生物可降解膜覆盖对机插水稻生长和稻米品质的影响
2020-03-31胡国辉宋顺奇向镜朱德峰陈惠哲张义凯王亚梁徐一成易子豪王军可张玉屏
胡国辉 宋顺奇 向镜 朱德峰 陈惠哲 张义凯 王亚梁 徐一成 易子豪 王军可 张玉屏,*
生物可降解膜覆盖对机插水稻生长和稻米品质的影响
胡国辉1宋顺奇2向镜1朱德峰1陈惠哲1张义凯1王亚梁1徐一成1易子豪1王军可1张玉屏1,*
(1中国水稻研究所 水稻生物学国家重点实验室,杭州 310006;2吉林省通化市柳河县农技推广总站,吉林 柳河 135300;*通信联系人,E-mail: cnrrizyp@163.com)
研究并明确不同生态区生物可降解膜覆盖对机插水稻生长和稻米品质的影响,为实现水稻生态种植提供方法。以生产上大面积应用的五优稻4号、鄂早18及甬优538为试验材料,在北方单季稻、南方早稻及单季稻三种种植类型中设置生物可降解膜覆盖处理及不覆膜处理,研究不同生态区水稻生物可降解膜覆盖机插对土壤温度、水稻生长和稻米品质的影响。1)增温效果:北方覆膜水稻增温效果更好,增温效应主要集中在生育前期,特别是在移栽到穗分化期这段时间。与对照相比,土壤日平均增温2.76℃;2)生育期变化:南北方覆膜水稻均缩短了水稻生育期,北方覆膜水稻提前7 d成熟,南方两种种植方式覆膜处理均提前3 d;3)叶龄:无论南北方覆膜均能促进水稻叶片生长,增加出叶速率,在生育前期北方覆膜水稻的出叶数比对照多0.6~0.9叶;4)株高:南北方覆膜水稻均降低水稻株高,北方覆膜水稻显著降低了5.7cm;5)茎蘖数:北方单季稻覆膜处理促进了水稻分蘖的早发快长,与对照相比,显著提高有效茎蘖数35.7万个/hm2;6)干物质积累量:北方覆膜水稻在穗分化期、齐穗期及成熟期干物质积累量均显著大于对照,南方覆膜早稻在成熟期的干物质积累显著大于对照;南方单季稻在齐穗期的干物质积累显著小于对照;7)增产效果:南北方覆膜水稻都有显著增产效果,北方增产效果更好,增产达到了8.7%,南方早稻增产7.9%,南方单季稻增产4.1%;8)稻米品质:北方覆膜水稻显著提高了糙米率、精米率及蛋白质含量;南方单季稻覆膜处理显著提高了整精米率,南方早稻也得到相同结果,但未达到显著水平。生物可降解膜覆盖机插种植模式在两个生态区均能促进水稻的生长发育,提高水稻产量;对于稻米品质,北方覆膜水稻提高了稻米加工品质,而食味品质下降,南方覆膜水稻提高了加工品质,而外观品质变劣;将南北覆膜水稻进行比较发现,生物可降解膜覆盖机插种植模式对北方水稻有更好的促进生长作用及增产效果,并且降低了水稻覆膜生产中塑料薄膜对环境的污染,为水稻绿色优质生产提供新的途径。
生物可降解膜;机插;水稻生长;稻米品质
水稻是我国重要的粮食作物之一,全国划分为六个主要稻作区[1],其中一些稻作区由于其特定的生态环境和气候条件会限制水稻的生产[2]。同时,随着人们生活水平的提高,对优质稻米的需求也日益增长[3]。为了满足人们的需求和保障不断增长人口的粮食安全,仅靠增加条件优越稻作区的产量是远远不够的,因此,还需通过水稻种植技术的革新来挖掘受干旱和低温限制稻作区的生产潜力[4-5]。覆膜技术自从1978年引入我国以来,已广泛应用于水稻、玉米和小麦等作物,显著改善水热条件[6-7],具有节水抗旱[8]、增温保墒[9]、抑制杂草[10-11]和增加产量[12]等诸多优点,能够有效解决干旱和低温受限种植区的水稻生产问题;而且覆膜机插技术符合当前水稻生产轻简化、机械化作业的趋势[13-14],能够降低人工覆膜成本,提高水稻生产效益。国内外科研工作者在关于水稻覆膜对水分利用率和产量的影响上做了一系列的研究,大量结果表明水稻覆膜栽培不仅能够减少灌溉,节水抗旱,提高水分利用效率[15-17],还可以增加土壤温度[9,18]和土壤碳氮储量[19-20],提高作物从穗分化期到成熟期的生长速率和氮素吸收速率,从而提高水稻产量和资源利用效率[21-22]。特别是在受低温和季节性缺水限制的种植区具有很好的增产潜力[12,18]。此外,也有研究发现在没有明显缺水或温度限制的热带和亚热带地区,水稻覆膜种植不能提高粮食产量,甚至导致减产[23-24]。前人大部分研究集中在覆膜旱作对水稻生长和品质的影响上,结果表明覆膜旱作能够促进水稻分蘖的生长[25-26],但会显著降低稻米品质[27],其中用于研究的薄膜大多数是聚乙烯塑料膜,会对环境造成污染;目前生物可降解膜开始广泛应用,在水稻生育期内充分降解成二氧化碳和水,覆盖后具有增温除草节水节肥作用,对水稻生长及产量具有一定促进作用,但目前对生物可降解膜覆盖机插对水稻生长特性和稻米品质的研究报道较少。为探讨生物可降解膜覆盖机插对水稻生长特性和稻米品质的影响,本研究分别在中国水稻研究所富阳试验基地(30°5′N,119°55′E)和吉林省通化市柳河国信社稷尚品农业开发有限公司种植基地(42°25′N,126°08′E)两个不同的稻作区进行,并在富阳试验基地开展了早稻和单季稻的试验,由此可以对不同稻作区之间和同一稻作区不同种植制度之间进行对比阐述。阐明生物可降解膜覆盖机插对水稻生长发育与稻米品质形成产生的效应,为应用水稻覆膜机插技术提供理论依据,同时为水稻绿色优质生产提供新的种植技术。
1 材料与方法
1.1 试验地和生物可降解膜概况
