亚热带土壤导水特征对钠盐溶液浓度的响应
2020-04-09胡传旺卢佳宇
胡传旺,王 辉,卢佳宇,谭 帅,武 芸
·农业水土工程·
亚热带土壤导水特征对钠盐溶液浓度的响应
胡传旺,王 辉※,卢佳宇,谭 帅,武 芸
(湖南农业大学水利与土木工程学院,长沙 410128)
再生水中高浓度钠盐溶液入渗对土壤水力特性的影响是长期低质水灌溉引起土壤生态环境退化的关键问题之一。该文采用定水头渗透法、一维水平土柱吸渗法测定不同浓度钠盐溶液条件下亚热带地区黏性潮土、沙性潮土、红壤、水稻土、紫色土共5种土壤的水动力学参数,分析了土壤理化性质和钠盐溶液浓度对土壤导水特征的影响及其作用机制。结果表明:土壤粉粒、交换性钙及交换性镁含量具有促进土壤水分运动的作用,而土壤黏粒、交换性铁及交换性铝含量则表现出抑制作用。与蒸馏水处理相比较,钠盐加快了土壤水分黏性潮土、沙性潮土及水稻土中的土壤水分运动速率,分别可最高提升其土壤水分扩散率为 22.0%、37.3%、39.7%;钠盐减缓了红壤和紫色土的水分扩散速率,溶液钠盐浓度越高,其抑制作用越明显。土壤饱和导水率随溶液盐浓度升高呈先降后升的趋势,1~10 g/L钠盐浓度范围内土壤饱和导水率与钠盐浓度具有良好的抛物线关系(2>0.807),各土壤导水率最小极值点的钠盐浓度在5 g/L左右。因此,再生水灌溉利用时其盐浓度适度控制低于其极值点浓度。
土壤;水分;钠盐溶液;相对湿润锋运移速率;相对土壤水分扩散率;相对饱和导水率
0 引 言
再生水作为一种城市污水经过适当处理可再次利用的水,为缓解农业用水压力提供了一条途径[1-2],即能降低对淡水资源的需求量,又能减少污水的排放量,降低面源污染风险[3]。但由于污水中盐分较难去除,因此,再生水含有较高的盐分浓度,可以达到3 g/L[4]甚至更高[5-6],尤其是钠等盐分离子在再生水中有较高的浓度[7-8],是引起土壤退化的主要盐分[9-10]。钠离子的存在可引起土壤黏粒膨胀和团聚体分散[11],从而导致大孔隙减少、土壤入渗率和导水率降低[12-13],但土壤盐分浓度提高可增加黏粒的絮凝并抑制其膨胀和分散,使土壤大孔隙增加,渗透性增强[14],再生水的高矿化度能削弱高的交换性钠百分率对受灌土壤的不利影响[15]。唐胜强等[16-17]研究认为入渗水中的微量盐分促进土壤团粒结构的形成,增强土壤导水能力。可见,盐分对土壤水力性质的影响与灌溉水盐浓度和土壤性质有密切关系[18-22]。随着中国亚热带地区再生水利用的逐步提高,再生水的利用风险将不容忽视[23],该研究选择最为常见的钠盐,以亚热带地区5种土壤为研究对象,分析钠盐浓度水平对亚热带地区土壤水力特性的影响,以期减少亚热带地区再生水灌溉盐分对土壤的负面效应,为进一步研究亚热带地区再生水灌溉提供科学参考。
1 材料与方法
1.1 土壤及水样
供试土样采集和处理方法同文献[23]:在亚热带地区,利用随机、多点法,分别采集黏性潮土(112°43'42″E,29°17'55″N)、沙性潮土(112°43'47″E,29°18'05″N)、红壤(113°16'46″E,28°32'49″N)、紫色土(105°53'59″E,29°23'39″N)以及水稻土(106°52'49″E,29°38'25″N)表层0~20 cm土样,风干,过2 mm筛,去除根系、石块等杂物。供试土样的理化性质见文献[23]:黏性潮土、沙性潮土、红壤、紫色土以及水稻土质地分别为黏壤土、粉壤土、壤黏土、黏壤土、壤黏土;这5种土壤的电导率分别为1.14、1.12、0.12、0.54、0.54 dS/m,交换性铁分别为7.28、5.95、11.46、3.54、8.12 g/kg,0.02~2 mm颗粒质量分数分别为35.75%、35.62%、38.86%、46.12%、35.19%,0~0.002 mm颗粒质量分数分别为20.72%、11.09%、30.10%、17.78%和32.88%。