APP下载

基于网络药理学从系统层面探讨黄芩苷治疗肺纤维化的效应机制研究

2020-06-19张沂穆杰高伟华

世界中医药 2020年10期
关键词:肺纤维化性反应黄芩

张沂 穆杰 高伟华

摘要 目的:基于网络药理学的方法,从系统层面探讨黄芩苷对肺纤维化的潜在作用机制。方法:通过NCBI pubchem、ZINC和TCMSP获取黄芩苷的化合物信息,在NCBI数据库、Pharmmapper数据库获取黄芩苷作用靶点,在DiseaseGene Network和DrugBank获取肺纤维化的靶点,通过基因映射预测黄芩苷治疗肺纤维化的潜在作用靶点,在STRING数据库建立黄芩苷治疗肺纤维化的高置信度PPI网络,采用拓扑分析和富集分析,获得拓扑重要性靶点及核心通路。结果:获得黄芩苷作用靶点332个,肺纤维化靶点431个,黄芩苷潜在作用靶点45个,建立了1个45个节点、191条边的高置信度PPI网络,得到黄芩苷治疗肺纤维化的拓扑重要性靶点21个,3条核心作用通路,及其涉及的20个生物过程(BP),4个细胞成分(CC),4个分子功能(MF)。结论:从网络药理学看黄芩苷治疗肺纤维化的机制涉及多个靶点和信号通路,这些靶点与通路主要通过调节炎性反应、凋亡以及其他与治疗肺纤维化作用有关的生理病理过程有关,为未来中药研究提供了一个网络药理学框架。

关键词 黄芩苷;肺纤维化;网络药理学;炎性反应;凋亡;信号通路;拓扑分析;富集分析

Abstract Objective:Based on the method of network pharmacology,the potential mechanism of Baicalin on pulmonary fibrosis was discussed from the systematical level.Methods:The information of baicalin compounds was obtained from NCBI pubchem,ZINC and TCMSP.The target of baicalin was obtained from NCBI database and Pharmmapper database.The target of pulmonary fibrosis was obtained from Disease Gene Network and Drug Bank.The potential target of Baicalin in the treatment of pulmonary fibrosis were predicted by gene mapping.A high confidence PPI network for baicalin in the treatment of pulmonary fibrosis was established in STING database.The important target and core path of topological were obtained by using topological analysis and enrichment analysis.Results:A total of 332 targets of baicalin,431 targets of pulmonary fibrosis and 45 potential targets of baicalin were obtained.A high confidence PPI network with 45 nodes and 191 edges was established.A total of 21 topologically important targets,3 core action pathways,20 biological processes (BP),4 cell components (CC) and 4 molecular functions (MF) involved in baicalin treatment of pulmonary fibrosis were obtained.Conclusion:From the perspective of network pharmacology,the mechanism of Baicalin in the treatment of pulmonary fibrosis involves multiple targets and signal pathways.These targets and pathways are mainly related to the regulation of inflammation,apoptosis and other physiological and pathological processes related to the treatment of pulmonary fibrosis,which provides a network pharmacology framework for the future research of traditional Chinese medicine.

Keywords Baicalin; Pulmonary fibrosis; Network pharmacology; Inflammation; Apoptosis; Signal pathway; Topological analysis; Enrichment analysis

肺纖维化是以成纤维细胞增殖及大量细胞外基质聚集并伴炎性反应损伤、组织结构破坏为特征的一大类肺系疾病的终末期改变[1-3]。该疾病可不同程度损害患者呼吸系统的生理功能[4],病情持续进展,可最终发展为呼吸循环衰竭而危及患者生命[5-6],目前临床尚无特效疗法,多采用抗炎、抗纤维化等药物进行治疗[7],近年来采用天然中草药治疗肺纤维化在临床试实验研究中均取得较好进展,能发挥出色的治疗效果[8]。中医认为肺纤维化属“肺痿”“肺痹”“喘”等疾病的范畴[9],肺热被认为是其重要病机之一[10-12],而黄芩作为清肺热的常用中药,被广泛应用于治疗肺纤维化的方剂中[13],如唐斌擎等[14]拟肺纤煎(党参、黄芩、制半夏、沙参等)在临床试验中取得了良好的临床疗效,黄芩苷既是黄芩的主要成分之一[15],已经被证实能有效改善肺纤维化的氧化应激、炎性反应等[16-17]。

