程序性细胞死亡受体-1/程序性细胞死亡受体配体-1抑制剂治疗结直肠癌的研究进展
2020-08-18吴子媚李林玉陈璐施孝金陈海飞
吴子媚 李林玉 陈璐 施孝金 陈海飞
摘 要 程序性细胞死亡受体-1(programmed cell death-1, PD-1)/程序性细胞死亡受体配体-1(programmed cell death-ligand 1, PD-L1)信号通路是诱导肿瘤免疫逃逸的主要机制,在肿瘤形成中起着免疫检查点的作用。近年来,随着抗PD-1/PD-L1单克隆抗体成功地用于治疗黑素瘤、肾细胞癌、膀胱癌和非小细胞肺癌,PD-1/PD-L1抑制剂已成为实体瘤免疫治疗研究中的热点之一。本文概要介绍PD-1/PD-L1抑制剂用于结直肠癌免疫治疗的研究进展。
关键词 程序性细胞死亡受体-1 程序性细胞死亡受体配体-1 结直肠癌 腫瘤免疫治疗 免疫检查点抑制剂
中图分类号:R979.19; R730.51 文献标志码:A 文章编号:1006-1533(2020)15-0018-04
Research advances of PD-1/PD-L1 inhibitors in the treatment of colorectal cancer
WU Zimei1*, LI Linyu1, CHEN Lu1, SHI Xiaojin1, 2, CHEN Haifei1, 2**(1. Department of Pharmacy, Northern Division of Huashan Hospital, Fudan University, Shanghai 201907, China; 2. Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China)
ABSTRACT Programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) signaling pathway is the main mechanism of inducing tumor immune escape and plays the role of immune checkpoint in tumor formation. With the successful development of monoclonal antibodies against PD-1/PD-L1 in melanoma, renal cell carcinoma, bladder cancer and non-small cell lung cancer, PD-1/PD-L1 inhibitors have become a research hotspot in solid tumor immunotherapy. In this review, we present a comprehensive knowledge of immunotherapy through PD-1/PD-L1 blockade and review the related research advances in colorectal cancer.
KEY WORDS programmed cell death-1; programmed cell death-ligand 1; colorectal cancer; tumor immunotherapy; immune checkpoint inhibitors
结直肠癌是全球发病率排名第三、死亡率排名第四的癌症类型[1]。有研究称,到2030年,全球新发结直肠癌患者数将增加220万人以上,因结直肠癌而死亡人数增加110万人左右[2]。结直肠癌的发病因素是多方面的,包括病毒和细菌感染、吸烟、饮酒、肥胖、衰老、溃疡性结肠炎和基因变异等[3-4],也可由遗传不稳定引起,包括染色体不稳定、微卫星不稳定(microsatellite instability, MSI)和CpG岛甲基化表型等[5]。近年来的研究还表明,免疫抑制亦可能参与了结肠癌的发生、发展过程[5]。
在过去10年中,由于贝伐珠单抗和西妥昔单抗等靶向治疗药物的面世,转移性结直肠癌(metastatic colorectal cancer, mCRC)患者的总生存期得到明显提高[6]。然而,对高危Ⅱ、Ⅲ期结肠癌的辅助治疗,使用靶向治疗药物仍不能提高患者的无复发生存期和总生存期[7-8]。为了进一步提高结直肠癌的治疗效果,无论是辅助治疗还是姑息治疗,都需要有新的有效药物。相关研究提示,免疫检查点分子如程序性细胞死亡受体-1(programmed cell death-1, PD-1)/程序性细胞死亡受体配体-1(programmed cell death-ligand 1, PD-L1)是结直肠癌免疫治疗的潜在作用靶点[9]。本文概要介绍PD-1/ PD-L1抑制剂用于结直肠癌治疗的研究进展。
1 PD-1/PD-L1
