促甲状腺激素受体的分子结构与自身免疫疾病的相关研究进展
2020-05-06章晓芳朱麒钱
章晓芳 朱麒钱
[摘要] Graves'病是一种常见的器官特异性自身免疫性疾病,与其他自身免疫性疾病引起器官损伤不同,它表现为器官的高功能状态,临床特征为甲状腺功能亢进。在Graves病中,甲状腺刺激性自身抗体模仿TSH的作用,刺激甲状腺细胞产生及分泌过多的甲状腺激素。目标抗原TSHR的分子结构是导致甲状腺刺激性自身抗体产生的主要原因。编码TSHR的基因位于人14号染色体长臂3区1带,翻译后完整的TSHR要经过一系列加工修饰,如糖基化,硫酸盐化,蛋白棕榈化及裂解和脱落等。近十年来我们对TSHR受体分子的结构和功能特点及其与Graves病发病相关性等方面的研究有了更大突破。本文就此领域做一综述。
[关键词] 促甲状腺激素受体;自身抗原;甲状腺;Graves'病
[中图分类号] R581.1 [文献标识码] A [文章编号] 1673-9701(2020)05-0183-05
Advances in research on molecular structure of thyroid stimulating hormone receptor and autoimmune diseases
ZHANG Xiaofang ZHU Qiqian
Department of Endocrinology and Metabolism, Shaoxing People′s Hospital in Zhejiang Province, Shaoxing 312000, China
[Abstract] Graves' disease is a common organ-specific autoimmune disease. Different from organ damage caused by other autoimmune diseases, it is characterized by a high functional state of the organ and its clinical features are hyperthyroidism. In Graves' disease, thyroid-stimulating autoantibodies mimic the effect of TSH, stimulating thyroid cells to produce and secrete excess thyroid hormone. The molecular structure of the target antigen TSHR is the main cause of thyroid stimulating autoantibodies. The gene encoding TSHR is located in the long arm 3 region 1 region of human chromosome 14, and the complete TSHR after translation is subjected to a series of processing modifications such as glycosylation, sulfation, protein palmization, cleavage and shedding. In the past ten years, we have made greater breakthroughs in the study of the structural and functional characteristics of TSHR receptor molecules and their correlation with the pathogenesis of Graves' disease. This article provides an overview of this area.
[Key words] Thyroid stimulating hormone receptor; Autoantigen; Thyroid; Graves' disease