现阶段黄芩苷治疗肺纤维化效应机制相关的动物研究、细胞研究等仍缺乏系统或整体层面的研究,导致对黄芩苷药效多靶点作用机制的认识存在一定的差距[18-21],因此采用网络药理学方法从整体的、系统的角度阐述药物、靶点和疾病之间的关系,直观地呈现了药物靶点网络[22-24]。有助于理解药物的药理学及其对生物网络的影响,并提高临床疗效[25]。本研究利用药物靶点预测、蛋白质相互作用(PPI)网络构建、拓扑筛选等网络药理学方法,揭示黄芩苷治疗肺纤维化的作用机制,明确其药用价值。为黄芩苷治疗肺纤维化药效机制的定位和产生协同作用的潜在蛋白靶点的确定提供了一种新的研究方法。

1 材料與方法

1.1 黄芩苷靶点预测 黄芩苷结构信息来自NCBI Pubchem(https://pubchem.ncbi.nlm.nih.gov/)和ZINC数据库(http://zinc.docking.org/)[26-27]。黄芩苷的吸收、分布、代谢和排泄(adme)筛选标准包括生物利用度(ob)、药物相似性(dl)、血脑屏障(bbb)等数据来自TCMSP数据库[28]。在TargetNet数据库(http://targetnet.scbdd.com)根据“Lipinski′s rule of five”(MW,AlogP,TPSA,Hdon,and Hacc)对黄芩苷的成药性进行评分。研究采用2种方法预测黄芩苷的靶点信息。首先,第1部分靶点来自NCBI数据库,搜索词包括“baicalin”和“pulmonary fibrosis”。第2部分来源于Pharmmapper数据库(http://lilab.ecust.edu.cn/Pharmmapper/),该数据库旨在通过反向药效团映射方法识别小分子的潜在靶点[29],将黄芩苷的MOL2文件上传到web服务器中,选择了“Human Protein Targets Only database”。

1.2 肺纤维化相关靶点收集及PPI网络建立 研究在DiseaseGene Network数据库(http://www.disgenet.org/)[30]、DrugBank数据库(https://www.drugbank.ca/)[31]、搜索与“pulmonary fibrosis”相关的疾病靶点。基于收集的肺纤维化相关靶点,在STRING数据库(https://string-db.org/)建立PPI网络[32],作为基因映射的背景网络。

1.3 黄芩苷治疗肺纤维化预测靶点的基因映射提取及PPI网络建立 在Cytoscape软件将黄芩苷化合物的靶点映射在肺纤维化疾病靶点的PPI背景网络上,提取黄芩苷治疗肺纤维化的预测靶点,进一步将黄芩苷治疗肺纤维化的预测靶点在STRING数据建立PPI网络[32],选择具有高置信度的PPI进一步研究(low confidence:score<0.4;medium:0.4~0.7;high:>0.7)。

1.4 拓扑分析与富集分析 1)拓扑分析:在Cytoscape软件对获取的黄芩苷治疗肺纤维化的相关靶点,计算3个拓扑性质“Degree”“Closeness Centrality”和“Betweenness Centrality,选取3个指标均大于中位数的靶点[33],筛选出具有拓扑重要性的“Hub”节点,定义为黄芩苷治疗肺纤维化的核心靶点。2)富集分析:在DAVID(https://david.ncifcrf.gov/)[34]数据库进行富集分析,包括生物过程(BP)、细胞成分(CC)、分子功能(MF)及作用通路。选取P<0.05的分析结果,定义为黄芩苷治疗肺纤维化的相关作用通路,及生物过程(BP)、细胞成分(CC)、分子功能(MF);选取P<0.01,FDR<1的分析结果,定义为黄芩苷治疗肺纤维化的核心作用通路,及生物过程(BP)、细胞成分(CC)、分子功能(MF)。基于收集获得的黄芩苷治疗肺纤维化的预测靶点,在KEGG数据库[35]搜索并建立核心通路的路线图,标注通路内的预测作用靶点。