pH值以沙性潮土最高,为8.41,黏性潮土为8.27,水稻土与紫色土相差不大,分别为4.93、4.08,红壤为5.30;交换性铝以红壤最高,为0.56 g/kg,沙性潮土与水稻土相差不多,分别为0.23和0.24 g/kg,红壤和紫色土为0.56和0.55 g/kg;交换性钙从高到低分别为沙性潮土(2 726.0 mg/kg),水稻土(2 166.0 mg/kg)、黏性潮土(1 957.5 mg/kg)、紫色土(1 148.5 mg/kg)、红壤(754.0 mg/kg);交换性镁质量分数由高到低依次排列为沙性潮土(194.2 mg/kg)、黏性潮土(183.8 mg/kg)、水稻土(93.0 mg/kg)、红壤(58.0 mg/kg)、紫色土(13.5 mg/kg);土壤有机质由高到低分别为紫色土(35.6 g/kg)、水稻土(18.6 g/kg)、黏性潮土(16.1 g/kg)、红壤(11.9 g/kg)、沙性潮土(10.1 g/kg)。在蒸馏水中加入NaCl配置成浓度分别0、1、2.5、5、10、15 g/L的盐溶液。
1.2 测定及计算方法
2016年9月-2017年7月在湖南农业大学水利与土木工程学院土壤水动力实验室开展研究。
1)土壤水分扩散率采用水平土柱吸渗法测定。试验土柱装置由有机玻璃管嵌套同轴连接,4根丝杆加固两压板组成,共10节,总长40 cm,内径5 cm。土柱填装干容重为1.2 g/cm3,分层(1.0 cm每层)装填。每层土壤质量根据供试土壤的风干含水率进行计算,装填时将土柱直立,将计算的第1层土壤质量均匀装入第1节有机玻璃管,并打毛接触面,然后进行下层装填,当第1节填满时套入第2节有机玻璃管,按照相同方法进行第2节装填,重复上述工作直至完成试验土柱装填,盖上压板拧紧4根丝杆,然后平放土柱。采用马氏瓶供水,水分湿润土柱时开始计时,记录湿润锋运移距离和与对应的时间,当湿润锋接近土柱末端时(湿润锋运移距离36 cm),结束试验,立刻从土柱的末端向首端取土,用烘干法测量土柱水平剖面各点的含水率。每个处理重复3次。
土壤水分扩散率[24]的计算公式为
式中()为土壤水分扩散率,cm2/min;为体积含水率,cm3/cm3;θ为初始体积含水率,cm3/cm3;()为Boltzmans变换量,cm/min1/2。
2)饱和导水率采用定水头渗透法测定[25]。土柱内径为5 cm,土壤干容重为1.2 g/cm3,装填高度为10 cm,采用蒸馏水饱和,24 h充分饱和后,组装试验装置[23],分别用不同浓度盐溶液进行试验,用小三角瓶收集出流液,当土柱底部第1滴液体流出时开始计时,每隔一段时间测定出流液的体积及温度,每个处理重复3次。饱和导水率采用达西定律[24]计算
式中K为饱和导水率,cm/min;为渗透量,mL;为渗透路径,cm;为渗透横截面积,cm2;为渗透时间,min;为水头,cm。
为了消除温度的影响,将测定的饱和导水率换算成10 ℃时的饱和导水率,公式如下:
式中K为某水温下的土壤饱和导水率,cm/min;10为10 ℃时的土壤饱和导水率,cm/min;为水的温度,℃。
采用Excel 2003、SPSS 21进行统计分析,用Origin8.5软件绘制图形并进行数据拟合。
2 结果与分析
2.1 钠盐浓度对亚热带土壤非饱和导水性的影响
2.1.1 钠盐浓度水平与土壤湿润锋运移速率的关系