促甲狀腺激素受体(Thyroid stimulating hormone receptor,TSHR),与其同源的促黄体激素/绒毛膜促性腺激素受体和促滤泡素受体均属于糖蛋白受体的一类,同时也是类视紫质的G蛋白耦联受体(G protein-coupled receptors,GPcRs)大家族的成员(氨基酸水平上约45%的一致性)[1,2]。TSHR主要在甲状腺滤泡细胞表达,生理情况下与促甲状腺激素(Thyroid stimulating hormone,TSH)结合后激活蛋白激酶A(Protein kinase A,PKA)和磷脂酶C(Phospholipases C,PLc)信号转导系统,调节甲状腺的生长和分化,促进甲状腺激素的合成和释放[3]。TSHR的表达还可以见于其他细胞或者组织中,包括脂肪细胞、成纤维细胞、成骨细胞和破骨细胞、骨髓细胞和心肌细胞等,且早期即表达于胚胎干细胞中。在自身免疫性甲状腺疾病中,尤其是毒性弥漫性甲状腺肿(Graves' disease,GD),TSHR可以作为一种自身抗原,结合甲状腺刺激性抗体(Thyroid stimulating antibody,TSAb),产生类似TSH的刺激性反应,最终导致甲状腺自我免疫耐受丧失,产生并释放过多的甲状腺激素,临床上出现心悸、多汗、纳亢等甲状腺机能亢进的表现。因此,研究促甲状腺激素受体结构,阐明自身抗体和促甲状腺激素受体(TSHR)分子间的相互作用,对于理解Graves病这一普遍存在的器官特异性自身免疫性疾病的发病机制及指导临床诊断、治疗都具有深远意义。
1 TSHR基因的结构和表达
促甲状腺激素受体的编码基因位于人14号染色体长臂3区1带,长度跨约191.1 kb[4],其包含10个外显子,前9个和第10个的部分编码受体分子的胞外区,余下部分编码跨膜区和胞质内尾端[5,6]。但Kakinuma A等[7]发现TSHR基因应含12个外显子。30个非编码区内有三个聚腺苷酸化位点,可转录三条完整的TSHR mRNA,其中最长的一条可能是最主要的转录,其mRNA长4.5 kb,编码一个87 kd,含764个氨基酸的多肽链[7]。
2 TSHR的翻译后修饰
TSHR和其他G蛋白耦联受体一样,经历一些不同类型的翻译后修饰,一些修饰在内质网-高尔基体内完成,另一些则发生在细胞表面。除了在内质网-高尔基体内进行外功能区的糖基化修饰外,TSHR也经历了蛋白水解过程,生成一个断裂的区域,这是独立于糖蛋白家族的其他成员而特有的。已研究发现,TSHR在甲状腺细胞内的二聚体和多聚体化是另外一种重要的修饰。这些翻译后修饰导致受体不均质地分布在细胞表面。因此,TSHR的半衰期及与TSH的亲和力也在改变,激活和发射信号的能力也随之改变[8,9]。
2.1 糖基化和硫酸盐化
TSHR庞大的细胞外区域有6个潜在的糖基化位点,结合的碳水化合物约占整个分子质量的30%~40%。因此,在甲状腺细胞和TSHR基因转染的细胞中,全长的TSHR显示为一条100~120 KDa的蛋白质。糖基化可能在TSHR分子折叠和细胞表面表达有一定的作用,而与TSH结合无密切关系[10]。而铰链区氨基酸残基的硫酸盐化在TSH与受体结合过程中有关键性作用。在铰链区末梢的模体YDY中第二个酪氨酸残基的硫酸盐化与配体高亲和力结合受体紧密相关[11]。因此,某些关键的氨基酸残基的硫酸盐化可能是维持受体正确构象所必需的。
2.2 蛋白棕榈化和二硫键的形成
除了蛋白质酰化,棕榈化是另一种将一些受体锚定在细胞膜脂质双分子结构(脂筏)的蛋白修饰。TSH受体胞内区的第699位半胱氨酸残基(Cys699)是棕榈化的。该位置的突变导致正常的有功能的受体运输到细胞表面的过程延迟[12]。
TSHR蛋白质前体在进行分子的加工中断裂一个含21个氨基酸的信号肽[6],形成成熟的蛋白质分子。成熟的人TSHR分子含744个氨基酸残基,可断裂成α、β两个亚基,之间(序列约从氨基酸残基310至370)脫落一个约50个氨基酸残基的C肽片段[13]。断裂的TSHR分子中富亮氨酸区的C端半胱氨酸丛283~301和氨基酸残基序列390~408之间通过二硫键结合后,连接了α、β亚基。随后,这两个亚基间的二硫键可被蛋白质二硫键异构酶破坏[14],β亚基进一步向胞膜退化降解[15]。α亚基(氨基酸残基22~260片段)脱离束缚在胞膜的受体,很可能从表面脱落[16]。这就解释了在正常的甲状腺细胞膜制剂中发现β亚基的数量大大超过α亚基(其数量比达3:1)的现象[17,18]。断裂的病理生理学联系还很不清楚。早先有研究者在TSHR基因转染的中国仓鼠卵巢细胞(Chinese hamster ovary cell,CHO)中发现断裂的形式可以更好地结合Gsa,也提示了断裂可能和受体激动相关[19]。更有研究发现断裂后脱落的α亚基可能是产生致病的TSAb并促其免疫亲和力成熟的最初免疫原[20,21]。它包含的氨基酸残基序列或许应扩展为氨基酸残基22~289[22]。最新研究关注于α亚基的多聚体结构,其中三聚体空间构象而非单分子,或是GD发病的最关键的免疫原[22,23]。而TSH适当刺激能以时间和剂量依赖性的方式增强断裂[24,25]。但断裂不是配体激活受体所必需的,未断裂的TSHR结构仍能通过cAMP传递信号。TSHR胞外区和跨膜结构的第1胞外环之间连接结构的重新排布可能是独立于配体的受体激活机制[26]。需注意的是α亚基脱落现象只在体外的甲状腺细胞和转染细胞中被证实[14,16,27]。因缺乏有力的体内实验证实TSHRs的部分脱落,有关脱落的受体可能形成启动GD自身免疫应答的抗原池的假说仍需进一步证实[28]。