1.5 黄芩苷治疗肺纤维化“靶点-通路”网络建立 基于收集获得的黄芩苷治疗肺纤维化的预测靶点,及DAVID数据库进行通路富集分析的黄芩苷治疗肺纤维化的核心通路,在Cytoscape软件建立黄芩苷治疗肺纤维化的“靶点-通路”网络。

2 结果

2.1 黄芩苷成药性检验 在TCMSP收集了黄芩苷(PubChem CID:64982)的ADME数据从而测定黄芩苷的潜在药物性质,如人OB、DL等,包括MW=446.39,OB(%)=40.12,DL=0.75,BBB=-1.74,黄芩苷的DL计算为0.75,表明黄芩苷与已知药物相似,此外黄芩苷MW<500 da,alogp<5,DL>0.18,OB>30%,BBB>0.3。

2.2 黄芩苷及肺纤维化靶点数据集建立及基因映射 1)黄芩苷靶点收集及PPI网络建立:基于在NCBI数据库及Pharmmapper数据库收集的黄芩苷靶点,删除重复靶点后,共收集获得了黄芩苷的332个不重复的潜在人类蛋白质靶点,这些靶点来自7 302个药效团模型。在STRING数据库建立黄芩苷的PPI网络,获得了一个332个节点、1 678条边的PPI网络(Low Confidence:score<0.4),如图2。2)肺纤维化靶点收集及PPI网络建立:在Disease Gene Network和DrugBank数据库共收集获得了肺纤维化的431个预测靶点。在STRING数据库建立肺纤维化的PPI网络,获得了一个431个节点、6 216条边的PPI网络(Low Confidence:score<0.4)。见图3。3)基因映射:在Cytoscape软件中,将黄芩苷332个预测靶点映射在以肺纤维化PPI网络为背景的网络上。见图4。获得了黄芩苷治疗肺纤维化的45个预测靶点。

2.3 黃芩苷治疗肺纤维化预测靶点的PPI网络建立 基于收集获得的45个黄芩苷治疗肺纤维化的预测靶点,建立PPI网络获得了1个45个节点、430条边的PPI网络,选择高置信度PPI获得了1个45个节点、191条边的PPI网络。见图5。

2.4 黄芩苷治疗肺纤维化预测靶点拓扑分析、富集分析结果及“靶点-通路”网络建立 对收集获得的黄芩苷治疗肺纤维化的45个靶点进行拓扑分析,“Degree”中位数为14,“Closeness Centrality”中位数为0.622 641 51,“Betweenness Centrality”中位数为0.002 303 49,其中“Degree”“Closeness Centrality”和“Betweenness Centrality”均大于中位数的具有重要拓扑意义的节点共21个,即为“Hub”节点,为黄芩苷治疗肺纤维化的核心靶点。对收集获得的黄芩苷治疗肺纤维化的45个靶点进行富集分析,P<0.05的富集分析结果,包括145个生物过程(BP),16个细胞成分(CC),26个分子功能(MF),21个相关作用通路。其中P<0.01,FDR<0.01的富集分析结果,包括20个生物过程(BP),4个细胞成分(CC),4个分子功能(MF),及3个核心作用通路。基于富集分析结果,建立了黄芩苷治疗肺纤维化的“靶点-通路”网络图。见图6。基于在KEGG建立的3个核心作用通路的可视化通路网络图,建立黄芩苷治疗肺纤维化的可视化通路网络图。见图7。

