APP下载

平面向量模块的教学要点

2020-06-13陈晓霞

高中数理化 2020年2期
关键词:交会代数运算

陈晓霞

向量是高中数学的重要考点,纵观近两年高考全国卷,对平面向量的考查除了在客观题中直接考查外,主要体现在将向量作为工具与其他知识进行交会考查.直接考查主要涉及向量的概念、运算等.交会考查主要体现在向量与三角函数、解三角形、解析几何等的交会.

1 把握向量的概念

高考中对向量概念的考查主要涉及向量的模、夹角、共线、垂直等.问题求解中要准确把握相关概念,注意特殊向量、特殊情况.

A. 充分而不必要条件

B. 必要而不充分条件

C. 充分必要条件

D. 既不充分也不必要条件

2 熟练掌握向量的运算

向量的运算包括几何法与代数法两种,几何法主要借助向量加法的平行四边形法则、减法的三角形法则;代数运算是指向量的坐标运算.

图1

3 处理好向量与三角形的交会

求解平面向量与三角形的综合问题时,要充分利用好向量运算法则以及解三角形的相关定理,仔细观察条件的结构特征,寻找知识间的联系,合理整合相关知识,恰当选择突破口.

由正弦定理得

将两式相加得2R·sin (A+B)=2,2R·sinC=2=c.

方法2 将题目中的两式相加得

4 明确向量与解析几何的关系

向量与解析几何的交会是高考中的重点考查内容,处理解析几何问题的核心方法是代数法,即将几何问题代数化,而向量的坐标运算就是代数化的有力工具.利用向量可有效处理解析几何问题中的三点共线、平行、垂直、夹角等有关问题.

(1)当l与x轴垂直时,求AM的方程;

(2)设O为坐标原点,证明:∠OMA=∠OMB.

图2

(2)设AM:x=ny+2,与椭圆C联立整理得(2+n2)y2+4ny+2=0,如图2,设AM与C的交点为D,

猜你喜欢

交会代数运算
重视运算与推理,解决数列求和题
两个有趣的无穷长代数不等式链
Hopf代数的二重Ore扩张
什么是代数几何
有趣的运算
2019年,水交会来了!
“整式的乘法与因式分解”知识归纳
立方体星交会对接和空间飞行演示
一个非平凡的Calabi-Yau DG代数
一切以交易的名义——首届黑马创交会揭秘