3 TSHR的分子结构,特点及功能联系
在A类G蛋白耦联受体家族中,同源的糖蛋白受体亚家族的一般拓扑结构是以一个庞大的胞外区为特征的,该结构包括:①N末端尾;②半胱氨酸盒-1(C-b1),含第一组相互作用的半胱氨酸;③富亮氨酸区;④铰链区。铰链区又可进一步细分为半胱氨酸盒-2(C-b2)、半胱氨酸盒-3(C-b3)和两者的链接区(C-bl 2/3)。此外,构成完整的TSH分子结构还包括其他两部分:由7个跨膜α-螺旋、3个胞外环与3个胞内环组成的跨膜区(Transmembrane domain,TMD)和C末端尾[5]。
3.1 胞外的N末端及半胱氨酸区
氨基酸残基22~56片段为不保守的TSHR N-末端区(1~21个为信号肽)。该区段35个氨基酸残基中含有整个TSHR胞外区11个半胱氨酸中的4个(Cys24、Cys29、Cys31 and Cys41),它们之间通过二硫键连接。该半胱氨酸丛对受体分子的正确折叠和细胞内的运输有重要作用[29]。其中第41位半胱氨酸残基(Cys41)是TSHR特有的,也是最关键的氨基酸残基。对氨基酸残基38~45片段进行详细的突变分析发现Cys41维持受体与TSH及自身抗体结合所必需的正确的三维空间结构。而且,它和胞外功能区中其他相邻的半胱氨酸残基通过二硫键相互作用,对产生TSH高亲和力起关键作用[29,30]。TSHR氨基酸残基23~43片段和层粘连蛋白γ1链中类似表皮生长因子的重复序列的第11个序列相似,说明这两种分子间存在相似的空间构象,故分子模拟可能是GD的其中一种发病机制[31]。
3.2 富亮氨酸区(Leucine-rich domain,LRD)
TSHR受体分子的胞外区负责与TSH的识别和结合。其胞外功能区含398个氨基酸残基,松散地组织成9个模体。这些模体富含亮氨酸,表明该区域与蛋白质和蛋白质之间的相互作用密切相关[32]。每个模体类似一个马蹄形结构,是由约20~25个氨基酸残基形成的一个β折叠和一个α螺旋[33]。β折叠构成其凹面,是TSH的主要结合部位[5]。当受体激动后,跨膜螺旋连接的胞内环和G蛋白相互作用,而胞外环辅助受体结构和活性[34,35]。在糖蛋白受体中,马蹄结构内部由7个氨基酸残基组成,即X1X2LX3LX4X5。模体X2LX3L为典型的β折叠,而X1和X4、X5是邻近环状结构的构成成分[32,33,36]。位于富亮氨酸区的第五个模体的X3和X5及第七个模体的X5,这三个游离的氨基酸(对应第157位谷氨酸残基、第160位天冬氨酸残基、第209位赖氨酸残基)已被证实其在激素结合活性和专一性中的重要作用[32,37,38]。目前已研究发现人TSHR分子的富亮氨酸区分别与TSHR刺激性的人单克隆自身抗体M22[39]、TSHR阻断性的人单克隆自身抗体K1-70[40]形成复合物的晶体结构。
3.3 TSHR的铰链区
铰链区是链接富亮氨酸区和跨膜区之间的部分。TSHR的铰链区是糖蛋白受体家族的铰链区中最大之一,其长度约含141个氨基酸残基(序列约从氨基酸残基277至418),但目前尚不能给予一个明确的定位。既往认为铰链区只是结合配体的亮氨酸区和传导信号的跨膜区两者之间的钝性桥梁。近期研究通过對TSHR 基因剪辑和重组表达,发现铰链区氨基酸片段的渐进性缺失可使TSH刺激环磷酸腺苷的敏感性降低[41,42],提示铰链区存在一定的TSH结合表位。另外,一些TSHR的中性抗体也能和铰链区结合[43,44]。
3.4 TSHR跨膜结构(TMD)和胞质内C尾端
同其他七跨膜螺旋G蛋白耦联受体相似,TSH受体的β亚基有七个疏水区形成的跨膜结构和一个胞质内C末端。当受体激动后,跨膜区内的3个胞内环和G蛋白相互作用,而胞外环辅助受体结构和活性。TSHR可以结合所有的G蛋白家族,生物作用主要与Gs蛋白激活腺苷酸环化酶有关。第二信使cAMP瀑布式的应答,调节生长和功能分化如甲状腺激素分泌,捕捉碘化物等。在甲状腺体内,存在另一条通路即配体结合TSHR耦联Gq/11蛋白,激活磷脂酶C,产生Ca2+和甘油二酯,刺激甲状腺激素的合成和碘化作用[45]。TSHR跨膜结构的空间构象对于维持受体活性起关键作用。研究表明第六跨膜螺旋的低位区及第3胞内环有一个突变热区,这些部位的突变可产生独立于配体的刺激性反应[46]。如位于第六跨膜螺旋的第633位氨基酸突变是常见的具活性的TSHR天然突变。分子建模提示第633位天冬氨酸残基(Asp633)对于信号传导及第六和第七跨膜螺旋间建立特殊的联系有关键作用,这种联系可使TSHR受体构型保持无活性的状态[47]。连接第3胞内环和第六跨膜螺旋的第619位天冬氨酸残基与形成一种螺旋帽的结构密切相关,提示胞内螺旋和胞外螺旋的相互作用共同维持无活性的TSHR构型[47]。