PD-1是CD8+ T淋巴细胞、CD4+ T淋巴细胞、自然杀伤细胞、B淋巴细胞和肿瘤浸润淋巴细胞表面的共抑制受体之一[10]。PD-1能与PD-L1或程序性细胞死亡受体配体-2(programmed cell death-ligand 2, PD-L2)两种配体发生相互作用。PD-L1和PD-L2均可表达于肿瘤细胞上和肿瘤基质中[11-12]。在肿瘤微环境中,PD-1与PD-L1的结合亲和力较PD-1与PD-L2的结合亲和力高2倍[13]。
2 结直肠癌与PD-1/PD-L1信号通路调节
结直肠癌微环境中存在着各种免疫细胞,包括B淋巴细胞、T淋巴细胞、肿瘤相关巨噬细胞、树突状细胞和肿瘤相关成纤维细胞。CD8+ T淋巴细胞是肿瘤发生适应性免疫应答时的主要肿瘤浸润淋巴细胞。在正常生理条件下,T细胞在全身循环以识别抗原呈递细胞表面的病原体衍生抗原。CD4+ T淋巴细胞和CD8+ T淋巴细胞上的T细胞受体与抗原呈递细胞表面的主要组织相容性复合体(major histocompatibility complex, MHC)中的抗原结合并不足以激活T细胞。T细胞受体-MHC信号通路受共刺激或共抑制信号调节后,T细胞才会被激活或表现为耐受[14]。T细胞共刺激分子包括CD28和诱导性T细胞共刺激因子(inducible T cell co-stimulator, ICOS),它们可分别与抗原呈递细胞和ICOS配体表面的B7-1/B7-2发生相互作用。T细胞共抑制分子包括细胞毒性T淋巴细胞抗原-4(cytotoxic T lymphocyte antigen-4, CTLA-4)和PD-1。CTLA-4可与抗原呈递细胞上的B7-1/B7-2结合,在淋巴器官中起中心检查点的作用。而PD-1是外周检查点,会在肿瘤细胞等靶点上与其配体PD-L1或B7-H1、PD-L2、B7-DC发生相互作用[15]。PD-1/PD-L1轴是正常的生理免疫稳态的关键决定因素。免疫细胞、特别是T细胞表面的PD-1与抗原呈递细胞表面的PD-L1结合后产生抑制信号,防止免疫细胞在机体感染或外源体侵入时产生过度的免疫应答[16]。研究显示,不同遗传背景下的PD-1缺陷小鼠易患狼疮样自身免疫性疾病或致死性自身免疫性心肌病[17-18]。在肿瘤微环境中,PD-1与PD-L1结合后会抑制PI3K/AKT和Ras信号通路等,通过调控细胞周期检查点蛋白和细胞增殖相关蛋白的表达,抑制T细胞的活化、增殖、存活、细胞因子的产生和其他效应功能。因此,PD-1/PD-L1抑制剂能够增强机体对肿瘤抗原的免疫应答,从而呈现抗肿瘤活性。
3 PD-1/PD-L1在结直肠癌中的表达
不同研究报告的与MSI相关的结直肠癌中PD-L1表达水平的结果是矛盾的。一些研究发现,高度MSI(microsatellite instability-high, MSI-H)型结直肠癌中PD-1和PD-L1的表达水平高于微卫星稳定的结直肠癌[19-20]。另有研究显示,在BRAF突变的错配修复基因缺失(defective mismatch repair, dMMR)肿瘤中PD-L1高表达[21-22]。相反,Droeser等[23]观察到,在微卫星稳定的结直肠癌患者中PD-L1的表达水平较高。最近的一项研究则表明,在MSI-H型和微卫星稳定的结直肠癌患者间,PD-1和PD-L1表达水平均无显著差异[24]。
4 PD-1/PD-L1抑制剂治疗dMMR/MSI-H型结直肠癌
随着免疫检查点抑制剂治疗恶性黑素瘤、肾细胞癌和肺癌的临床疗效得到确认,人们又开展了PD-1/PD-L1抑制剂治疗结直肠癌的临床研究[25]。不过,早期的初步研究显示,免疫检查点抑制剂对非选择性结直肠癌的治疗作用非常有限。例如,在抗PD-L1抗体BMS-936559治疗难治性结直肠癌的Ⅰ期研究中,未观察到有患者应答[26]。使用抗PD-1抗体纳武单抗(nivolumab)治疗19例结直肠癌患者,结果也未见有患者应答[27]。但有一项研究显示,1例结直肠癌患者在接受纳武单抗治疗后,其肿瘤呈持续性缓解,且在经纳武单抗再次治疗后获完全缓解(持续时间>3年)[28-29]。进一步研究发现,该患者属dMMR/MSI-H型结直肠癌患者。
一项国际性、多中心、非盲法Ⅱ期研究进一步评估了纳武单抗治疗dMMR/MSI-H型mCRC患者的作用,结果显示纳武单抗治疗可使患者获得持续的肿瘤缓解或疾病稳定。该研究共纳入74例患者,其中51例患者的疾病稳定时间≥12周,8例患者的肿瘤缓解时间≥1年[30]。“CheckMate-142”研究评估了纳武单抗联合抗CTLA-4抗体伊匹单抗(ipilimumab)治疗119例dMMR/MSI-H型mCRC患者的作用,结果显示患者的总缓解率为55%,其中4例(3%)患者获得完全缓解,61例(52%)患者获得部分缓解,1年疾病无进展生存率和总生存率分别为71%和85%[31]。与单用纳武单抗治疗相比,联合治疗可提高疗效,有望成为dMMR/MSI-H型mCRC患者治疗的新的有效选择。