3 讨论

肺纤维化是一种进行性、不可治愈的间质性肺病[36],目前治疗肺纤维化的方法很少。传统中草药在肺纤维化治疗中具有显著的疗效优势,然而天然中草药物多靶点、多途径的药效、方效特点阻碍了对其作用机制的深入研究,网络药理学提供了一种在系统水平上阐释黄芩苷生物学机制的研究方法。

首先根据Lipinski规则和ADME参数验证了黄芩苷良好的成药性。在NCBI、TCMSP、Pharmmapper、DiseaseGene Network、DrugBank数据库,分别获得了黄芩苷的332个靶点及肺纤维化的431个靶点。研究进一步通过建立PPI网络及基因映射、拓扑分析,获得了黄芩苷治疗肺纤维化的45个预测靶点及21个具有拓扑重要性的靶点。富集分析结果表明,黄芩苷治疗急性牙周炎主要围绕3条核心作用通路,涉及的20个生物过程(BP),4个细胞成分(CC),4个分子功能(MF)。

目前已有的研究表明,黄芩苷具有显著的抗凋亡、抗氧化和抗炎作用[37-38],研究显示黄芩苷治疗肺纤维化可以通过作用于与炎性反应密切相关通路TNF signaling pathway、MAPK signaling pathway、Toll-like receptor signaling pathway的上游启动靶点如TNF、EGF、IL1等[39-40],从而介导与PI3K-Akt signaling pathway、NOD-like receptor signaling pathway、VEGF signaling pathway等多条通路间的复杂交互作用,如Luo L等[41]研究表明NOD-like receptor signaling pathway与MAPK signaling pathway的交互作用在PKC的激活[42]、诱导型一氧化氮的合成[43]、炎性反应升高[44]中均具有重要作用。而“Hub”节点IL6、IL1β、TNF等又构成了这些信号通路复杂交互作用形成的下游组分,其中IL6、IL1β、TNF均是调控介导炎性反应的炎性反应因子释放的重要靶点[45]。此外还可以作用于PI3K-Akt signaling pathway的“Hub”节点AKT从而调节下游包括凋亡、细胞周期、细胞增殖等多种生物过程[46]。

有趣的是,研究显示黄芩苷治疗肺纤维化还涉及了胶原蛋白分解代谢及平滑肌细胞增殖过程[47-49],这在成纤维细胞向肌成纤维细胞的分化过程中具有重要的作用,研究表明靶向肌成纤维细胞分化的药物是肺纤维化重要的潜在治疗方法[50],“Hub”节点TGF-β1则是调节肌成纤维细胞分化最重要靶点之一[51],如肌成纤维细胞分化是由TGF-β1诱导的[52-54]。此外,TGF-β1诱导细胞外基质蛋白和收缩性平滑肌蛋白的产生,如α-SMA[55-56],基质蛋白的表达增加和肌成纤维细胞的收缩特性增强,导致肺纤维化患者进行性限制性肺病和弥漫性损伤,因此抑制这些细胞过程可以减轻肺纤维化的进展。

研究结果表明,黄芩苷通过多个靶点和信号通路及相关通路间的复杂交互作用调节炎性反应、凋亡及成纤维细胞分化等多个过程实现对肺纤维化的治疗。

参考文献

[1]Raghu G,Collard HR,Egan JJ,et al.An official ATS/ERS/JRS/ALAT statement:idiopathic pulmonary fibrosis:evidence-based guidelines for diagnosis and management[J].Am J Respir Crit Care Med,2011,183(6):788-824.

[2]Nalysnyk L,Cid-Ruzafa J,Rotella P,et al.Incidence and prevalence of idiopathic pulmonary fibrosis:review of the literature[J].Eur Respir Rev,2012,21(126):355-361.