4 结语
Graves'病是一种常见的自身免疫紊乱性疾病。自身抗体结合TSHR后,模拟TSH作用分泌过多的甲状腺激素,导致甲状腺功能亢进。致病抗原TSHR是一种G蛋白耦联受体,结构包括N末端、富亮氨酸重复区、铰链区和跨膜区及胞质内C末端。TSHR经翻译后,经历一系列修饰加工,这些修饰与分子的运输、胞膜定位及空间构象形成和信号传导等密切相关。TSHR与其他糖蛋白受体的区别之一是存在分子内断裂现象,脱落的α亚基可能是最初的免疫原,并可增强免疫应答。近年来研究并逐渐阐明TSHR分子结构的特点,特别是各结构组分的相互作用方式可进一步理解自身抗体结合和激活受体的作用机制,从而为Graves甲亢的治疗提供新的线索。
[参考文献]
[1] Caltabiano G,Campillo M,De Leener A,et al. The specificity of binding of glycoprotein hormones to their receptors [J]. Cell Mol Life Sci,2008,65(16):2484-2492.
[2] Vassart G,Costagliola S. G protein-coupled receptors:Mutations and endocrine diseases[J]. Nat Rev Endocrinol,2011,7(6):362-372.
[3] Zaballos MA,Garcia B,Santisteban P. Gbetagamma dimers released in response to thyrotropin activate phosphoinositide 3-kinase and regulate gene expression in thyroid cells[J]. Mol Endocrinol,2008,22(5):1183-1199.
[4] Rousseau-Merck MF,Misrahi M,Loosfelt H,et al. Assignment of the human thyroid stimulating hormone receptor(TSHR)gene to chromosome 14q31[J]. Genomics,1990,8(2):233-236.
[5] Szkudlinski MW,Fremont V,Ronin C,et al. Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships[J]. Physiol Rev,2002,82(2):473-502.
[6] Kohn LD,Shimura H,Shimura Y,et al. The thyrotropin receptor[J]. Vitam Horm,1995,50:287-384.
[7] Kakinuma A,Nagayama Y. Multiple messenger ribonucleic acid transcripts and revised gene organization of the human TSH receptor[J]. Endocr J,2002,49(2):175-180.
[8] Ando T,Latif R,Davies TF. Antibody-induced modulation of TSH receptor posttranslational processing[J]. J Endocrinol,2007,195(1):179-186.
[9] Kursawe R,Paschke R. Modulation of TSHR signaling by posttranslational modifications[J]. Trends Endocrinol Metab,2007,18(5):199-207.
[10] Nagayama Y,Nishihara E,Namba H,et al. Identification of the sites of asparagine-linked glycosylation on the human thyrotropin receptor and studies on their role in receptor function and expression[J]. J Pharmacol Exp Ther,2000,295(1):404-409.
