脂肪酸具有抗炎和抗糖尿病的作用[27-28];ACar在早产儿和正常儿的血液中水平中存在显著差异,并常与氨基酸谱一起反映新生儿的发育程度和健康水平[29-30]。亚麻籽油中检测出的甾醇酯CE(18∶2)属于植物固醇,植物固醇具有抗癌、调节免疫和抗炎等生物学功能,并且植物固醇日益成为预防疾病的功能性食品的合适成分[31-32],而目前对CE(18∶2)脂质分子的研究和报道较少。此外,虽然不同品种亚麻籽油在脂类层面的差异不显著,但是在脂质分子层面却有着显著的差别。

3 结 论

1)利用超高效液相色谱-四级杆飞行时间质谱联用技术(Ultra High Performance Liquid Chromatography- Quadrupole Time-of-Flight Spectroscopy, UHPLC- QTOF-MS)技术在3个品种亚麻籽油中均鉴定出39个脂质分子小类共1 072种脂质分子。虽然不同品种亚麻籽油在脂质子类层面差异不显著,但是在脂质分子层面存在显著差异。

2)亚麻籽油除了常见甘油酯中的3个脂质分子小类(三酰基甘油(Triacylglycerols, TG)、二酰基甘油(Diacylglycerols, DG)、单酰基甘油(Monoradylglycerols, MG)),游离的脂肪酸(Fatty Acid, FA)和甘油磷脂中的13个脂质分子小类外,本研究还发现了甜菜碱脂(Diacylgycerol-N-trimethylhomoserine, DGTS)、甘油糖脂中的4个脂质分子小类(葡萄糖醛酸二酰基甘油(Glycosyldiacylglycerols, GlcADG)、酰基葡萄糖醛酸二酰基甘油(Acylglycosyldiacylglycerols, AcylGlcADG)、硫代异鼠李糖甘油二酯(Sulfoquinovosyldiacylglycerols, SQDG)和单半乳糖二酰基甘油(Monogalactosyldiacylglycerols, MGDG))、神经酰胺中的12个脂质分子小类、羟基脂肪酸的脂肪酸酯(Fatty Acyl Esters of Hydroxy Fatty Acid, FAHFA)、神经节苷脂(Gangliosides, GM3)、鞘磷脂(Sphingomyelin, SM)、酰基肉碱(Fatty esters Acyl carnitine, ACar)和甾醇酯(Cholesterol, CE),共22个脂质分子小类415种脂质分子,这些脂质分子具有多种生物学功能。

3)根据相对含量筛选出了亚麻籽A油的标志性脂质有PI、PC和PE,亚麻籽B油的标志性脂质有TG和HBMP,亚麻籽C油的标志性脂质有GM3和SQDG。

[1] Goyal A, Sharma V, Upadhyay N, et al. Flax and flaxseed oil: an ancient medicine & modern functional food[J]. Journal of Food Science and Technology, 2014, 51(9): 1633-1653.

[2] 王维义,许帅强,何宏燕,等. 亚麻籽的营养成分及功能研究进展[J]. 中国油脂,2020,45(4):83-85.

Wang Weiyi, Xu Shuaiqiang, He Hongyan, et al. Progress in nutrients and function of flaxseed[J]. China Oils and Fats, 2020, 45(4): 83-85. (in Chinese with English abstract)

[3] 刘婷婷,石少侠,段虎平,等. 亚麻籽营养成分提取及其功能和应用研究进展[J]. 中国油脂,2020,45(3):90-97.

Liu Tingting, Shi Shaoxia, Duan Huping, et al. Advances in nutrients extraction, functions and applications of flaxseed[J]. China Oils and Fats, 2020, 45(3): 90-97. (in Chinese with English abstract)

[4] La Nasa J, Ghelardi E, Degano I, et al. Core shell stationary phases for a novel separation of triglycerides in plant oils by high performance liquid chromatography with electrospray-quadrupole-time of flight mass spectrometer[J]. Journal of Chromatography A, 2013, 1308: 114-124.

[5] Herchi W, Sakouhi F, Khaled S, et al. Characterisation of the glycerophospholipid fraction in flaxseed oil using liquid chromatography-mass spectrometry[J]. Food Chemistry, 2011, 129(2): 437-442.