试验于2018年分别在中国水稻研究所富阳试验基地(30°5′N,119°55′E)和吉林省通化市柳河国信社稷尚品农业开发有限公司种植基地(42°25′N,126°08′E)进行。富阳基地位于长江三角洲南翼,属中纬度亚热带季风性气候区,2018年平均气温17.5℃,年平均降水量为1715 mm。试验地土质为黏性水稻土,冬闲;0-20 cm土层有机质含量为58.3 g/kg,全氮 2.7 g/kg,全磷0.82 g/kg,速效磷 19.7 mg/kg,速效钾138.5 mg/kg;柳河基地位于长白山向松辽平原过渡地带,属温带大陆性季风气候,2018年平均气温6.1℃,年平均降水量657 mm,试验地0-20 cm土层有机质含量为69.9 g/kg,全氮 2.8 g/kg,全磷1.0 g/kg,速效磷 34.7 mg/kg,速效钾226.2 mg/kg,生物可降解膜的宽度为1.85 m,厚度为0.01 mm,45~65 d开始降解,能被完全降解,最终生成二氧化碳和水。
1.2 试验设计与田间管理
1.2.1 试验设计
试验设置生物可降解膜覆盖及不覆膜2个处理,北方稻区种植单季稻,南方稻区种植早稻和单季稻。
北方单季稻:供试品种为五优稻4号;设生物可降解膜覆盖处理(EF),以不覆膜为对照,两处理均施生物有机肥2400 kg/hm2,作为基肥一次施用,有机肥全氮含量为46.3 g/kg,有效磷含量为1.6 g/kg,速效钾含量为2.2 g/kg。每个处理设置3个重复,每个重复小区面积 1000 m2(长×宽=100 m×10 m),种植方式为覆膜机插种植(挂覆膜机的洋马插秧机),行株距30 cm×20 cm,密度为16.5万丛/hm2,每丛4~5本。
南方早稻:供试品种为鄂早18;设置生物可降解膜覆盖处理(EF),以不覆膜为对照,两处理均施缓释氮肥(折合纯氮150 kg/hm2)作为基肥;磷肥施过磷酸钙(含P2O512.5%)300 kg/hm2,钾肥施氯化钾(K2O 57%)150 kg/hm2,一次性作为基肥施入;每个处理设置3个重复,每个重复小区面积41.4 m2(长×宽=23 m×1.8 m),种植方式为覆膜机插种植(挂覆膜机的洋马插秧机);行株距25 cm×15 cm,密度26.7万丛/hm2,每丛2~3本。
南方单季稻:供试品种为甬优538;设生物可降解膜覆盖处理(EF)以不覆膜为对照,两处理均用控释氮肥(折合纯氮240 kg/hm2)作为基肥一次性施用,磷肥施过磷酸钙(含P2O512.5%)450 kg/hm2,钾肥施氯化钾(K2O 57%)225 kg/hm2,一次性作为基肥施入;每个处理设置3个重复,每个重复小区面积 70.2 m2(长×宽=18 m×3.9 m),种植方式为覆膜机插种植(挂覆膜机的洋马插秧机),行株距30 cm×16 cm,密度20.9万丛/hm2,每丛1~2本。
1.2.2 田间管理
CK处理采用浅湿干交替灌溉;EF处理采用覆膜湿润栽培水分管理,保持田面没有水层,灌溉沟中有水,保证田间土壤含水量基本为饱和状态。
1.3 样品采集与测定
1.3.1 土壤温度
移栽当天将HOBO (HOBO H8 Pro Temp/RH, Onset Computer Corporation, Bourne, MA, USA)温度监测装置安装在田块中央的CK和EF处理小区内,将温度感应探头放置水稻行间距的中间土壤以下5 cm处,每隔两小时自动记录数据1次。
1.3.2 生育期及叶龄
每隔7 d标记和记录主茎叶龄,记录水稻生育期;按照凌启鸿等[28]叶龄模式以及体视显微镜(OLYMPUS, SZX9)观察确定水稻穗分化初始日期(倒3.5叶);群体50%抽穗记录为抽穗期,群体80%抽穗记录为齐穗期。
1.3.3 株高
自移栽后每小区选定6丛代表性水稻植株用直尺测量从基部到整穴植株最高点的高度作为株高。
1.3.4 茎蘖数
自分蘖发生后每小区选定6丛代表性水稻植株,每隔 7 d 调查一次茎蘖动态。
1.3.5 干物质积累
在穗分化期、齐穗期和成熟期三个时期,以平均茎蘖数为主要标准,每小区取代表性植株5丛,植株连根拔出,清洗,去根。把叶片、茎鞘、穗(齐穗期和成熟期)分开装袋烘干至恒重(方法:在鼓风烘箱中,105℃下杀青30min,80℃下烘干,烘干时间根据样本量的多少,大概需要48~72 h),测定各处理植株干物质积累与分配情况。
1.3.6 考种与测产
于成熟期调查每小区30丛水稻并计算单株平均有效穗数,每小区按平均穗数取样法取4丛水稻,考查每穗粒数、结实率、千粒重等产量构成因素及籽粒充实情况,每小区选定 150丛植株进行测产,单打单收和晒干后,测定稻谷质量和含水率,然后折算成标准含水量13.5%记为实收产量。
EF-覆膜处理;CK-不覆膜对照;A-南方早稻;B-北方单季稻;C-南方单季稻。
Fig. 1. Effects of film mulching cultivation in different ecological areas on soil temperature at 5 cm depth.
表1 不同生态区覆膜栽培对水稻生育期的影响
EF-覆膜处理;CK-不覆膜对照。
EF, Biodegradable film mulching; CK, No film mulching.
