APP下载

三维Cahn-Hilliard方程的整体适定性

2020-04-29刘彩凤

关键词:傅里叶变换方程

刘彩凤

摘要:主要研究三维Cahn-Hilliard 方程的Cauchy問题。首先,利用傅里叶变换求出其相对应线性方程的形式解并证明形式解的光滑性;然后,构造压缩映射,应用 Banach不动点定理证明其局部适定性;最后,通过连续性准则得到其在无任何小初值假设条件下的整体适定性。

关键词:Cahn-Hilliard 方程;傅里叶变换;Banach 不动点定理;连续性准则

中图分类号:O175.29

DOI:10.16152/j.cnki.xdxbzr.2020-06-009

Global well-posedness of the 3D Cahn-Hilliard equation

LIU Caifeng

(School of Mathematics, Northwest University, Xi′an  710127, China)

Abstract: In this paper,  the Cauchy problem of the three-dimensional Cahn-Hilliard equations has been studied. Firstly, the formal solution of the corresponding linear system is obtained by the Fourier transform method, and the smoothness of the formal solution is proved. Then, the local well-posedness is proved by constructing  the compression map and applying the Banach fixed point theorem.  Finally, the global well-posedness is demonstrated via the continuation criterion without assumption of small initial data in Sobolev spaces.

Key words: Cahn-Hilliard equation; Fourier transform; Banach fixed point theorem; continuation criterion

参考文献:

[1] CAHN J W,HILLIARD J E.Free energy of a nonuniform system.I. interfacial free energy[J].The Journal of Chemical Physics, 1958, 28(2): 258-267.

[2] COHEN D S, MURRAY J D. A generalized diffusion model for growth and dispersal in a population[J].J Math Biology, 1981, 12(2): 237-249.

[3] HAZEWINKEL M, KAASHOEK J F,LEYNSE B. Pattern Formation for a One Dimensional Evolution Equation Based on Thom′s River Basin Model[M].Disequilibrium and self-Organisation.Dordrecht:Springer Netherlands,1986,30:23-46.

[4] TAYLER A B.Mathematical Models in Applied Mechanics [M]. Oxford: Clarendon, 1986.

[5] ELLIOTT C M, ZHENG S M.On the Cahn-Hilliard equation[J]. Archive for Rational Mechanics and Analysis 1986, 96(4): 339-357.

[6] RACKE R, ZHENG S M. The Cahn-Hilliard equation with dynamic boundary conditions[J]. Advances in Differential Equations, 2003, 8(1): 8-83.

[7] PRSS J, RACKE R, ZHENG S M. Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions[J]. Annali Di Matematica Pura Ed Applicata, 2006, 185(4): 627-648.

[8] ZHENG S M, MILANI A. Exponential attractors and inertial manifolds for singular perturbations of the Cahn-Hilliard equations[J]. Nonlinear Analysis: Theory, Methods & Applications, 2004, 57(5/6): 843-877.

[9] CAFFARELLI  L A, MULER N E.An L∞ bound for solutions of the Cahn-Hilliard equation[J]. Archive for Rational Mechanics and Analysis, 1995, 133(2): 129-144.

[10]BRICMONT J, KUPIAINEN A, TASKINEN J.Stability of Cahn-Hilliard fronts[J]. Comm Pure Appl Math,1999, 52(7): 839-871.

[11]LIU S Q, WANG F, ZHAO H J.Global existence and asymptotics of solutions of the Cahn-Hilliard equation[J]. Journal of Differential Equations, 2007, 238(2): 426-469.

[12]DLOTKO T, SUN C Y. Dynamics of the modified viscous Cahn-Hilliard equation in Rn[J]. Topological Methods in Nonlinear Analysis, 2010, 35(2): 277-294.

[13]CHOLEWA J W,RODRIGUEZ-BERNAL A. On the Cahn-Hilliard equation in H1(RN)[J]. J Differential Equations, 2012, 253(12): 3678-3726.

[14]朱長江, 邓引斌. 偏微分方程教程[M]. 北京:科学出版社, 2005.

[15]李开泰,马逸尘,王立周.广义函数和Sobolev空间[M].西安:西安交通大学出版社, 2008.

[16]SIMON J. Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure [J]. Siam J Math Anal, 1990, 21(5):1093-1117.

[17]KLAINERMAN S, MAJDA A. Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids [J]. Communications on Pure and Applied Mathematics, 1981,34(4):481-524.

[18]LEONARDI S, MLEK J, NECAS J, et al. On axially symmetric flows in R3[J]. Z Anal Anwendungen, 1999, 18 (3):639-649.

[19]CHERRIER P, MILANI A.Linear and Quasi-linear Evolution Equations in Hilbert Spaces[M].Rhode lsland:American Mathematical Society, 2012.

[20]EVANS L C. Weak Convergence Methods for Nonlinear Partial Differential Equations[M]. Loyola University of Chicago: Conference Board of the Mathematical Sciences, 1988: 9-10.

[21]TARTAR L. An Introduction to Sobolev Spaces and Interpolation Spaces[M].Berlin,Heidelberg,New York:Springer,2007:10-11.

[22]LVAREZ-CAUDEVILLA P, GALAKTIONOV V A. Well-posedness of the Cauchy problem for a fourth-order thin film equation via regularization approaches[J]. Nonlinear Analysis:Theory,Methods & Applications, 2015, 121: 19-35.

(编 辑 张 欢)

猜你喜欢

傅里叶变换方程
方程的再认识
第2讲 “方程与不等式”复习精讲
方程(组)的由来
第2讲 “方程与不等式”复习精讲
圆的方程
傅里叶变换证明拉普拉斯变换的性质
《信号与系统》中傅里叶变换在OFDM移动通信系统中的应用
《数字信号处理》中存在的难点问题解析
关于一类发展方程求解方法的探讨
基于傅里叶变换和Gyrator变换的图像加密