APP下载

单形的几何稳定性研究

2021-03-12孙玉婷杨世国

喀什大学学报 2021年6期
关键词:切点正则安徽

孙玉婷,王 文,杨世国

(1.安徽文达信息工程学院通识教育学院,安徽合肥 231201;2.合肥师范学院数学与统计学院,安徽 合肥 230601;3.安徽新华学院国际教育学院,安徽合肥 230088)

0 引言

凸体几何发源于上世纪初的现代几何学科,随着国内外优秀数学家对凸体几何研究的深入,到上世纪末凸体几何研究得到蓬勃发展.凸体几何的理论和方法广泛的应用于体视学(stereology)、仿晶学(sryslallography)和固态物理学等领域[1].尤其对C60的研究显示了凸体几何在化学研究中的作用,从而让C60在化工、建筑等其他领域得到广泛应用[2-3].

单形是凸体几何的主要研究对象,而本文主要研究其不等式的稳定性.单形不等式的稳定性最早由MINKOWSKI 提出,是指在一些含有等号的几何不等式中,当其中的几何体为某种特殊几何体或几何体相似时取等号.现假设某几何体使得不等式与相等时相差很小,那么此时几何体与取等号的特殊几何体的“偏差”也很小,则称此几何不等式是稳定的,否则称此几何不等式是不稳定的.由于它的支撑函数或向径函数的表达式很难找到,使得其几何不等式的稳定性研究十分困难.文献[4-5]证明了Veljan-Korchmaros 不等式是稳定的,并提出了单形的“偏正度量”概念:

设n维单形Ω的棱长为是以aˉ为棱长的n维单形,则单形Ω的“偏正度量”为当且仅当Ω为正则单形).

文献[6]给出了单形不等式更强的稳定性版本.

1 主要结果

并推广了[7]中切点单形不等式,得到推广式

当Ω为正则单形时,(1.2)和(1.2*)中等号成立.

本文将证明(1.1)与(1.2)是稳定的,并给出他们的稳定性版本,并推广不等式(1.1)与(1.2),而本文其中一个结论实质上是比文献[1]有更强的稳定性.

定理1.1n维单形Ω有

且当且仅当Ω为正则单形等号成立.

或有不等式(1.1*)的一个稳定性版本

当且仅当Ω为正则单形,(1.5)式中等号成立.

定理1.3n维单形Ω有

且当Ω为正则单形时等号成立.

定理1.4设是n维单形的偏正度量,对任意的ε>0,当

时,则有

当且仅当Ω为正则单形,(1.9)式中等号成立.

2 主要结果证明

引理2.1[4]设n维单形Ω,则

且当Ω为正则单形时等号成立.

引理2.2[5]设n维单形Ω,则

且当Ω为正则单形时等号成立.

引理2.3[9]设n维单形Ω,则

且当Ω为正则单形时等号成立.

引理2.4[10]设x≥1,0 <β≤1,有

当β=1 时,(2.4)式为恒等式;当0<β<1 时,(2.4)式等号成立当且仅当x=1.

引理2.5[10]设n维单形Ω,有

且当Ω为正则单形时等号成立.

引理2.6设n维单形Ω,则

且当Ω为正则单形时等号成立.

证明利用文献[9]中不等式

当Ω重心与外心重合时等号成立,由(2.5)和(2.7)得

由(2.8)和(2.2)引理得证.

定理1.1的证明由[11]中结果

并利用算术几何平均不等式及(2.1)得

由(2.9)和(2.10)得

且当Ω为正则单形时等号成立.

利用引理2.3有

由(2.11)和(2.12)得

由(2.13)和(2.2)得

且当Ω为正则单形时(2.14)式等号成立.

故定理1.1成立.

定理1.2的证明(2.14)式可改写成

注意到代数恒等式

Ω为正则单形时(2.18)等号成立.

故定理1.2成立.

定理1.3 的证明由于切点单形Ω′得外接球半径为γ,外心为I,将不等式(2.11)应用于切点单形Ω′,有

当Ω为正则单形时等号成立.

从而定理1.3成立.

且当Ω为正则单形时等号成立.

利用文献[5]中引理3.11有

且当Ω为正则单形时等号成立.

由(2.26)和(2.27)得

从而定理1.4成立.

3 结语

本文通过研究欧氏空间正则单形与一般单形的偏差估计,为后期研究非欧空间如球面空间、双曲空间等单形的稳定性奠定了一定的基础;同时由于单形是特殊的凸体,单形的稳定性研究为一般凸体稳定性研究提供了一定的启发.

猜你喜欢

切点正则安徽
半群的极大正则子半群
《安徽记事》
π-正则半群的全π-正则子半群格
Virtually正则模
抛物线的切点弦方程的求法及性质应用
安徽:种子田去杂保纯促增收
5.回声
一种伪内切圆切点的刻画办法
任意半环上正则元的广义逆
椭圆的三类切点弦的包络