1.3.7 稻米品质测定
精米直链淀粉含量和蛋白质含量采用近红外谷物分析仪(Infratec 1241 Grain Analyzer, FOSS -TECATOR公司生产)测定,糙米率、精米率、整精米率、垩白粒率、垩白度、胶稠度等品质性状的测定方法参照中华人民共和国国家标准《GB/T17891-1999优质稻谷》[29]。精米率、糊化温度(用碱解值级表示)等指标参照中华人民共和国农业部部颁标准《NY 147-88 优质食用稻米》测定[30]。
1.4 数据处理
采用Excel 2010和SAS 9.0软件对数据进行统计分析。采用单因素(one-way ANOVA)和Duncan法进行方差分析和多重比较(α=0.05)。
2 结果与分析
2.1 覆膜对土表5 cm处温度的影响
如图1所示,在不同的种植制度下覆膜处理对5 cm处土壤都有增温作用;但是在不同种植制度之间起到的增温效果不同。对于南方早稻(图1-A)来说,覆膜在水稻全生育期的增温作用相对平均,且与对照相比,整个生育期土壤日平均增温0.75℃,最大增温2.55℃;北方单季稻(图1-B)覆膜处理增温效果最好,且增温作用集中在生育前期,与对照相比,全生育期土壤日平均增温1.55℃,最大增温达到了6.41℃,且移栽到水稻穗分化期(倒3.5叶)这段时间日平均增温2.76℃;增温效果较差的是南方单季稻覆膜处理(图1-C),增温也集中在生育前期,与对照相比,全生育期日平均增温仅0.13℃,移栽到水稻最高分蘖期这段时间日平均增温0.79℃。
2.2 生育期
如表1所示,覆膜处理能够缩短水稻全生育期天数,使水稻提前成熟。北方单季稻覆膜处理与对照相比成熟期提前7 d,南方早稻和单季稻覆膜处理和对照相比均提前3 d。生育期的提前主要是因为移栽期-穗分化期缩短。
EF-覆膜处理;CK-不覆膜对照;A-南方早稻;B-北方单季稻;C-南方单季稻。
Fig. 2. Effects of film mulching cultivation in different ecological areas on leaf aging process of rice.
EF-覆膜处理;CK-不覆膜对照;A-北方单季稻;B-南方单季稻。
Fig. 3. Effects of film mulching cultivation in different ecological areas on plant height of rice.
2.3 覆膜对水稻叶龄进程的影响
覆膜对土壤有增温效应,能提高生育期的有效积温,为水稻的生长发育创造一个良好的局部生育环境(图2)。覆膜处理对水稻叶龄进程的影响在不同生态区和不同种植制度之间表现出一致的趋势,均能够促进水稻叶片生长,增加出叶速率;且北方生态区较南方生态区表现更加明显,特别表现在温度较低的生育前期,北方单季稻(图2-B)覆膜处理的叶片数比对照多0.6~0.9叶,南方早稻(图2-A)和单季稻(图2-C)增长相对平缓,覆膜处理的出叶速率略快于对照。
2.4 覆膜对水稻株高的影响
在南北生态区,覆膜水稻的株高与对照相比都有所降低,北方单季稻(图3-A)差异更加明显,在拔节期到穗分化期覆膜处理株高增长速度大于对照,其中最大株高差达到了9.2 cm,但之后生长速率逐渐下降,最终与对照相比株高显著降低了5.7 cm;在全生育期内南方覆膜单季稻(图3-B)株高一直小于对照,其中,最大株高差达到6.7 cm,覆膜水稻后期生长加快,最终株高降低了3.4 cm。
2.5 覆膜对水稻分蘖数的影响
同一生态区,不同种植制度之间产生的影响趋势相对一致;但在不同的种植生态区,产生的效应有所不同(图4)。南方生态区的早稻(图4-A)和单季稻(图4-C)在覆膜条件下,水稻分蘖的生长相对缓慢,在最高分蘖期前,对照处理的茎蘖数一直大于覆膜处理,但随着无效分蘖的死亡,对照的茎蘖数快速下降,最终的有效分蘖数覆膜处理略大于对照,且分蘖成穗率覆膜处理显著高于对照,早稻覆膜处理成穗率达81.4%,对照为71.9%;单季稻覆膜处理成穗率为77.2%,对照仅有59.7%。从图4-B看出,北方单季稻覆膜处理促进了水稻分蘖的早发快长,茎蘖数在生育期内显著大于对照,且最终有效茎蘖数比对照多35.7万个/hm2,分蘖成穗率为56.3%,相对于对照略有降低。
EF-覆膜处理;CK-不覆膜对照;A-南方早稻;B-北方单季稻;C-南方单季稻。
Fig. 4. Effects of film mulching cultivation in different ecological areas on tillering dynamics of rice.
EF-覆膜处理;CK-不覆膜对照;A-南方早稻;B-北方单季稻;C-南方单季稻;PIS-穗分化期;FHS-齐穗期;MS-成熟期;柱上不同小写字母表示同一生态区不同处理间差异达到显著水平(P<0.05, n=3, 最小显著差数法)。
Fig. 5. Effects of film mulching cultivation on shoot dry weight of rice in different ecological areas.
2.6 不同生育时期地上部干物质积累量
如图所示,在穗分化期、齐穗期及成熟期三个时期北方单季稻(图5-B)覆膜处理水稻地上部干物质积累量都显著大于对照,且在齐穗期差异最大,覆膜处理与对照相比地上部干质量显著提高了13.7%,在齐穗期南方早稻(图5-A)处理间干物质积累量没有显著差异,成熟期覆膜处理地上部干物质积累量比对照显著增加了19.5%;南方单季稻(图5-C)没有类似的趋势,而且在齐穗期对照处理的水稻地上部干物质积累量显著比覆膜处理高,在穗分化期和成熟期没有显著差异。
2.7 产量及产量结构
由表2所示,南北生态区覆膜处理均显著提高了水稻产量,但对产量构成因素影响有所不同。与对照相比,南方早稻和北方单季稻覆膜处理显著增加了有效穗数和千粒重,北方单季稻增产8.7%,南方早稻增产7.9%,南方单季稻覆膜水稻显著增加了穗粒数和千粒重,但产量增产仅4.1%。由此可见,通过生物可降解膜覆盖,南方北方生态区水稻千粒重都有增加,但北方及南方早稻增产主要贡献是增穗增产,南方单季稻主要是依靠增加每穗粒数增产。
表2 不同生态区覆膜栽培对水稻产量及其结构的影响
EF-覆膜处理;CK-不覆膜对照;平均数±标准差(=3);不同小写字母表示同一生态区不同处理间差异达到显著水平(<0.05,=3, 最小显著差数法)。
EF, Biodegradable film mulching; CK, No film mulching. Mean±SD(=3); Values followed by different lowercase letters are significantly different among treatments for each ecological area(<0.05,=3, LSD).