在湿润锋运移至36 cm时,运移距离每增加4 cm计算1次湿润锋运移速率,并以此运移速率与对照组(钠盐浓度为0)的比值为相对湿润锋运移速率,计算各运移距离的相对湿润锋运移速率平均值,如图1所示,钠盐溶液入渗土壤后,其湿润锋运移速率产生了明显的差异,黏性潮土、高沙性潮土、水稻土湿润锋运移速率加快,分别最高提升33.0%、32.5%、93.5%,其中水稻土提升最为明显,红壤湿润锋运移速率减慢,最大降低34.8%,对应盐浓度为10 g/L;随溶液盐分浓度增加,紫色土湿润锋运移速率呈降低趋势。1~5 g/L范围内,黏性潮土、水稻土湿润锋运移速率随溶液盐浓度升高逐渐加快,而红壤、紫色土则反之,沙性潮土则呈先降后升的趋势,但其变化不明显。因为当含盐水入渗时,可溶性Na+浓度使土壤黏粒分散和膨胀[25],但盐分浓度、可交换性Ca2+、Mg2+会抑制其作用[26],黏性潮土、水稻土由于具有较多可交换性Ca2+、Mg2+,因而其湿润锋运移速率随溶液盐浓度升高逐渐加快;但红壤、紫色土由于其含量较少,则反之,且红壤电导率较低,Na+对土壤黏粒分散作用更加明显[27],因而其湿润锋运移速率低于对照组。
注:相对湿润锋运移速率为各盐浓度处理湿润锋运移速率与对照组(钠盐浓度为0,下同)比值。
沙性潮土由于土壤黏粒较少,受盐溶液影响较弱。盐溶液浓度大于5 g/L时,黏性潮土、沙性潮土、红壤、水稻土的分散和膨胀作用基本达到平衡,其湿润锋运移速率变化幅度减小,紫色土在盐浓度大于10 g/L时基本达到平衡。因此土壤湿润锋运移受盐溶液的影响程度与土壤本身盐分含量及盐离子组成有密切关系。在1~15 g/L盐浓度范围内,黏性潮土、沙性潮土、红壤、紫色土、水稻土相对湿润锋速率最大变化分别为35.5%、19.5%、26.3%、60.7%、19.2%,其中黏粒含量较高的土壤受盐分浓度影响较大。
2.1.2 钠盐浓度对土壤水分扩散率的影响
采用不同浓度盐溶液处理的土壤水分扩散率与对照组对应含水率的水分扩散率相比,得到相对土壤水分扩散率,如图2所示,不同浓度盐溶液处理下,相对土壤水分扩散率曲线呈现差异,盐溶液处理下黏性潮土相对水分扩散率在土壤体积含水率高于0.25 cm3/cm3时,由减小变为增大,并随着土壤含水率增加呈先升后降的波动趋势,体积含水率为0.33 cm3/cm3左右时最大。沙性潮土在体积含水率高于0.25 cm3/cm3时,1、5 g/L钠盐溶液处理下相对土壤水分扩散率加快,且随含水率增加先升后降,体积含水率为0.37 cm3/cm3左右时最大,而其余处理下土壤水分扩散率变化不大。当体积含水率高于0.25 cm3/cm3时,红壤相对土壤水分扩散率随含水率增加亦呈先升后降的趋势,土壤体积含水率为0.38 cm3/cm3左右时最大。总体上,钠盐溶液处理下红壤相对土壤水分扩散率减小,仅在土壤体积含水率0.32~0.41 cm3/cm3范围内有一定程度增大。紫色土相对土壤水分扩散率在土壤体积含水率高于0.35 cm3/cm3时,随含水率增加呈先升后降的趋势,在0.43 cm3/cm3左右时最大。在1、2.5 g/L钠盐溶液处理下紫色土相对土壤水分扩散率增大,较高浓度时减小。水稻土相对土壤水分扩散率随着土壤含水率升高而呈减小趋势,随处理溶液盐浓度升高而增加,当体积含水率高于0.30 cm3/cm3时,处理溶液盐浓度越高,水稻土相对土壤水分扩散率随土壤含水率增加降低的幅度越大,土壤体积含水率高于0.35 cm3/cm3时,水稻土相对水分扩散率均减小。因为土壤含水率较低时,土壤水分主要沿颗粒表面运动,此时水分运动与土壤颗粒表面性质有密切关系,随着含水率的升高,土壤黏粒发生膨胀和分散,土壤水分运动路径增加,水分扩散速率有下降趋势,由于孔隙减小,孔隙毛管力提升,当含水率进一步升高时,土壤孔隙逐渐被水分填充,在含盐水作用下土壤孔隙结构发生变化,水分扩散速率则呈先升后降的趋势,但土壤理化性质和含盐水浓度的不同使得各处理的水分扩散呈现差异。因此为加快土壤水分运动,需根据土壤类型合理控制土壤含水率区间和入渗水盐浓度。