在抗PD-1抗体派姆单抗(pembrolizumab)的Ⅱ期研究中,患者被分成dMMR型结直肠癌、错配修复基因完整(proficient mismatch repair, pMMR)型结直肠癌和dMMR型非结直肠癌3组,他们均每2周接受1次经静脉输注派姆单抗10 mg/kg的治疗。结果发现,dMMR型结直肠癌患者的总缓解率和20周免疫相关的疾病无进展生存率分别为40%(4/10例)和78%(7/9例),而pMMR型结直肠癌患者的此两指标值分别为0%和11%(2/18例)[32]。派姆单抗治疗dMMR型非结直肠癌患者的疗效与治疗dMMR型结直肠癌患者相似。此外,在开放性“KEYNOTE-164”研究中,124例dMMR/MSI-H型结肠癌患者经每3周接受1次派姆单抗200 mg治疗2年,结果显示总缓解率为33%[33]。因此,dMMR被认为是对PD-1抑制剂治疗有应答的可能标志物。
5 联合PD-1/PD-L1抑制剂治疗pMMR型结直肠癌
单用抗PD-1抗体治疗pMMR型结直肠癌无效。一项随机Ⅱ期研究共纳入180例难治性pMMR型结直肠癌患者,评估了抗PD-L1抗体度伐单抗(durvalumab)联合抗CTLA-4抗体曲美木单抗(tremelimumab)治疗的作用。结果发现,联合治疗组患者的中位总生存期延长至6.6个月[34],但疾病无进展生存期未获显著改善。
瑞格非尼(regorafenib)是一种血管形成和激酶抑制剂。一项ⅠB期研究在25例pMMR型结直肠癌患者中评估了瑞格非尼联合纳武单抗治疗的作用,结果发现肿瘤应答率为36%,患者中位疾病无进展生存期为7.7个月[35]。
一项Ⅱ期研究在30例未经治疗的不能切除的pMMR型结直肠癌患者中评估了派姆单抗联合奥沙利铂-氟尿嘧啶-亚叶酸钙方案(mFOLFOX6方案)治疗的作用,结果显示8周时的患者疾病稳定率为100%,24周時的总缓解率为53%[36]。
6 目前存在的问题及展望
2017年,美国FDA已批准纳武单抗和派姆单抗治疗dMMR/MSI-H型mCRC患者。dMMR/MSI-H是结直肠癌患者接受免疫检查点抑制剂治疗有效的生物标志物。当然,并不是所有的dMMR/MSI-H型结直肠癌患者对现有免疫检查点抑制剂治疗均有应答。此外,到目前为止,免疫检查点抑制剂治疗pMMR/低度MSI型结直肠癌基本无效,而此类结直肠癌却在mCRC患者中占绝大多数。相信随着对PD-1/PD-L1信号通路调控T细胞功能及其活性的机制的深入研究,未来PD-1/PD-L1抑制剂会在结直肠癌治疗方面发挥更大的作用。
参考文献
[1] Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012 [J]. CA Cancer J Clin, 2015, 65(2): 87-108.
[2] Arnold M, Sierra MS, Laversanne M, et al. Global patterns and trends in colorectal cancer incidence and mortality [J]. Gut, 2017, 66(4): 683-691.
[3] Willett WC. Diet and cancer: an evolving picture [J]. JAMA, 2005, 293(2): 233-234.
[4] Martinez-Useros J, Garcia-Foncillas J. Obesity and colorectal cancer: molecular features of adipose tissue [J/OL]. J Transl Med, 2016, 14: 21 [2020-03-13]. doi: 10.1186/s12967-016-0772-5.
[5] Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis [J]. Gastroenterology, 2008, 135(4): 1079-1099.
[6] Venook A. Critical evaluation of current treatments in metastatic colorectal cancer [J]. Oncologist, 2005, 10(4): 250-261.
[7] Allegra CJ, Yothers G, OConnell MJ, et al. Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08 [J]. J Clin Oncol, 2011, 29(1): 11-16.
[8] de Gramont A, Van Cutsem E, Schmoll HJ, et al. Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial [J]. Lancet Oncol, 2012, 13(12): 1225-1233.
[9] Yaghoubi N, Soltani A, Ghazvini K, et al. PD-1/PD-L1 blockade as a novel treatment for colorectal cancer [J]. Biomed Pharmacother, 2019, 110: 312-318.