表3 覆膜栽培对水稻加工品质及外观品质的影响
EF-覆膜处理;CK-不覆膜对照;平均数±标准差(=3);不同小写字母者表示同一生态区不同处理间差异达到显著水平(<0.05,=3, 最小显著差数法)。
EF, Biodegradable film mulching; CK, No film mulching. Mean±SD(=3); Values followed by different lowercase letters are significantly different among treatments for each ecological area(<0.05,=3, LSD).
2.8 稻米品质
在不同生态区,生物可降解膜覆盖处理对稻米品质的影响有所不同。如表3所示,与对照(CK)相比,南方早稻覆膜(EF)处理降低了糙米率和精米率,提高了整精米率、垩白粒率及垩白度,但均未达到显著水平;北方覆膜水稻与对照相比显著提高了糙米率和精米率,整精米率没有显著差异;南方单季稻EF处理显著提高了整精米率,糙米率和精米率没有显著差异;北方覆膜处理对稻米垩白粒率和垩白度没有显著影响,南方单季稻覆膜处理与对照相比,垩白粒率和垩白度分别显著升高了 54.2%和83.3%;对于胶稠度、碱解值和直链淀粉含量(表4),南北生态区覆膜水稻与对照没有显著差异;对于蛋白质含量,北方覆膜水稻较对照提高9.5%,南方单季稻没有显著差异。可见,北方稻区覆膜能显著提高稻米加工和营养品质,南方单季稻覆膜处理提高了稻米的加工品质,也使稻米外观品质变劣。
3 讨论
3.1 生物可降解膜覆盖机插对水稻生长的影响
南北两个生态区的气候条件差异较大,导致了水稻覆膜机插种植在两地产生的效果有所不同;北方气温较低且降雨量少,因此,覆膜处理增温效应较为明显(图1-B),在移栽到水稻穗分化期(倒3.5叶)土壤日平均增温2.76℃,提高了水稻生育前期的累积有效积温,促进水稻早期光合产物形成和低位分蘖的生长[23,31-32],覆膜处理促蘖效应显著,最终显著提高水稻的有效穗数,这与前人研究结果[18-19,33-34](覆膜水稻分蘖发生早,分蘖旺盛,持续时间长,但成穗率较低)一致;南方雨热条件比较适宜水稻生长,覆膜之后增温会带来负面效应,并且膜的存在导致其表面土壤温度较高[35-36],这样可能影响秧苗的返青和生长,对前期分蘖生长起了抑制作用,导致南方早稻和单季稻覆膜处理分蘖数要小于对照,但覆膜处理提高土壤温度和氧化还原电位,这会加速土壤矿化作用,增加土壤养分[37],随着生物可降解膜的分解破损,土壤表面温度随之下降,这样在土壤养分充足的条件下,有利于水稻生长发育和高位分蘖的发生与成穗,并在分蘖盛期减少了无效分蘖的发生,促使最终有效穗数略高于对照,提高了分蘖成穗率;覆膜处理一定程度上提高了水稻生育期内的有效积温,加快了水稻叶龄进程,促进水稻提早成熟;刘军等[38]研究结果表明覆膜水稻前期的生长速率显著高于对照,能够促进水稻出叶,同时,覆膜处理可以减缓水稻生育前期低温限制,缩短水稻生育期[39]。本研究在北方单季稻和南方早稻及单季稻的试验结果均表现一致,覆膜水稻能加快水稻生育进程,特别是对于生育前期温度较低的北方单季稻,与对照相比提前7 d成熟;覆膜处理对水稻株高影响的研究较少,本研究在南北两试验点的结果显示覆膜处理会降低最终水稻株高,北方覆膜水稻(图3-A)在穗分化期前的株高均大于对照处理,这可能与生育前期覆膜的增温效应促进水稻植株生长有关,其后覆膜处理的株高一直小于对照,与南方单季稻(图3-B)株高变化趋势一致。路兴花等[40]研究认为覆膜水稻随着土壤水分含量的降低,水稻株高有降低的趋势。Thakur等[41]研究发现覆膜处理的土壤含水量低于对照,这可能是株高变化的原因之一,具体的影响因素需进一步研究。南北生态区之间覆膜机插种植对水稻生长发育产生的影响可能与生物可降解膜的降解速率有关,生物降解膜降解过程受到自然因素的影响较大[42],在不同温度和水分条件下降解程度不同,其中南方生态区温度较高且降雨多,导致降解膜的开始降解时间先与北方,并且降解速率也快于北方,这造成了覆膜处理在两个生态区对土壤5 cm处温度(图1)及水稻叶龄进程(图2)、株高(图3)、分蘖生长(图4)、干物质积累(图5)产生不同的影响,尤其是在生育前期膜的完整性对土壤温度和养分等性质具有重要作用[43]。所以,本研究结果显示降解速率较慢的北方生态区,生物可降解膜覆盖能更好地促进水稻的生长,对于生物可降解膜在何时开始降解能更好地促进水稻的生长有待于进一步的研究。
表4 覆膜栽培对稻米理化性状的影响
EF-覆膜处理;CK-不覆膜对照;平均数±标准差(=3);不同小写字母者表示同一生态区不同处理间差异达到显著水平(<0.05,=3,最小显著差数法)。
EF, Biodegradable film mulching; CK, No film mulching. Mean±SD(=3); Values followed by different lowercase letters are significantly different among treatments for each ecological area. (<0.05,=3, LSD).