[3]Stowasser S,Hallmann C.New guideline for idiopathic pulmonary fibrosis[J].Lancet,2015,386(10006):1823-1824.

[4]Samareh FM,Poursalehi HR,Sharififar F,et al.The effects of methanolic extract of Glycyrrhiza glabra on the prevention and treatment of bleomycin-induced pulmonary fibrosis in rat:experimental study[J].Drug Chem Toxicol,2019:1-7.(2019-10-16).https://doi.org/10.1080/01480545.2019.1606232.

[5]Song JW,Hong SB,Lim CM,et al.Acute exacerbation of idiopathic pulmonary fibrosis:incidence,risk factors and outcome[J].Eur Respir J,2011,37(2):356-363.

[6]White ES,Lazar MH,Thannickal VJ.Pathogenetic mechanisms in usual interstitial pneumonia/idiopathic pulmonary fibrosis[J].J Pathol,2003,201(3):343-354.

[7]Vigeland CL,Hughes AH,Horton MR.Etiology and treatment of cough in idiopathic pulmonary fibrosis[J].Respir Med,2017,123:98-104.

[8]陳龙飞,李亚,刘冠汝,等.中药复方治疗特发性肺纤维化的研究进展[J].中国中医药现代远程教育,2019,17(9):126-128.

[9]闫玉琴,贾琦,苏惠萍.中医对肺纤维化病因病机的探讨[J].西部中医药,2018,31(12):23-25.

[10]耿青霞,赵宏照,李丽娜.肺络与特发性肺纤维化病机探讨[J].山东中医杂志,2017,36(5):361-363.

[11]刘妍彤,吕晓东,庞立健,等.通络补络法扭转特发性肺纤维化肺虚络瘀病机的现代医学基础[J].中医杂志,2017,58(16):1381-1384.

[12]中华中医药学会肺系病专业委员会.弥漫性间质性肺疾病的中医证候诊断标准(2012版)[J].中医杂志,2012,53(13):1163-1165.

[13]盛丽,姚岚,王莉,等.沙参水蛭黄芩人参对博莱霉素小鼠肺纤维化的影响[J].中医药学刊,2006,24(6):1000-1002.

[14]闫玉琴,贾琦,苏惠萍.中医对肺纤维化病因病机的探讨[J].西部中医药,2018,31(12):23-25.

[15]Xu T,Ma C,Fan S,et al.Corrigendum to “Systematic Understanding of the Mechanism of Baicalin against Ischemic Stroke through a Network Pharmacology Approach”[J].Evid Based Complement Alternat Med,2019,2019:4520704.

[16]刘建辉.黄芩苷对实验性大鼠肺纤维化的影响及机制初探[D].石家庄:河北医科大学,2004.

[17]贾慧,陈晓玲,陈超,等.黄芩苷防止肺纤维化大鼠肺内结缔组织生长因子的上调[J].生理学报,2010,62(6):535-540.

[18]Wang X,Yu S,Jia Q,et al.NiaoDuQing granules relieve chronic kidney disease symptoms by decreasing renal fibrosis and anemia[J].Oncotarget,2017,8(34):55920-55937.

[19]Wang S,Wang H,Lu Y.Tianfoshen oral liquid:a CFDA approved clinical traditional Chinese medicine,normalizes major cellular pathways disordered during colorectal carcinogenesis[J].Oncotarget,2017,8(9):14549-14569.

[20]Cao YF,Wang SF,Li X,et al.The anticancer mechanism investigation of Tanshinone IIA by pharmacological clustering in protein network[J].BMC Syst Biol,2018,12(1):90.

[21]Chen SJ,Cui MC.Systematic Understanding of the Mechanism of Salvianolic Acid A via Computational Target Fishing[J].Molecules,2017,22(4):644-654.

[22]Terstappen GC,Schlüpen C,Raggiaschi R,et al.Target deconvolution strategies in drug discovery[J].Nat Rev Drug Discov,2007,6(11):891-903.