[6] Danish M, Nizami M. Complete fatty acid analysis data of flaxseed oil using GC-FID method[J]. Data Brief, 2019, 23: 1-6.

[7] Liebisch G, Fahy E, Aoki J, et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures[J]. Journal of Lipid Research. 2020, 61(12): 1539-1555.

[8] Matsuzawa Y, Higashi Y, Takano K, et al. Food lipidomics for 155 agricultural plant products[J]. Journal of Agricultural and Food Chemistry, 2021, 69(32): 8981-8990.

[9] Han X, Gross R W. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: A bridge to lipidomics[J]. J Lipid Res, 2003, 44(6): 1071-1079.

[10] Tan Z J, Yang Z Z, Yi Y J, et al. Extraction of oil from flaxseed (L.) using enzyme-assisted three-phase partitioning[J]. Applied Biochemistry and Biotechnology, 2016, 179(8): 1325-1335.

[11] Westerhuis J A, Van Velzen E J J, Hoefsloot H C J, et al. Multivariate paired data analysis: Multilevel PLSDA versus OPLSDA[J]. Metabolomics, 2010, 6(1): 119-128.

[12] 陈雪,罗欣,梁荣蓉,等. 代谢组学在肉及肉制品品质监测中的应用[J]. 农业工程学报,2020,36(17):291-300.

Chen Xue, Luo Xin, Liang Rongrong, et al. Application of metabolomics in monitoring the qualities of meat and meat products[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 291-300. (in Chinese with English abstract)

[13] 李艳荣,牟桐,黄莉莉,等. 甜菜碱脂在14种海洋微藻中的分布研究[J]. 海洋学报,2020,42(12):72-81.

Li Yanrong, Mu Tong, Huang Lili, et al. Distribution of betaine lipids in 14 species of microalgae[J]. Haiyang Xuebao, 2020, 42(12): 72–81. (in Chinese with English abstract)

[14] Armada I, Hachero-cruzado I, Mazuelos N, et al. Differences in betaine lipids and fatty acids between Pseudoisochrysis paradoxa VLP and Diacronema vlkianum VLP isolates (Haptophyta)[J]. Phytochemistry, 2013, 95: 224-233.

[15] 翁倩,徐继林,周成旭,等. 生物体内甜菜碱脂的研究进展[J]. 生物学杂志,2015,32(2):87-91,109.

Weng Qian, Xu Jilin, Zhou Chengxu, et al. Progress in betaine lipid research[J]. Journal of Biology, 2015, 32(2): 87-91,109. (in Chinese with English abstract)

[16] Banskota A H, Stefanova R, Sperker S, et al. New diacylglyceryltrimethylhomoserines from the marine microalga Nannochloropsis granulata and their nitric oxide inhibitory activity[J]. Journal of Applied Phycology, 2013, 25(5): 1513-1521.

[17] Pongmuangmul S, Phumiamorn S, Sanguansermsri P, et al. Anti-herpes simplex virus activities of monogalactosyl diglyceride and digalactosyl diglyceride from Clinacanthus nutans, a traditional Thai herbal medicine[J]. Asian Pacific Journal of Tropical Biomedicine, 2016, 6(3): 192-197.

[18] Maeda N, Hada T, Murakami-nakai C, et al. Effects of DNA polymerase inhibitory and antitumor activities of lipase-hydrolyzed glycolipid fractions from spinach[J]. Journal of Nutritional Biochemistry, 2005, 16(2): 121-128.

[19] Karantonis H C, Antonopoulou S, Demopoulos C A. Antithrombotic lipid minor constituents from vegetable oils. Comparison between olive oils and others[J]. Journal of Agricultural and Food Chemistry, 2002, 50(5): 1150-1160.

[20] Kihara A. Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides[J]. Progress in Lipid Research, 2016, 63: 50-69.

[21] Kawana M, Miyamoto M, Ohno Y, et al. Comparative profiling and comprehensive quantification of stratum corneum ceramides in humans and mice by LC/MS/MS S[J]. Journal of Lipid Research, 2020, 61(6): 884-895.