注:相对土壤水分扩散率为各盐浓度处理土壤水分扩散率与对照组比值,下同。
图3所示为各处理下相对土壤水分扩散率平均值随入渗液钠盐浓度的变化,同一盐浓度下不同土壤比较,黏性潮土、沙性潮土和水稻土总体上土壤水分扩散率较高,其中黏性潮土相对土壤水分扩散率在1 g/L盐浓度处理时最大,平均约提升22.0%,而其余盐浓度处理土壤水分扩散率提升较小,仅提升10.0%~14.4%;随入渗溶液盐浓度升高,水稻土相对土壤水分扩散率呈先升后降的趋势,与盐浓度呈较好的抛物线关系(=−0.0042+ 0.073+1.019,2=0.987,为相对土壤水分扩散率;为钠盐浓度,g/L;下同),在10 g/L盐浓度时最大,其相对土壤水分扩散率平均约提升39.7%;沙性潮土则呈波动形式,在1、5 g/L盐浓度时相对土壤水分扩散率提升较大,分别为37.3%、30.0%,其余盐浓度处理水分扩散率变化较小。各盐浓度处理下,红壤和紫色土水分扩散率减慢;入渗溶液盐浓度越高,红壤和紫色土相对土壤水分扩散率越小,在15 g/L盐浓度溶液处理时,其土壤水分扩散率平均分别降低30.5%、42.1%,相对土壤水分扩散率与盐浓度呈良好的线性关系(红壤:=−0.015+0.922,²=0.982;紫色土:=−0.033+1.028,²=0.933)。
图3 不同浓度钠盐处理下相对土壤水分扩散率
2.2 钠盐浓度对土壤饱和导水性的影响
图4所示为不同浓度钠盐溶液处理下的相对土壤饱和导水率,同一钠盐溶液处理下黏性潮土饱和导水率增加最明显,在15 g/L时提升最大,可提升77.3%,其次为水稻土,在15 g/L时提升最大,约25.1%,这可能是由于盐分促使扩散双电子层收缩,降低了土壤颗粒间排斥力,增强了土壤胶体的凝絮作用,有助于团粒结构的形成,提升土壤导水能力[28]。随着入渗溶液盐浓度的升高,土壤相对饱和导水率呈先降后升的趋势,紫色土在2.5 g/L处理时最小,较对照组降低10.5%,其余土壤在5 g/L处理时最小,其中红壤饱和导水降低最明显,较对照组降低45.5%。这是因为钠盐溶液进入土壤,一方面是盐浓度使土壤絮凝作用增强,使土壤形成较好孔隙结构,另一方面钠离子会增强土壤黏粒膨胀和分散作用,导致土壤孔隙减小,此浓度处理下可能土壤膨胀和分散作用达到最大,出现拐点。当盐浓度升高至15 g/L时,红壤和紫色土饱和导水率有一定程度下降,分别降低9.1%、1.6%,此现象可能是该钠盐浓度下土壤絮凝作用达到限值,而土壤黏粒较多,分散作用较强,导致土壤有效孔隙堵塞而减少。
进一步分析发现1~10 g/L浓度范围内,土壤相对饱和导水率与盐浓度具有明显的抛物线关系(决定系数不小于0.807),即:
式中Δ为相对饱和导水率;为钠盐浓度,g/L;、为系数;为常数;拟合结果见表1。由表1可知,土壤相对饱和导水率最小时对应的钠盐浓度约5 g/L,黏性潮土、沙性潮土、红壤、紫色土、水稻土极值点钠盐浓度分别为5.81、5.74、5.67、4.19、5.63 g/L。利用含盐水灌溉时,仅考虑水分在土壤中运动,并结合实际情况,含盐水应低于此极值浓度。
注:相对土壤饱和导水率为各盐浓度处理饱和导水率与对照组比值。
Note: Relative saturated hydraulic conductivity of soil is the ratio of each salt concentration treatment to the control group.