3.2 生物降解膜覆盖机插对水稻产量和品质的影响
近年来在不同生态区研究覆膜对水稻产量影响的结果不尽相同[21-24,31-34],这可能与不同区域的雨热条件和试验采用的品种、种植密度和移栽方式有关。从地域分布来看,覆膜栽培有显著增产效果的地区主要是西南高山丘陵地区、西北季节性干旱区及东北高寒地区,增产主要原因在于地膜的增温效应促进水稻前期分蘖形成,显著提高了有效穗数,为增产打下基础;然而,在热带和亚热带地区,由于温度本来较高,覆膜会导致温度更高,影响穗粒数、结实率和千粒重,会导致水稻减产[24,36];另外,在缺水区覆膜旱作与水作相比,产量也会略减,但节水效果显著[27,44]。对于南方稻作区部分地区,水热并不是该区域水稻生长的限制因素,覆膜后会使土壤表面温度及水稻冠层温度过高[16,45],这有可能损害根系和抑制秧苗分蘖的发生与生长,不利于水稻的生长发育。不同生态区要根据当地的水稻生长环境选择应用。但是本研究中可降解膜覆盖栽培在南北生态区均表现出增产效果,北方单季稻和南方早稻增产幅度更大,从产量构成因素上来看,其增产的主要原因是显著的提高了水稻的有效穗数和千粒重(表2),与前人研究的结果一致[12,18,21]。这是由于水稻前期温度较低,覆膜处理能促进水稻早期光合产物形成和低位分蘖的生长[23,31-32],为最终水稻有效穗数和产量的提高奠定基础;而南方单季稻覆膜处理的增产效果主要由于显著增加了水稻每穗粒数和千粒重(表2),这与南方单季稻覆膜处理对水稻生长的影响契合,在生育前期水稻分蘖生长受到抑制,一定程度上降低了穗数对产量的贡献,但生育中后期,覆膜处理增加土壤微生物量、酶活性而促进土壤矿化作用,提高土壤有效养分[46]。Zhang等研究[47]显示,降解膜覆盖能够提高水稻从穗分化期到成熟期的生长速率和氮素吸收速率,还有研究表明水稻生殖生长到成熟阶段养分状况直接决定了水稻每穗粒数和粒重[47],因而覆膜水稻在穗分化期到成熟期生长开始加快,为水稻每穗粒数和粒重的形成打下基础;同时,也有研究发现覆膜种植对水稻根系发育具有积极作用,根系发育的改善对水稻高产具有重要意义[49],因而构建适宜协调的水稻群体结构和产量构成因子对覆膜水稻产量的提高至关重要。
前人在研究覆膜处理对水稻籽粒品质影响上所得结论存在差异[16,45,47],且关于生物可降解膜覆盖机插种植对稻米品质的研究较少。徐国伟等[50]研究显示,覆盖旱种稻米出糙率、精米率和整精米率高于常规种植,籽粒品质得到改善。本研究结果也表明,北方覆膜处理显著提高了水稻糙米率和精米率,而南方的单季稻显著提高了整精米率;另有研究表明[47]覆膜旱种稻米的垩白度及蛋白质含量明显高于淹水栽培。我们的研究得出北方覆膜水稻蛋白质含量明显增加,对外观品质没有显著影响,南方覆膜水稻垩白粒率和垩白度明显提高,使外观品质变劣,而张自常等[16, 27]指出在长江中下游地区,覆膜处理会使稻米品质变差,但其中覆膜处理对水稻品质影响的机理尚不清楚,可能与覆膜处理对土壤温度和水分的影响有关。前人研究表明增温会增加稻米垩白粒率和垩白度,可能是增温会加速早期胚乳细胞的生长,导致籽粒灌浆不充实[51-52];还有研究显示轻度干湿交替水分处理能够提高弱势粒的充实程度和粒重,让整个稻穗更加均匀整齐而改善稻米品质[53],在未受到水分胁迫情况下,覆膜水稻使土壤含水量的变化可能也会影响稻米品质[54],特别是籽粒灌浆速率和特性对水稻籽粒品质影响显著[55-56]。因此,有待进一步研究生物可降解膜降解过程及其中间产物对土壤及水稻生长影响来进一步揭示其对稻米品质的影响机制。
4 结论
生物可降解膜覆盖机插种植模式能提高土壤温度,增加有效积温,促进水稻的生长发育,提高水稻产量;对于稻米品质,北方覆膜水稻提高了稻米加工品质,增加了蛋白质含量而使食味品质下降,南方覆膜水稻提高了加工品质,但外观品质变劣;将南北生态区进行比较发现,生物可降解膜覆盖机插种植模式对北方水稻有更好的促进作用及增产效果,且提高了水稻的生产效益,其中利用生物可降解膜替代塑料薄膜,降低了水稻覆膜生产中对环境的污染,为水稻绿色提质增效生产提供新的途径;对南方地区希望通过生物可降解膜的覆盖,能进一步研究其节肥节水除草的效应,为水稻减肥减药的措施提供途径与方向。
[1] 梅方权, 吴宪章, 姚长溪, 李路平, 王磊, 陈秋云.中国水稻种植区划[J]. 中国水稻科学, 1988, 2(3): 97-110.
Mei F Q, Wu X Z, Yao C X, Li L P, Wang L, Chen Q Y. Division of rice planting in China[J]., 1988, 2(3): 97-110. (in Chinese with English abstract)
[2] 朱德峰, 程式华, 张玉屏, 林贤青, 陈惠哲.全球水稻生产现状与制约因素分析[J]. 中国农业科学, 2010, 43(3): 474-479.
Zhu D F, Cheng S H, Zhang Y P, Lin X Q, Chen H Z. Analysis of status and constraints of rice production in the world [J]., 2010, 43(3): 474-479. (in Chinese with English abstract)
[3] 何海兵, 杨茹, 廖江, 武立权, 孔令聪, 黄义德.水分和氮肥管理对灌溉水稻优质高产高效调控机制的研究进展[J]. 中国农业科学, 2016, 49(2): 305-318.
He H B, Yang R, Liao J, Wu L Q, Kong L C, Huang Y D. Research advance of high-yielding and high efficiency in resource use and improving grain quality of rice plants under water and nitrogen managements in an irrigated region[J]., 2016, 49(2): 305-318. (in Chinese with English abstract)
[4] Godfray H J, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. Food Security: The Challenge of Feeding 9 Billion People[J]., 2010, 327(5967): 812-818.
[5] Jiang P, Xie X b, Huang M, Zhou X f, Zhang R c, Chen J n, Wu D d, Xia B, Xiong H, Xu F x, Zou Y b.Potential yield increase of hybrid rice at five locations in Southern China[J]., 2016, 9(1): 1-14.
[6] Chen Y, Liu T, Tian X, Tian X H, Wang X F, Li M, Wang S X, Wang Z H. Effects of plastic film combined with straw mulch on grain yield and water use efficiency of winter wheat in Loess Plateau[J]., 2015, 172: 53-58.
[7] 严昌荣, 刘恩科, 舒帆, 刘勤, 刘爽, 何文清. 我国地膜覆盖和残留污染特点与防控技术[J]. 农业资源与环境学报, 2014, 31(2): 95-102.