[22] Bouscary A, Quessada C, Rene F, et al. Sphingolipids metabolism alteration in the central nervous system: Amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases[J]. Seminars in Cell & Developmental Biology, 2020, 112: 82-91.

[23] Ao M, Wang K, Zhou X, et al. Exogenous GM3 ganglioside inhibits atherosclerosis via multiple steps: A potential atheroprotective drug[J]. Pharmacological Research, 2019, 148: 1-14.

[24] Dangelo G, Moorthi S, Luberto C. Role and function of sphingomyelin biosynthesis in the development of cancer[J]. Sphingolipids in Cancer. 2018,140: 61-96.

[25] Choo Y M, Bong S C, Ma A N, et al. Phospholipids from palm-pressed fiber[J]. Journal of the American Oil Chemists Society, 2004, 81(5): 471-475.

[26] Brejchova K, Balas L, Paluchova V, et al. Understanding FAHFAs: From structure to metabolic regulation[J]. Prog Lipid Res, 2020, 79: 1-22.

[27] Wood P L. Fatty acyl esters of hydroxy fatty acid (FAHFA) lipid families[J]. Metabolites, 2020, 10(12): 1-8.

[28] Benlebna M, Balas L, Gaillet S, et al. Potential physio-pathological effects of branched fatty acid esters of hydroxy fatty acids[J]. Biochimie, 2021, 182: 13-22.

[29] 闫磊,杨尧,王艳,等. 足月和早产新生儿的LC-MS/MS氨基酸谱和酰基肉碱谱分析[J]. 中国儿童保健杂志,2016,24(8):791-794.

Yan Lei, Yang Yao, Wang Yan, et al. The amino acid and acylcarnitine profile of full-term and premature newborns by LC-MS/MS[J]. Chinese Journal of Child Health Care, 2016, 24(8): 791-794. (in Chinese with English abstract)

[30] 黄奎奎. 甘肃新生儿遗传代谢病筛查及若干指标参考值范围研究[D]. 兰州:兰州大学,2017.

Huang Kuikui. Study on Neonatal Inherited Metabolic Diseases Screening in Gansu Province and Several Index Reference Value Range[D]. Lanzhou: Lanzhou University, 2017. (in Chinese with English abstract)

[31] Schade D S, Shey L, Eaton R P. Cholesterol review: A metabolically important molecule[J]. Endocr Pract, 2020, 26(12): 1514-1523.

[32] Bai G, Ma C, Chen X. Phytosterols in edible oil: Distribution, analysis and variation during processing[J]. Grain & Oil Science and Technology, 2021, 4(1): 33-44.

Screening lipidmolecular markers of flaxseed oils by UHPLC-QTOF-MS technology

Liao Minhe1,2,3, Ren Haowei1,2,3, Jin Ritian1,2,3, Kang Jiaxin1,2,3, Shang Jiaqi1,2,3, Ning Xuenan1,2, Yao Sihan1, Liu Ning1,2,3※

(1.,,150030,; 2.,,,150030,; 3..,.,150028,)