图4 不同浓度钠盐处理下相对土壤饱和导水率
Fig.4 Relative soil saturated water conductivity for different concentrations of sodium salt
表1 不同土壤相对饱和导水率与钠盐浓度抛物线函数拟合结果
2.3 土壤导水性与入渗液盐浓度及土壤理化性质的相关关系
通过对土壤导水特征参数与土壤理化性质进行相关性分析,结果见表2。
表2 土壤导水参数与理化性质相关性分析
注(Note):**,<0.01;* ,<0.05。
相对湿润锋运移速率与交换性钙含量呈极显著正相关(<0.01),与粉粒含量呈显著正相关(<0.05),与黏粒含量、交换性铁、铝含量呈极显著负相关;相对土壤水分扩散率与粉粒含量、交换性钙、镁含量呈极显著正相关(<0.01),与黏粒含量、交换性铁、交换性铝含量呈极显著负相关(<0.01);相对饱和导水率与土壤理化性质相关性不显著(>0.05)。说明土壤黏粒含量、交换性铁、交换性铝含量对土壤水分运动主要起抑制作用,而粉粒含量、交换性钙、交换性镁含量则起促进作用。
3 结 论
1)钠盐溶液入渗使黏性潮土、沙性潮土、水稻土湿润锋运移速率加快,分别最高提升33.0%、32.5%、93.5%,降低红壤湿润锋运移速率,最大减小34.8%;紫色土湿润锋运移速率随溶液盐分浓度增加呈降低趋势。
2)随土壤含水率变化相对土壤水分扩散率呈波动形式,其中黏性潮土、沙性潮土、红壤、紫色土波峰较为明显,其相对土壤水分扩散率分别在土壤体积含水率为0.33、0.37、0.38、0.43 cm3/cm3左右时较快,水稻土相对土壤水分扩散率随土壤含水率升高呈减小趋势,体积含水率低于0.35 cm3/cm3时,土壤水分扩散较快,合理的土壤含水率区间有利于加快水分扩散。钠盐加快黏性潮土、沙性潮土和水稻土水分扩散率,分别最高约提升22.0%、37.3%、39.7%。盐浓度越高对红壤和紫色土水分扩散率降低越明显,在15 g/L盐浓度时分别降低30.5%、42.1%。水稻土相对土壤水分扩散率与盐浓度呈较好的抛物线关系(2=0.987);红壤和紫色土与盐浓度呈较好的线性关系(红壤²=0.982;紫色土²=0.933)。
3)钠盐溶液处理下黏性潮土饱和导水率增加最明显,最大可提升77.3%,其次为水稻土,最高提升约25.1%。随入渗溶液盐浓度升高,土壤相对饱和导水率呈先降后升的趋势。1~10 g/L盐浓度范围内土壤相对饱和导水率与浓度具有较好抛物线关系(2不小于0.807),黏性潮土、沙性潮土、红壤、紫色土、水稻土相对饱和导水率最小时对应的钠盐浓度分别为5.81、5.74、5.67、4.19、5.63 g/L。
4)土壤理化性质中土壤黏粒、交换性铁、交换性铝含量对土壤水分运动主要起抑制作用,而粉粒、交换性钙、交换性镁含量则起促进作用。
致谢:感谢中国科学院亚热带农业生态研究所李裕元研究员为本试验提供了土壤材料!