[23]Zhang GB,Li QY,Chen QL,et al.Network pharmacology:a new approach for chinese herbal medicine research[J].Evid Based Complement Alternat Med,2013,2013:621423.

[24]Zeng L,Yang K.Exploring the pharmacological mechanism of Yanghe Decoction on HER2-positive breast cancer by a network pharmacology approach[J].J Ethnopharmacol,2017,199:68-85.

[25]Hopkins AL.Network pharmacology:the next paradigm in drug discovery[J].Nat Chem Biol,2008,4(11):682-90.

[26]Wang Y,Xiao J,Suzek TO,et al.PubChem:a public information system for analyzing bioactivities of small molecules[J].Nucleic Acids Res,2009,37(Web Server issue):W623-W633.

[27]Irwin JJ,Sterling T,Mysinger MM,et al.ZINC:a free tool to discover chemistry for biology[J].J Chem Inf Model,2012,52(7):1757-1768.

[28]Ru J,Li P,Wang J,et al.TCMSP:a database of systems pharmacology for drug discovery from herbal medicines[J].J Cheminform,2014,6:13.

[29]Wang X,Shen Y,Wang S,et al.PharmMapper 2017 update:a web server for potential drug target identification with a comprehensive target pharmacophore database[J].Nucleic Acids Res,2017,45(W1):W356-W360.

[30]Piero J,Bravo à,Queralt-Rosinach N,et al.DisGeNET:a comprehensive platform integrating information on human disease-associated genes and variants[J].Nucleic Acids Res,2017,45(D1):D833-D839.

[31]Wishart DS,Feunang YD,Guo AC,et al.DrugBank 5.0:a major update to the DrugBank database for 2018[J].Nucleic Acids Res,2018,46(D1):D1074-D1082.

[32]Szklarczyk D,Gable AL,Lyon D,et al.STRING v11:protein-protein association networks with increased coverage,supporting functional discovery in genome-wide experimental datasets[J].Nucleic Acids Res,2019,47(D1):D607-D613.

[33]Liu P,Duan JA,Bai G,et al.Network pharmacology study on major active compounds of siwu decoction analogous formulae for treating primary dysmenorrhea of gynecology blood stasis syndrome[J].China Journal of Chinese Materia Medica,2014,39(1):113-120.

[34]Dennis G,Sherman BT,Hosack DA,et al.DAVID:Database for Annotation,Visualization,and Integrated Discovery[J].Genome Biol,2003,4(5):P3.

[35]Kanehisa M,Goto S,Furumichi M,et al.KEGG for representation and analysis of molecular networks involving diseases and drugs[J].Nucleic Acids Res,2010,38(Database issue):D355-D360.

[36]Brett Ley,Harold R Collard,Talmadge E King.Clinical course and prediction of survival in idiopathic pulmonary fibrosis[J].American journal of respiratory and critical care medicine,2011,183(4):431-440.

[37]Qin Y,Hu W,Yang Y,et al.Neuroprotective Effect of DAHP via Antiapoptosis in Cerebral Ischemia[J].Behav Neurol,2018,2018:5050469.

[38]Xu M,Chen X,Gu Y,et al.Baicalin can scavenge peroxynitrite and ameliorate endogenous peroxynitrite-mediated neurotoxicity in cerebral ischemia-reperfusion injury[J].J Ethnopharmacol,2013,150(1):116-124.

[39]Hu Z,Li H,Xie R,et al.Genomic variant in porcine TNFRSF1A gene and its effects on TNF signaling pathway in vitro[J].Gene,2019,700:105-109.

[40]Alper B,Erdogan B,Erdogan M,et al.Associations of Trauma Severity with Mean Platelet Volume and Levels of Systemic Inflammatory Markers(IL1β,IL6,TNFα,and CRP)[J].Mediators Inflamm,2016,2016:9894716.