Flaxseed Oil (FO) is one of the commonly-used edible vegetable oil in food production. But the complete lipid molecular composition and content are still unclear. This study aims to explore the true properties of the lipid composition in FO and discover the valuable lipid components. An ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) was used to characterize the lipid profile of FO. The results showed that there were the same lipid molecules in the three varieties of flaxseed (A, B, and C) oil. A total of 1 072 lipid molecules in 39 lipid molecule subclasses were identified in FO. In positive ion mode, a total of 668 lipid molecules in 15 lipid molecule subclasses were detected. In the negative ion mode, a total of 404 lipid molecules in 31 lipid molecules were detected. In both positive and negative ions mode, a total of 7 lipid molecules subclasses were detected. Among the 39 lipid molecule subclasses were detected under positive and negative ions, 30 lipid molecule subclasses are searchable in the LMSD database, while 9 lipid molecule subclasses are currently in the subclasses of the LMSD database could not be retrieved. Furthermore, 86 Diacylgycerol-N-trimethylhomoserine (DGTS) molecule species and 129 glyceroglycolipid molecule species [glycosyldiacylglycerols (GlcADG), acylglycosyldiacylglycerols (AcylGlcADG), sulfoquinovosyldiacylglycerols (SQDG) and monogalactosyldiacylglycerols (MGDG)], 151 ceramide lipid molecule species, 3 Gangliosides (GM3) molecule species and 3 Sphingomyelin (SM) molecule species, 32 FAHFA molecule species, 9 Fatty esters Acyl carnitine (ACar) molecule species and 1 Cholesterol molecule CE (18:2) were firstly found in FO. Among these subclass lipids, the triacylglycerols (TG) presented the largest number (471 molecule species) and the highest relative content (67.93%-68.91%), followed by diacylglycerols (DG), DGTS, and GlcADG. In addition, the content of 39 lipid molecule subclasses was compared in the three kinds of FO. It was found that there were significant differences between the GM3 and fatty acyl esters of hydroxy fatty acid (FAHFA) in the three kinds of FO (<0.05), whereas, there was no significant difference among the other 37 lipids molecule subclasses (>0.05). More importantly, a multivariate statistical model was also established to screen the different lipid molecules among different kinds of FO, in order to fully and accurately reflect the differences between the three kinds of FO. Specifically, the three varieties of FO were well distinguished in the unsupervised Principal Component Analysis (PCA). The difference among the three varieties of FO was greater than that within each group, which was explained by the supervised Orthogonal Partial Least Squares Discrimination Analysis (OPLS-DA). Furthermore, there were more than 200 lipid molecule species significantly different between the two varieties of flaxseed oil (<0.05), where the marker lipid molecules of flaxseed A oil were further screened out as 6 PI molecules, 1 PC molecule,1 PE molecule, and 1 TG molecule. The marker lipid molecules of flaxseed B oil were 6 TG molecules and 1 HBMP molecule. The marker lipid molecules of flaxseed C oil were 1 GM3 molecule and 1 SQDG molecule. Correspondingly, these lipid molecules were used as the markers of the three types of FO, suitable for the quality and authenticity identification, as well as the nutritional and safety evaluation of vegetable oil. In summary, 39 subclasses totaling 1 072 lipid molecule species were identified in FO. There were also significant differences in the lipid molecular level of different FOs. A total of 415 lipid molecule species in the 22 subclasses were found, which has not been reported yet in FO. This discovery can make a sound theoretical foundation to develop the nutritional value of FO, particularly for the comprehensive and systematic investigation of the lipid profile in other lipid foods.

oil and fats; principal component analysis; flaxseed; LC-MS technology; lipidomics; orthogonal partial least squares discrimination analysis

2021-06-24

2021-10-20

“十三五”国家重点研发计划(2018YFC160430401)

廖敏和,研究方向为食品营养及加工。Email:liaominhe5212@163.com

刘宁,博士,教授,博士生导师,研究方向为食品营养及加工。Email:ningliuneau@outlook.com

10.11975/j.issn.1002-6819.2021.24.037

TS225.1

A

1002-6819(2021)-24-0338-09

廖敏和,任皓威,金日天,等. 采用UHPLC-QTOF-MS技术筛选亚麻籽油脂质分子标志物[J]. 农业工程学报,2021,37(24):338-346. doi:10.11975/j.issn.1002-6819.2021.24.037 http://www.tcsae.org

Liao Minhe, Ren Haowei, Jin Ritian, et al. Screening lipidmolecular markers of flaxseed oils by UHPLC-QTOF-MS technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(24): 338-346. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.24.037 http://www.tcsae.org

猜你喜欢

小类酰基籽油
七种籽油新食品原料的研究进展
猕猴桃籽油抗氧化活性及其脂肪酸组分的研究
单座物流车专利布局分析
汽车智能驾驶领域专利布局分析
花生酰基-CoA羧化酶基因ACC1的克隆与表达分析
利用变异系数分析‘凤丹’牡丹籽油脂肪酸组分的遗传稳定性
难治性皮肤病可得到有效治疗
中科院上海生科院2型糖尿病早期预测研究获突破
顺藤摸瓜寻觅原函数追本溯源探讨单调性
药物中间体4-甲磺酰基苯乙酸合成研究进展