[1]吴文勇,刘洪禄,郝仲勇,等. 再生水灌溉技术研究现状与展望[J]. 农业工程学报,2008,24(5):302-306. Wu Wenyong, Liu Honglu, Hao Zhongyong, et al. Review and perspectives of research status on reclaimed wastewater irrigation technologies[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(5): 302-306. (in Chinese with English abstract)
[2]Carlos F S, Marafon A, Andreazza R, et al. Impact of treated industrial effluent on physical and chemical properties of three subtropical soils and millet nutrition[J]. Communications in Soil Science and Plant Analysis, 2017, 48(21): 1-12.
[3]杨林林,杨培岭,任树梅,等. 再生水灌溉对土壤理化性质影响的试验研究[J]. 水土保持学报,2006,20(2):82-85. Yang Linlin, Yang Peiling, Ren Shumei, et al. Experimental studies on effects of reclaimed water irrigation on soil physicochemical properties[J]. Journal of Soil and Water Conservation, 2006, 20(2): 82-85. (in Chinese with English abstract)
[4]Feigin A, Ravina I, Shalhevet J. Irrigation with Treated Sewage Effluent: Management for Environmental Protection[M]. Germany: Springer Science & Business Media, 2012.
[5]Bond W J. Effluent irrigation: An environmental challenge for soil science[J]. Soil Research, 1998, 36(4): 543-556.
[6]Gonçalves R A, Folegatti M V, Gloaguen T V, et al. Hydraulic conductivity of a soil irrigated with treated sewage effluent[J]. Geoderma, 2007, 139(1): 241-248.
[7]Toze S. Reuse of effluent water-benefits and risks[J]. Agricultural Water Management, 2006, 80(1/2/3): 147-159.
[8]商放泽,任树梅,邹添,等. 再生水及盐溶液入渗与蒸发对土壤水盐和碱性的影响[J]. 农业工程学报,2013,29(14):120-129. Shang Fangze, Ren Shumei, Zou Tian, et al. Effects of infiltration and evaporation with treated wastewater and salt solutions on soil moisture and salinize-alkalization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(14): 120-129. (in Chinese with English abstract)
[9]Sou M Y, Mermoud A, Yacouba H, et al. Impacts of irrigation with industrial treated wastewater on soil properties[J]. Geoderma, 2013, 200/201: 31-39.
[10]Blum J, Herpin U, Melfi A J, et al. Soil properties in a sugarcane plantation after the application of treated sewage effluent and phosphogypsum in Brazil[J]. Agricultural Water Management, 2012, 115(19): 203-216.
[11]Halliwell D J, Barlow K M, Nash D M. A review of the effects of wastewater sodium on soil physical properties and their implications for irrigation systems[J]. Australian Journal of Soil Research, 2001, 39(6): 1259-1267.
[12]盛丰,吴丹,张利勇. 再生水灌溉对农田土壤水流运动影响的研究进展[J]. 农业工程学报,2016,32(增刊2):46-51. Sheng Feng, Wu Dan, Zhang Liyong. Review on effect of reclaimed water irrigation on soil water movement in cropland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Supp.2): 46-51. (in Chinese with English abstract)
[13]Arienzo M, Christen E W, Jayawardane N S, et al. The relative effects of sodium and potassium on soil hydraulic conductivity and implications for winery wastewater management[J]. Geoderma, 2012, 173/174: 303-310.
[14]Tarchitzky J, Lerner O, Shani U, et al. Water distribution pattern in treated wastewater irrigated soils: Hydrophobicity effect[J]. European Journal of Soil Science, 2007, 58(3): 573-588.