Yan C R, Liu E K, Shu F,Liu Q, Liu S, He W Q. Review of agricultural plastic mulching and its residual pollution and prevention measures in China[J]., 2014, 31(2): 95-102. (in Chinese with English abstract)
[8] Tao H, Brueck H, Dittert K, Kreye C, Lin S, Sattelmacher B. Growth and yield formation for rice (L.) in the water-saving ground cover rice production system (GCRPS)[J]., 2006, 95(1): 1-12.
[9] LuS H, Dong Y J, Yuan J. A high-yielding, water-saving innovation combining SRI with plastic cover on no-till raised beds in Sichuan, China[J]., 2013, 61(4):94-109.
[10] 鱼小军, 柴锦隆, 徐长林, 师尚礼, 肖红, 马隆喜, 曹国顺.覆膜种植对甘南高寒区苜蓿生长和杂草数量的影响[J]. 中国农业科学, 2016, 49(4): 791-801.
Yu X J, Chai J L, Xu C L, Shi S L, Xiao H, Ma L X, Cao G S. Effects of different planting methods on growth of alfalfa and weeds in gannan alpine region [J]., 2016, 49(4): 791-801. (in Chinese with English abstract)
[11] 赵欣, 林超文, 徐明桥, 黄晶晶, 陈一兵, 李传仁, 蔡青年. 水稻覆膜处理对稻田杂草多样性的影响[J]. 生物多样性, 2009, 17(2): 195-200.
Zhao X, Lin C W, Xu M Q, Huang J J, Chen Y B, Li C R, Cai Q N. Effect of film-mulched treatment on weed diversity in rice field[J]., 2009, 17(2): 195-200. (in Chinese with English abstract)
[12] Guo L, Liu M, Zhang Y A, Tao Y Y, Zhang F, Li G Y, Dittert K, Lin S. Yield differences get large with ascendant altitude between traditional paddy and water-saving ground cover rice production system [J]., 2018, 92: 9-16.
[13] Peng S, Tang Q, Zou Y. Current status and challenges of rice production in China[J]., 2009, 12(1): 3-8.
[14] 朱德峰, 陈惠哲. 水稻机插秧发展与粮食安全[J]. 中国稻米, 2009(6): 4-7.
Zhu D F, Chen H Z. Development and food security of rice transplanting by machine[J]., 2009(6): 4-7. (in Chinese with English abstract)
[15] Jin X X, Zuo Q , Ma W W, Li S, Shi J C, Tao Y Y, Zhang Y A, Liu Y, Liu X F, Lin S. Water consumption and water-saving characteristics of a ground cover rice production system[J]., 2016, 540: 220-231.
[16] Zhang Z C, Zhang S F, Yang J C, Zhang J H. Yield, grain quality and water use efficiency of rice under non-flooded mulching cultivation[J]., 2008, 108(1): 71-81.
[17] 石建初, 金欣欣, 李森, 马雯雯, 左强. 覆膜旱作稻田水均衡及蒸腾耗水规律分析[J]. 水利学报, 2016, 47(10): 1260-1268.
Shi J C, Jin X X, Li S, Ma W W, Zuo Q. Analysis of water balance and transpiration water consumption in paddy field covered with plastic film mulched dryland[J]., 2016, 47(10): 1260-1268. (in Chinese with English abstract)
[18] Liu M J, Liang W L, Qu H, Zhi G Y, Chen Q X, Gong Y S, Lin S, Dannenmann M. Do water-saving ground cover rice production systems increase grain yields at regional scales? [J]., 2013, 150(15): 19-28.
[19] Liu M J, Liang W L, Qu H, Zhi G Y, Chen Q X, Gong Y S, Lin S, Dannenmann M. Ground cover rice production systems are more adaptable in cold regions with high content of soil organic matter [J]., 2014, 164(1): 74-81.
[20] Liu M J, Liang W L, Qu H, Zhi G Y, Chen Q X, Gong Y S, Lin S, Dannenmann M. Ground cover rice production systems increase soil carbon and nitrogen stocks at regional scale[J]., 2015, 12(15): 4831- 4840.
[21] Tao Y Y, Qu H, Li Q J, Gu X H, Zhang Y A, Liu M J, Guo L, Liu J, Wei J J, Shen K R, Dittert K, Lin S. Potential to improve N uptake and grain yield in water saving ground cover rice production system [J]., 2014, 168(2): 101-108.
[22] Tao Y Y, Zhang Y A, Jin X X, Qu H, Li Q J, Gu X H, Liu M J, Guo L, Liu J, Wei J J, Shen K R, Dittert K, Lin S. More rice with less water: Evaluation of yield and resource use efficiency in ground cover rice production system with transplanting[J]., 2015, 68: 13-21.
[23] Li Y S, Wu L H, Zhao L M, Lu X H, Fan Q L, Zhang F S. Influence of continuous plastic film mulching on yield, water use efficiency and soil properties of rice fields under non-flooding condition[J]., 2007, 93(2): 370-378.
[24] Fan X L, Zhang J P, Wu P. Water and nitrogen use efficiency of lowland rice in ground covering rice production system in south China[J]., 2002, 25(9): 1855-1862.
[25] 路兴花, 吴良欢, 刘铭, 杨联丰. 覆膜旱作对水稻生长发育及某些生理特性的影响[J]. 浙江大学学报: 农业与生命科学版, 2002(6): 22-27.
Lu X h, Wu L h, Liu M, Yang L F. Effects of soil moisture under plastic film mulching on the biological and yield characteristics of rice(L.) [J]., 2002(6): 22-27. (in Chinese with English abstract)
[26] 樊红柱, 曾祥忠, 张冀, 吕世华. 覆盖旱作水稻的生长及水分利用效率研究[J]. 西南农业学报, 2010, 23(2): 349-353.
Fan H z, Zeng X z, Zhang W, Lu S h. Effects of different mulch modes on rice production and water utilization efficiency[J]., 2010, 23(2): 349-353. (in Chinese with English abstract)
[27] 张自常, 孙小淋, 陈婷婷, 刘立军, 杨建昌. 覆盖旱种对水稻产量与品质的影响[J]. 作物学报, 2010, 36(2): 15.
Zhang Z C, Sun X L, Chen T T, Liu L J, Yang J C. Effects of non-flooded mulching cultivation on the yield and quality of rice [J]., 2010, 36(2): 15. (in Chinese with English abstract)
[28] 凌启鸿, 蔡建中, 苏祖芳.叶龄余数在稻穗分化进程鉴定中的应用价值[J]. 中国农业科学, 1980(4): 1-11.
