数形结合思想在高中数学教学中的应用
2020-11-02温小鹏
温小鹏
摘 要:新课程标准明确提出,在高中数学教学中,应该坚持以人为本,对学生的数学思想进行培养,确保学生能够准确掌握数学概念、数学思想和数学方法。将数形结合思想应用到高中数学教学中,能够很好地满足上述要求,促进教学水平的提高。本文就数形结合思想在高中数学教学中的应用策略进行了分析和讨论。
关键词:数形结合思想;高中数学;应用
高中数学本身具备很强的抽象性,对于学生的逻辑思维能力有着很高的要求,这也是很多高中生认为数学知识枯燥乏味的主要原因。针对这样的问题,教师在开展数学教学活动的过程中,应该借助数形结合的思想,对知识进行转化,降低学习的难度,促进课堂教学水平的提高。
一、数形结合思想概述
数形结合的精髓,是通过数字与图形的有机结合,将抽象问题具体化、复杂问题清晰化,加深学生对于数学的理解,通过数字和图形之间的联系,学生能够对存在于题目中的潜在条件进行分析,更加高效地对问题进行解答。从学生的角度,在对一些涉及数量关系和空间图形相互转化的问题进行解决时,可以借助数形结合思想,借助相应的数学语言来对数量和图形的相互关系进行表达,通过这样的方式,能够显著降低问题的难度,更加轻松更加高效地得到问题的答案。
将数形结合思想应用到高中数学教学中,能够发挥出非常积极的作用:一是可以激发学生的数学学习兴趣。数学本身具备符号化和形式化的特征,学习过程枯燥乏味,无法吸引学生的注意力,不过如果能够对数形结合思想进行合理运用,则可以将数学知识更加直观形象地表示出来,降低学生的学习难度,激发其对于学习的兴趣;二是可以帮助学生理解数学概念。数学概念是数学知识的基础,想要正确地理解数学概念,学生需要了解其内涵。数形结合思想的应用,能够将原本抽象的数学概念变得更加具体直观,帮助学生更好地理解和记忆,并将其应用到实际问题的解决中;三是能够提高学生的解题能力。在对数学问题进行分析和解决的过程中,数形结合思想的应用,能够帮助学生更快地找对解题思路,也可以对其逻辑思维能力和抽象思维能力进行培养,促进学生解题能力的提高。
二、数形结合思想在高中数学教学中的应用
(一)在概念教学中的应用
概念是人们对于数学知识的认识,属于从感性到理性的认知升华,本身具备较强的抽象性,学生想要理解和掌握并不容易。而如果借助数形结合思想进行数学概念的教学,教师可以运用直观而形象的图形来对数学概念进行展示,帮助学生更好地把握数学概念所具备的本质特征,建立起完善系统的数学知识体,使得学生在掌握数学概念的同时,可以将其灵活地应用到实际问题的解决中,对学生的数学核心素养进行培养。例如:在对“直线与圆的位置关系”进行教学时,如果采用传统的灌输式教学模式,学生并不能很好地理解直线与圆的三种位置关系,但是如果采用数形结合的方式,通过图形来对概念进行演示,则学生可以更快地了解概念的本质,同时也可以对学生的数形转换能力进行培养。
(二)在函數问题中的应用
函数问题在高中数学中占据了相当重要的位置,其学习难度较大,不过如果运用数形结合思想来讲代数问题几何化,函数学习的难度将会大大降低。例如:在对“指数函数”进行教学时,教师可以运用多媒体设备实现动态作图,通过动态图片或者视频的方式来演示函数知识,确保其能够更加直观生动地展现在学生面前,帮助学生理解指数函数的增长速率,保证教学效果。
(三)在立体几何中的应用
立体几何在高中数学中占据了相当大的比重,而对其进行学习的过程中,不少学生因为空间思维能力不足,经常会感到学习难度大,对于很多问题在解答时往往都无从入手。以数形结合思想为支撑,能够将原本的结合问题转化为代数问题,学习的难度会大大降低,借助数据之间的相互关系,学生也可以更好地理解立体几何涉及的空间概念,实现图形和数字的有机融合,构建起相应的数形结合思维方式,强化问题的分析和解决能力。例如:在对“圆锥曲线与方程”进行教学时,椭圆离心率取值范围的求解是一个关键性问题,教师可以运用数形结合思想,将之转化为代数问题,与学生一起构建相应的不等式关系,借助代数知识完成不等式求解,再重新将之转化为几何语言。通过图形和数据的转化,问题解答的难度降低,学生对于知识的理解也更加深入,有助于提升其解题速度和解题的准确性。
(四)在统计问题中的应用
统计学教学中,同样可以运用数形结合思想来将统计数据转化为图形,或者将图形转化为数据,提升表述的直观性和有效性,从而帮助学生对知识进行理解和记忆。例如:在进行“统计”内容的教学时,教师可以运用数形结合思想,在坐标图形和统计知识之间建立起联系,使得学生在掌握统计知识的同时,能够将其运用到现实生活问题的解决中。
总而言之,数形结合是一种非常有效的学习手段,在高中数学教学中有着不容忽视的作用和价值。高中数学教师应该将数形结合思想合理的渗透到课堂教学中,提高课堂教学的效率和效果,对学生的数学核心素养进行培养。
参考文献
[1] 尹尚智.数形结合思想方法在高中数学教学与解题中的应用[J].科教文汇(下旬刊),2020(3):142-143.
[2] 张文涛.试谈数形结合思想在高中数学教学中的运用[J].数学学习与研究,2020(4):25.
[3] 裴承雄.数形结合思想在高中数学教学中的运用研究[J].成才之路,2019(36):65-66.