[15]Saejiew A, Grunberger O, Arunin S, et al. Critical coagulation concentration of paddy soil clays in sodiumferrous iron electrolyte[J]. Soil Science Society of America Journal, 2004, 68(3): 789-794.
[16]唐胜强,佘冬立. 灌溉水质对土壤饱和导水率和入渗特性的影响[J]. 农业机械学报,2016,47(10):108-114. Tang Shengqiang, She Dongli. Influence of water quality on soil saturated hydraulic conductivity and infiltration properties[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(10): 108-114. (in Chinese with English abstract)
[17]郭太龙,迟道才,王全九,等. 入渗水矿化度对土壤水盐运移影响的试验研究[J]. 农业工程学报,2005,21(增刊1):84-87. Guo Tailong, Chi Daocai, Wang Quanjiu, et al. Experimental study on salt and water movement affected by mineralization degree of infiltration water[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(Supp.1): 84-87. (in Chinese with English abstract)
[18]Suarez D L, Wood J D, Lesch S M. Effect of SAR on water infiltration under a sequential rain-irrigation management system[J]. Agricultural Water Management, 2006, 86(1/2): 150-164.
[19]李法虎,闫红,庞昌乐,等. 华北地区微咸水应用对土壤水力传导性能的影响[J]. 农业工程学报,2013,29(2):73-80. Li Fahu, Yan Hong, Pang Changle, et al. Soil hydraulic conductivity affected by slight saline water irrigation in North China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(2): 73-80. (in Chinese with English abstract)
[20]张珂萌,牛文全,汪有科,等. 微咸水微润灌溉下土壤水盐运移特性研究[J]. 农业机械学报,2017,48(1):175-182. Zhang Kemeng, Niu Wenquan, Wang Youke, et al. Characteristics of water and salt movement in soil under moistube-irrigation with brackish water[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1): 175-182. (in Chinese with English abstract)
[21]Fonseca A F, Adolpho J M, Célia R M. Maize growth and changes in soil fertility after irrigation with treated sewage effluent. II. Soil acidity, exchangeable cations, and sulfur, boron, and heavy metals availability[J]. Communications in Soil Science and Plant Analysis, 2005, 36(13/14): 1983- 2003.
[22]Leal R M P, Herpin U, Fonseca A F D, et al. Sodicity and salinity in a Brazilian Oxisol cultivated with sugarcane irrigated with wastewater[J]. Agricultural Water Management, 2009, 96(2): 307-316.
[23]胡传旺,王辉,武芸,等. 再生水盐分在亚热带不同土壤中的迁移特性及差异[J]. 农业工程学报,2018,34(20):99-107. Hu Chuanwang, Wang Hui, Wu Yun, et al. Migration characteristics and its differences of reclaimed water salinity in different subtropical soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 99-107. (in Chinese with English abstract)
[24]雷志栋,杨诗秀,谢森传. 土壤水动力学[M]. 北京:清华大学出版社,1988.
[25]曹瑞雪,邵明安,贾小旭. 层状土壤饱和导水率影响的试验研究[J]. 水土保持学报,2015,29(3):18-21. Cao Ruixue, Shao Ming'an, Jia Xiaoxu. Experimental study on effects of layered soils on saturated hydraulic conductivity[J]. Journal of Soil and Water Conservation, 2015, 29(3): 18-21. (in Chinese with English abstract)
[26]Minhas P S, Singh Y P, Chhabba D S, et al. Changes in hydraulic conductivity of soils varying in calcite content under cycles of irrigation with saline-sodic and simulated rain water[J]. Irrigation Science, 1999, 18(4): 199-203.
[27]Fitzpatrick R W, Cox J W, Fritsch E, et al. A soil-diagnostic key to manage saline and waterlogged catchments in the Mt Lofty Ranges, South Australia[J]. Soil Use and Management, 1994, 10(4): 145-152.
[28]Shainberg I, Letey J. Response of soils to sodic and saline conditions[J]. Hilgardia, 1984, 52(2): 1-57.