Ling Q H, Cai J Z, Su Z F. The practical value of using the ‘leaf index’ and ‘leaf remainder’ in determining the stages of panicle differentiation in rice [J]., 1980, 13(4): 1-11. (in Chinese with English abstract)
[29] 国家质量技术监督局. 优质稻谷: GB/T17891−1999[S]. 北京: 中国标准出版社, 1999.
Supervising Department of Quality and Technology of China. Good Quality of Rice Grains: GB/T17891− 1999[S]. Beijing: Standards Press of China, 1999. (in Chinese with English abstract)
[30] 中华人民共和国农业部. 优质食用稻米: NY147−88[S]. 北京: 中国标准出版社, 1988.
Ministry of Agriculture, The People’s Republic of China. Good Quality and Edible Rice Grains: NY147−88[S]. Beijing: Standards Press of China, 1988. (in Chinese with English abstract)
[31] Qu H, Tao H H, Tao Y Y, Liu M J, Lin K R, Lin S. Ground cover rice production system increases yield and nitrogen recovery efficiency[J]., 2012, 104(5): 1399.
[32] Liu X J, Wang J C, Lu S H, Zhang F S. Effects of non-flooded mulching cultivation on crop yield, nutrient uptake and nutrient balance in rice-wheat cropping systems[J]., 2003, 83(3): 297-311.
[33] 梁永超, 胡锋, 杨茂成, 朱遐亮, 王广平, 王永乐. 水稻覆膜旱作高产节水机理研究[J]. 中国农业科学,1999, 32(1): 26-32.
Liang Y C, Hu F, Yang M C, Zhu X L, Wang G P, Wang Y L. Study on high yield and water saving mechanism of rice covered with plastic film mulched dryland [J]., 1999, 32(1): 26-32. (in Chinese with English abstract)
[34] 沈康荣, 罗显树. 水稻地膜湿润栽培试验示范[J]. 湖北农业科学, 1997(5): 18-22.
Shen K R, Luo X S. Experimental demonstration of wet cultivation of rice mulching film [J]., 1997(5): 18-22. (in Chinese with English abstract)
[35] Zhuang S Y, Wang M K. Model estimation of ammonia volatilization from a paddy rice field after application of a surface film-forming material[J]., 2010, 148(1): 95.
[36] Yang J, Zhang J. Crop management techniques to enhance harvest index in rice[J]., 2010, 61(12): 3177-3189.
[37] Tao H, Dittert K, Zhang L M, Lin S, Römheld V, Sattelmacher B. Effects of soil water content on growth, tillering, and manganese uptake of lowland rice grown in the water-saving ground-cover rice-production system (GCRPS)[J]., 2007, 170(1):7-13.
[38] 刘军, 刘美菊, 官玉范, 曹峻, 戢正华, 李家军, 汪晓春, 沈康荣, 林杉. 水稻覆膜湿润栽培体系中的作物生长速率和氮素吸收速率[J]. 中国农业大学学报, 2010, 15(2): 9-17.
Liu J, Liu M j, Guo Y f, Cao J, Ji Z H, Li J J, Wan X C, Shen K R, Lin S. Grain yield and nitrogen uptake were affected by the Ground-Cover-Rice-Production-System with plastic film covering[J]., 2010, 15(2): 9-17. (in Chinese with English abstract)
[39] Zhou S D, Herzfeld T, Glauben T , Zhang Y H, Hu B C. Factors affecting chinese farmers' decisions to adopt a water-saving technology[J]., 2008, 56(1): 51-61.
[40] 路兴花, 吴良欢, 庞林江. 覆膜后土壤水分对水稻生物学特性和产量的影响[J]. 浙江农业学报, 2009, 21(5): 463-467.
Lu X H, Wu L H, Pang L J. Effects of soil moisture under plastic film mulching on the biological and yield characteristics of rice[J]., 2009, 21(5): 463-467. (in Chinese with English abstract)
[41] Thakur A K, Rath S, Patil D U, Kumar A. Effects on rice plant morphology and physiology of water and associated management practices of the system of rice intensification and their implications for crop performance[J]., 2011, 9(1): 13-24.
[42] 何文清, 赵彩霞, 刘爽, 严昌荣, 常蕊芹, 曹肆林. 全生物降解膜田间降解特征及其对棉花产量影响[J]. 中国农业大学学报, 2011, 16(3): 21-27.
He W q, Zhao C x, Liu S, Yan C R, Chang R Q, Cao S L. Study on the degradation of biodegradable plastic mulch film and its effect on the yield of cotton [J]., 2011, 16(3): 21-27. (in Chinese with English abstract)
[43] 王宁, 冯克云, 南宏宇, 李亚兵. 生物降解膜对甘肃河西棉花的生态生物学效应[J]. 应用生态学报, 2018, 29(11): 3607-3614.
Wang N, Feng K y, Nan H y, Li Y b. Ecological and biological effects of biodegradable film on cotton in Hexi area of Gansu, Northwest China[J]., 2018, 29(11): 3607-3614. (in Chinese with English abstract)
[44] 盛海君, 沈其荣, 封克. 覆盖旱作水稻群体发育特征分析[J]. 应用生态学报, 2004, 15(1): 59-62.
Sheng H J, Shen K R, Feng K. Growth and developmental characteristics of rice cultivated in aerobic soil mulched with straw [J]., 2004, 15(1): 59-62. (in Chinese with English abstract)
[45] Zhang Z C, Xue Y G, Wang Z Q, Yang J C, Zhang J H. The relationship of grain filling with abscisic acid and ethylene under non-flooded mulching cultivation [J]., 2009, 147(4): 423-436.
[46] Hai L, Li X, Liu X. Plastic mulch stimulates nitrogen mineralization in urea-amended soils in a semiarid environment[J]., 2015, 107(3): 921-930.
[47] Zhang Y A, Liu M J, Dannenmann M, Tao Y Y, Yao Z S, Jing R Y, Lin S. Benefit of using biodegradable film on rice grain yield and N use efficiency in ground cover rice production system [J]., 2017, 201: 52-59.
[48] Fageria N K. Yield Physiology of Rice[J]., 2007, 30(6): 843-879.
[49] Zhang Y A, Liu M J, Saiz G,Dannenmann M, Guo L, Tao Y Y, Shi J C, Zuo Q, Lin S. Enhancement of root systems improves productivity and sustainability in water saving ground cover rice production system[J]., 2017, 213: 186-193.