[10] Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy [J]. J Clin Oncol, 2015, 33(17): 1974-1982.
[11] Konishi J, Yamazaki K, Azuma M, et al. B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression [J]. Clin Cancer Res, 2004, 10(15): 5094-5100.
[12] Ohigashi Y, Sho M, Yamada Y, et al. Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer [J]. Clin Cancer Res, 2005, 11(8): 2947-2953.
[13] Cheng X, Veverka V, Radhakrishnan A, et al. Structure and interactions of the human programmed cell death 1 receptor[J]. J Biol Chem, 2013, 288(17): 11771-11785.
[14] Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms [J]. Mol Cell Biol, 2005, 25(21): 9543-9553.
[15] Mittal D, Gubin MM, Schreiber RD, et al. New insights into cancer immunoediting and its three component phases -elimination, equilibrium and escape [J]. Curr Opin Immunol, 2014, 27: 16-25.
[16] Ohaegbulam KC, Assal A, Lazar-Molnar E, et al. Human cancer immunotherapy with antibodies to the PD-1 and PDL1 pathway [J]. Trends Mol Med, 2015, 21(1): 24-33.
[17] Nishimura H, Nose M, Hiai H, et al. Development of lupuslike autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor [J]. Immunity, 1999, 11(2): 141-151.
[18] Nishimura H, Okazaki T, Tanaka Y, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice [J]. Science, 2001, 291(5502): 319-322.
[19] Gatalica Z, Snyder C, Maney T, et al. Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type [J]. Cancer Epidemiol Biomarkers Prev, 2014, 23(12): 2965-2970.
[20] Llosa NJ, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints [J]. Cancer Discov, 2015, 5(1): 43-51.
[21] Cohen R, Svrcek M, Dreyer C, et al. New therapeutic opportunities based on DNA mismatch repair and BRAF status in metastatic colorectal cancer [J]. Curr Oncol Rep, 2016, 18(3): 18.
[22] Feng D, Qin B, Pal K, et al. BRAFV600E-induced, tumor intrinsic PD-L1 can regulate chemotherapy-induced apoptosis in human colon cancer cells and in tumor xenografts [J]. Oncogene, 2019, 38(41): 6752-6766.
[23] Droeser RA, Hirt C, Viehl CT, et al. Clinical impact of programmed cell death ligand 1 expression in colorectal cancer [J]. Eur J Cancer, 2013, 49(9): 2233-2242.
[24] Li Y, Liang L, Dai W, et al. Prognostic impact of programed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor infiltrating lymphocytes in colorectal cancer [J/OL]. Mol Cancer, 2016, 15(1): 55 [2020-03-13]. doi: 10.1186/s12943-016-0539-x.
[25] Passardi A, Canale M, Valgiusti M, et al. Immune checkpoints as a target for colorectal cancer treatment [J/OL]. Int J Mol Sci, 2017, 18(6): 1324 [2020-03-13]. doi: 10.3390/ ijms18061324.
[26] Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer [J]. N Engl J Med, 2012, 366(26): 2455-2465.
[27] Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer [J]. N Engl J Med, 2012, 366(26): 2443-2454.
[28] Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates [J]. J Clin Oncol, 2010, 28(19): 3167-3175.
[29] Lipson EJ, Sharfman WH, Drake CG, et al. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody [J]. Clin Cancer Res, 2013, 19(2): 462-468.
[30] Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study [J]. Lancet Oncol, 2017, 18(9): 1182-1191.
[31] Overman MJ, Lonardi S, Wong KYM, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-reficient/microsatellite instability-high metastatic colorectal cancer [J]. J Clin Oncol, 2018, 36(8): 773-779.
[32] Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency [J]. N Engl J Med, 2015, 372(26): 2509-2520.
[33] Le DT, Kim TW, Van Cutsem E, et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164 [J]. J Clin Oncol, 2020, 38(1): 11-19.
[34] Chen EX, Jonker DJ, Loree JM, et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: the Canadian Cancer Trials Group CO.26 study [J]. JAMA Oncol, 2020, 6(6): 1-8.
[35] Fukuoka S, Hara H, Takahashi N, et al. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ib trial (REGONIVO, EPOC1603) [J]. J Clin Oncol, 2020, 38(18): 2053-2061.
[36] Shahda S, Noonan AM, Bekaii-Saab TS, et al. A phase II study of pembrolizumab in combination with mFOLFOX6 for patients with advanced colorectal cancer [J]. J Clin Oncol, 2017, 35(15 Suppl): 3541.