[41]Luo L,Zhou WH,Cai JJ,et al.Gene Expression Profiling Identifies Downregulation of the Neurotrophin-MAPK Signaling Pathway in Female Diabetic Peripheral Neuropathy Patients[J].J Diabetes Res,2017,2017:8103904.

[42] Obrosova I G.Diabetes and the peripheral nerve[J].Biochimica et Biophysica Acta,2009,1792(10):931-940.

[43] Vareniuk I,Pavlov I.A,Obrosova I.G.Inducible nitric oxide synthase gene deficiency counteracts multiple manifestations of peripheral neuropathy in a streptozotocin-induced mouse model of diabetes[J].Diabetologia,2008,51(11):2126-2133.

[44]Cameron NE,Cotter MA.Pro-inflammatory mechanisms in diabetic neuropathy:focus on the nuclear factor kappa B pathway[J].Curr Drug Targets,2008,9(1):60-67.

[45]Carty CL,Heagerty P,Heckbert SR,et al.Association of genetic variation in serum amyloid-A with cardiovascular disease and interactions with IL6,IL1RN,IL1beta and TNF genes in the Cardiovascular Health Study[J].J Atheroscler Thromb,2009,16(4):419-430.

[46]Qiu T,Tian Y,Gao Y,et al.PTEN loss regulates alveolar epithelial cell senescence in pulmonary fibrosis depending on Akt activation[J].Aging(Albany NY),2019,11(18):7492-7509.

[47]Hinz B,Phan SH,Thannickal VJ,et al.The myofibroblast:one function,multiple origins[J].Am J Pathol,2007,170(6):1807-1816.

[48]Gabbiani G.The myofibroblast in wound healing and fibrocontractive diseases[J].J Pathol,2003,200(4):500-503.

[49]Baur PS,Parks DH.The myofibroblast anchoring strand--the fibronectin connection in wound healing and the possible loci of collagen fibril assembly[J].J Trauma,1983,23(10):853-862.

[50]Judge JL,Nagel DJ,Owens KM,et al.Prevention and treatment of bleomycin-induced pulmonary fibrosis with the lactate dehydrogenase inhibitor gossypol[J].PLoS One,2018,13(5):e0197936.

[51]McMahon GA,Dignam JD,Gentry LE.Structural characterization of the latent complex between transforming growth factor beta 1 and beta 1-latency-associated peptide[J].Biochem J,1996,313(Pt 1):343-351.

[52]J Gauldie,P Bonniaud,P Sime,et al.TGF-beta,Smad3 and the process of progressive fibrosis[J].biochem soc trans,2007,35(4):661-664.

[53]Kottmann RM,Hogan CM,Phipps RP,et al.Determinants of initiation and progression of idiopathic pulmonary fibrosis[J].Respirology,2009,14(7):917-933.

[54]Sime PJ,Xing Z,Graham FL,et al.Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung[J].J Clin Invest,1997,100(4):768-776.

[55]Burgess HA,Daugherty LE,Thatcher TH,et al.PPARgamma agonists inhibit TGF-beta induced pulmonary myofibroblast differentiation and collagen production:implications for therapy of lung fibrosis[J].Am J Physiol Lung Cell Mol Physiol,2005,288(6):L1146-L1153.

[56]Darby IA,Hewitson TD.Fibroblast differentiation in wound healing and fibrosis[J].Int Rev Cytol,2007,257:143-179.

猜你喜欢

肺纤维化性反应黄芩
说说令人痛苦的肺纤维化
黄芩的药理分析及临床应用探讨
黄芩的药理分析及临床应用探讨
三七总皂苷对小鼠巨噬细胞炎性反应的影响
黄芩苷抗肿瘤作用的研究进展
男人像灯泡 女人像熨斗
黄芩悬浮细胞培养过程中黄芩苷含量与POD活性的相关性分析
肺纤维化的单昧中药治疗概况
让肺远离纤维化
肺纤维化:疤痕累累的肺组织