[50] 徐国伟, 王朋, 唐成, 王志琴, 刘立军, 杨建昌. 旱种方式对水稻产量与品质的影响[J]. 作物学报, 2006, 32(1): 112-117.
Xu G W, Wang P, Tang C, Wang Z Q, Liu L J, Yang J C. Effect of dry-cultivation patterns on the yield and quality of rice[J]., 32(1): 112-117. (in Chinese with English abstract)
[51] Dou Z, Tang S, Chen W, Zhang H, Li G, Liu Z, Ding C, Chen L, Wang S, Zhang H, Ding Y. Effects of open-field warming during grain-filling stage on grain quality of two japonica rice cultivars in lower reaches of Yangtze River delta[J]., 2018, 81(6): 118-126.
[52] 戴云云, 丁艳锋, 刘正辉, 王强盛, 李刚华, 王绍华. 花后水稻穗部夜间远红外增温处理对稻米品质的影响[J]. 中国水稻科学, 2009, 23(4): 414-420.
Dai Y Y, Ding Y F, Liu Z H, Wang Q S, Li H G, Wang S H. Effects of elevated night temperature by far-infrared radiation at grain filling on grain quality of rice[J]., 2009, 23(4): 414-420. (in Chinese with English abstract)
[53] 刘立军, 李鸿伟, 赵步洪, 王志琴, 杨建昌. 结实期干湿交替处理对稻米品质的影响及其生理机制[J]. 中国水稻科学, 2012, 26(1): 77-84.
Liu L J, Li H W, Zhao B H, Wang Z Q, Yang J C. Effects of alternate drying-wetting irrigation during grain filling on grain quality and its physiological mechanisms in rice[J]., 2012, 26(1): 77-84. (in Chinese with English abstract)
[54] Jin X X, Zuo Q, Ma W W, Li S, Shi J C, Tao Y Y, Zhang Y A, Liu Y, Liu X F, Lin S. Water consumption and water-saving characteristics of a ground cover rice production system[J]., 2016, 540: 220-231.
[55] Raju G N, Srinivas T. Effect of physical, physiological, and chemical factors on the expression of chalkiness in rice[J]., 1991, 68(2): 210-211.
[56] Tsukaguchi T, Taniguchi Y, Ito R. The effects of nitrogen uptake before and after heading on grain protein content and the occurrence of basal- and back-white grains in rice (, L.)[J]., 2016: 1-10.
Effect of Biodegradable Film Mulching on Growth and Quality of Mechanically Transplanted Rice (L.)
HU Guohui1, SONG Shunqi2, XIANG Jing1, ZHU Defeng1, CHEN Huizhe1, ZHANG Yikai1, WANG Yaliang1, XU Yicheng1, YI Zihao1, WANG Junke1, ZHANG Yuping1,*
(China National Rice Research Institute/State Key Laboratory of Rice Biology,,;General Station of Agricultural Technology Extension in Liuhe County,,;*Corresponding author, E-mail: cnrrizyp@163.com
【】Our aim is to reveal the effects of biodegradable film mulching on the growth and quality of mechanically transplanted rice in different ecological areas, and provid a method for the rice ecological planting.【】The biodegradable film mulching treatment was designed in early-season rice in southern area, single-season rice in northern area and single-season rice in southern area under mechanical transplanting with widely used Wuyoudao 4, Ezao 18 and Yongyou 538 as materials. We investigated the effects of biodegradable film mulching on soil temperature, mechanically transplanted rice growth and quality in different ecological areas.【】1) The effect of temperature increase: The film mulching had a better temperature increasing effect on mulched rice in northern area, which was mainly concentrated in the early period of growth, especially in the period from transplanting to panicle initiation; the average daily increase in soil temperature was 2.76℃. 2) Change of growth period: the growth period of rice was shortened in both northern and southern areas. The maturing stage of film-mulched rice was 7 days earlier in the norther area and 3 days earlier in the southern area. 3) Leaf age: biodegradable-film mulching promoted the growth of leaves and increased the rate of leaf emergence of rice in the northern and southern areas. In the early growth stage, the number of emerged leaves of the northern film mulched rice was 0.6~0.9 more than that of the control. 4) Plant height: the plant height of rice decreased in both northern and southern areas, while that of northern rice was significantly decreased by 5.7 cm. 5) Number of stems and tillers: the mulching treatment promoted the growth of rice tillers, and significantly increased the effective tillers number per hm2of northern single-season rice by 357,000 compared with the control. 6) Shoot dry weight: the dry matter accumulation of single-season rice with biodegradable film mulched in northern area at panicle initiation stage, full heading stage and maturing stage was significantly higher than that of control, while that of early-season biodegradable film-mulched rice in southern area at maturing stage was significantly higher than that of control, that of single-season biodegradable film-mulched rice in southern area at full heading stage was significantly less than that of control. 7) Yield increasing effect: the yield of film-mulched rice in the northern and southern areas increased significantly. The yield of film-mulched single-season rice in northern area increased by 8.7%, early-season rice in southern area by 7.9%, and single-season rice in southern by only 4.1%. 8) Quality comparison: the brown rice, milled rice and protein contents were significantly improved by biodegradable film mulching in single-season rice in northern area, while the head rice was significantly increased in single-season biodegradable film-mulched rice in southern area, and the same results were obtained in southern early rice, but not significantly.【】The planting mode of biodegradable film mulching and mechanical transplanting can promote the growth and development of rice and increase the yield of rice in both ecological regions. For rice quality, the northern film-mulched rice had improved milling quality of rice, but the eating quality decreased, and the southern film-mulched rice had improved milling quality, but the appearance quality became worse. The comparison between the northern and southern film-mulched rice showed that planting mode of biodegradable film mulching and mechanical transplanting had better promotion and yield-increasing effect on the northern rice, and reduced the environmental pollution caused by plastic film in the production of rice, and provide a new way for the green and high-quality production of rice.
biodegradable film; mechanical transplanting; rice growth; rice quality
S511.48
A
1001-7216(2020)02-0159-12
10.16819/j.1001-7216.2020.9081
2019-07-12;
2019-08-12。
国家重点研发专项(2016YFD0200801, 2017YFD0300409);现代农业产业技术体系建设专项(CARS-01-22)。