Response of soil hydraulic property to sodium salt solution concentration in subtropical zone
Hu Chuanwang, Wang Hui※, Lu Jiayu, Tan Shuai, Wu Yun
(410128,)
The effect of high concentration sodium salt solution infiltration in reclaimed water on soil hydraulic characteristics is one of the key problems of soil ecological environment degradation caused by long-term low-quality water irrigation. In this paper, the hydrodynamic parameters of 5 kinds of subtropical soil, such as clay fluvo aquic soil, sandy fluvo aquic soil, red soil, paddy soil and purple soil, were measured by constant head penetration method and one-dimensional horizontal soil column imbibition method. The influence of sodium salt solution concentration on the hydraulic properties of soil was investigated, and the mechanism of the physical and chemical properties of soil affecting the hydraulic conductivity was analyzed. The results showed sodium slat solution infiltration could enhance soil wet front migration rate of clay fluvo aquic soil, sandy fluvo aquic soil and paddy soil maximally by 33.0%, 32.5% and 93.5%, lower that of red soil maximally by 34.8%. The soil clay content, exchangeable iron and aluminum content mainly inhibited soil water movement, while silt content, exchangeable calcium and magnesium content promoted soil water movement. Sodium salt accelerated water movement in clay fluvo aquic soil, sandy fluvo aquic soil and paddy soil. Relative soil water diffusivity increased by 22.0%, 37.3% and 39.7% respectively. Sodium salt inhibited the water diffusion of red soil and purple soil. The higher salt concentration could result in the smaller relative soil water diffusivity. At 15 g/L salt concentration, the soil water diffusivity decreased by 30.5% for red soil and 42.1% for purple soil, respectively. Relative soil water diffusivity of clay fluvo aquic soil, sandy fluvo aquic soil, red soil and purple soil fluctuated with the increase of soil water content, while the relative soil water diffusivity of paddy soil decreased with the increase of soil water content. Relative soil water diffusivity of paddy soils showed a good parabolic relationship with salt concentration (2=0.987), while red soils and purple soils showed a good linear relationship with salt concentration (2>0.933). The saturated hydraulic conductivity of clay fluvo aquic soil treated with sodium salt solution increased most obviously, with a maximum increase of 77.3%, followed by paddy soil, with a maximum increase of 25.1%. With the increase of salt solution concentration, the relative saturated hydraulic conductivity of soil decreased first and then increased. In the range of 1-10 g/L salt concentration, the saturated hydraulic conductivity of soil had a good parabolic relationship with the sodium salt concentration (2was not less than 0.807), and the saturated hydraulic conductivity of soil was the smallest when the concentration of each extreme point of soil was about 5 g/L. Therefore, the salt concentration of reclaimed water should be moderately controlled to a level lower than the extreme point concentration.
soils; water content; sodium salt solution; relative wetting front velocity; relative soil moisture diffusivity; relative saturated hydraulic conductivity
胡传旺,王 辉,卢佳宇,谭 帅,武 芸. 亚热带土壤导水特征对钠盐溶液浓度的响应[J]. 农业工程学报,2020,36(3):86-91.doi:10.11975/j.issn.1002-6819.2020.03.011 http://www.tcsae.org
Hu Chuanwang, Wang Hui, Lu Jiayu, Tan Shuai, Wu Yun. Response of soil hydraulic property to sodium salt solution concentration in subtropical zone[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 86-91. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.03.011 http://www.tcsae.org
2019-08-02
2019-12-10
国家自然科学基金项目(41471185);湖南省水利科技项目重大项目(湘水科计[2017]230-240);湖南省重点研发计划项目(2016JC2032);湖南省研究生科研创新项目(CX2017B363)
胡传旺,博士生,主要从事土壤物理与农业水土环境研究。Email:huwa0460@163.com
王辉,教授,博士,博士生导师,主要从事土壤物理与农业水土环境研究。Email:wanghuisb@126.com
10.11975/j.issn.1002-6819.2020.03.011
S152.7
A
1002-6819(2020)-03-0086-06