[11] Bonomi M,Busnelli M,Persani L,et al. Structural differences in the hinge region of the glycoprotein hormone receptors:Evidence from the sulfated tyrosine residues[J]. Mol Endocrinol,2006,20(12):3351-3363.
[12] Kosugi S,Mori T. Cysteine-699,a possible palmitoylation site of the thyrotropin receptor,is not crucial for cAMP or phosphoinositide signaling but is necessary for full surface expression[J]. Biochem Biophys Res Commun,1996,221(3):636-640.
[13] Chazenbalk GD,Tanaka K,Nagayama Y,et al. Evidence that the thyrotropin receptor ectodomain contains not one,but two,cleavage sites[J]. Endocrinology,1997,138(7):2893-2899.
[14] Couet J,de Bernard S,Loosfelt H,et al. Cell surface protein disulfide-isomerase is involved in the shedding of human thyrotropin receptor ectodomain[J]. Biochemistry,1996,35(47):14800-14805.
[15] Tanaka K,Chazenbalk GD,McLachlan SM,et al. Subunit structure of thyrotropin receptors expressed on the cell surface[J]. J Biol Chem,1999,274(48):33979-33984.
[16] Couet J,Sar S,Jolivet A,et al. Shedding of human thyrotropin receptor ectodomain Involvement of a matrix metalloprotease[J]. J Biol Chem,1996,271(8):4545-4552.
[17] Loosfelt H,Pichon C,Jolivet A,et al. Two-subunit structure of the human thyrotropin receptor[J]. Proc Natl Acad Sci USA,1992,89(9):3765-3769.
[18] Misrahi M,Ghinea N,Sar S,et al. Processing of the precursors of the human thyroid-stimulating hormone receptor in various eukaryotic cells(human thyrocytes,transfected L cells and baculovirus-infected insect cells)[J]. Eur J Biochem,1994,222(2):711-719.
[19] Ciullo I,Latif R,Graves P,et al. Functional assessment of the thyrotropin receptor-beta subunit[J]. Endocrinology,2003,144(7):3176-3181.
[20] Chen CR,Pichurin P,Nagayama Y,et al. The thyrotropin receptor autoantigen in Graves' disease is the culprit as well as the victim[J]. J Clin Invest,2003,111(12):1897-1904.
[21] Mizutori Y,Chen CR,Latrofa F,et al. Evidence that shed TSH receptor A-subunits drive affinity maturation of autoantibodies causing Graves' disease[J]. J Clin Endocrinol Metab,2009,94(3):927-935.
[22] Chen CR,Hubbard PA,Salazar LM,et al. Crystal structure of a tSH receptor monoclonal antibody:Insight into graves' disease pathogenesis[J]. Mol Endocrinol,2015,29(1):99-107.
[23] Rapoport B,Aliesky HA,Chen CR,et al. Evidence that TSH receptor A-subunit multimers,not monomers,drive antibody affinity maturation in graves' disease[J]. J Clin Endocrinol Metab,2015,100(6):E871-875.
[24] Ando T,Latif R,Pritsker A,et al. A monoclonal thyroid-stimulating antibody[J]. J Clin Invest,2002,110(11):1667-1674.
[25] Latif R,Ando T,Davies TF. Monomerization as a prerequisite for intramolecular cleavage and shedding of the thyrotropin receptor[J]. Endocrinology,2004,145(12):5580-5588.
[26] Schaarschmidt J,Nagel MB,Huth S,et al. Rearrangement of the extracellular domain/extracellular loop 1 interface is critical for thyrotropin receptor activation[J]. J Biol Chem,2016,291(27):14095-14108.
[27] Nunez MR,Sanders J,Jeffreys J,et al. Analysis of the thyrotropin receptor-thyrotropin interaction by comparative modeling[J]. Thyroid,2004,14(12):991-1011.
[28] Vassart G,Bonomi M. A physiological role for the posttranslational cleavage of the thyrotropin receptor?[J]. Endocrinology,2004,145(1):1-3.
[29] Rapoport B,Chazenbalk GD,Jaume JC,et al. The thyrotropin(TSH)receptor:Interaction with TSH and autoantibodies[J]. Endocr Rev,1998,19(6):673-716.
[30] Wadsworth HL,Chazenbalk GD,Nagayama Y,et al. An insertion in the human thyrotropin receptor critical for high affinity hormone binding[J]. Science,1990,249(4975):1423-1425.
[31] Chen CR,Tanaka K,Chazenbalk GD,et al. A full biological response to autoantibodies in Graves' disease requires a disulfide-bond loop in the thyrotropin N-terminus homologous to a laminin EGF-like domain[J]. J Biol Chem,2001,276(18):14767-14772.
[32] Smits G,Campillo M,Govaerts C,et al. Glycoprotein hormone receptors:Determinants in leucine-rich repeats responsible for ligand specificity[J]. EMBO J,2003,22(11):2692-2703.
[33] Kajava AV,Vassart G,Wodak SJ. Modeling of the three dimensional structure of proteins with the typical leucine-rich repeats[J]. Structure,1995,3(9):867-877.
[34] Vlaeminck-Guillem V,Ho SC,Rodien P,et al. Activation of the cAMP pathway by the TSH receptor involves switching of the ectodomain from a tethered inverse agonist to an agonist[J]. Mol Endocrinol,2002,16(4):736-746.
[35] Neumann S,Claus M,Paschke R. Interactions between the extracellular domain and the extracellular loops as well as the 6th transmembrane domain are necessary for TSH receptor activation[J]. Eur J Endocrinol,2005,152(4):625-634.
[36] Kobe B,Kajava AV. The leucine-rich repeat as a protein recognition motif[J]. Curr Opin Struct Biol,2001,11(6):725-732.
[37] Bhowmick N,Huang J,Puett D,et al. Determination of residues important in hormone binding to the extracellular domain of the luteinizing hormone/chorionic gonadotropin receptor by site-directed mutagenesis and modelling[J]. Mol Endocrinol,1996,10(9):1147-1159.
[38] Sangkuhl K,Schulz A,Schultz G,et al. Structural requirements for mutational lutropin/choriogonadotropin receptor activation[J]. J Biol Chem,2002,277(49):47748-47755.
[39] Sanders J,Chirgadze DY,Sanders P,et al. Crystal structure of the TSH receptor in complex with a thyroid stimulating autoantibody[J]. Thyroid,2007,17(5):395-410.
[40] Sanders P,Young S,Sanders J,et al. Crystal structure of the TSH receptor TSHR bound to a blocking-type TSHR autoantibody[J]. J Mol Endocrinol,2011,46(2):81-99.
[41] Mizutori Y,Chen CR,McLachlan SM,et al. The thyrotropin receptor hinge region is not simply a scaffold for the leucine-rich domain but contributes to ligand binding and signal transduction[J]. Mol Endocrinol,2008,22(5):1171-1182.
[42] Mueller S,Kleinau G,Jaeschke H,et al. Extended hormone binding site of the human thyroid stimulating hormone receptor:Distinctive acidic residues in the hinge region are involved in bovine thyroid stimulating hormone binding and receptor activation[J]. J Biol Chem,2008,283(26):18048-18055.
[43] Morshed SA,Ando T,Latif R,et al. Neutral antibodies to the TSH receptor are present in Graves' disease and regulate selective signaling cascades[J]. Endocrinology,2010, 151(11):5537-5549.
[44] Sun S,Summachiwakij S,Schneck O,et al. Antigenic “Hot- Spots” on the TSH Receptor Hinge Region[J]. Front Endocrinol,2019,9:765.
[45] Graves PN,Davies TF. New insights into the thyroid-stimulating hormone receptor,the major antigen of Graves' disease[J]. Endocrinol Metab Clin North Am,2000, 29(2):267-286.
[46] Wonerow P,Neumann S,Gudermann T,et al. Thyrotropin receptor mutations as a tool to understand thyrotropin receptor action[J]. J Mol Med(Berl),2001,79(12):707-721.
[47] Schulz A,Bruns K,Henklein P,et al. Requirement of specific intrahelical interactions for stabilizing the inactive conformation of glycoprotein hormone receptors[J]. J Biol Chem,2000,275(48):37860-37869.
(收稿日期:2019-07-04)