不同质地裸土潜水蒸发估算方法
2020-03-03刘佩贵尚熳廷
刘佩贵,夏 艳,尚熳廷
不同质地裸土潜水蒸发估算方法
刘佩贵1,夏 艳1,尚熳廷2※
(1. 合肥工业大学土木与水利工程学院,合肥 230009;2. 合肥工业大学汽车与交通工程学院,合肥 230009)
为定量分析裸土区潜水蒸发与水面蒸发的关系,该文通过自制试验装置,对粗砂、细砂、壤土和砂土4种质地土壤开展了二者之间相关关系的试验研究。结果表明:相同条件下,不同土壤质地的潜水蒸发与水面蒸发量不相等,二者之间存在一个折算系数,除粗砂外,细砂、壤土和砂土的折算系数均大于1,二者表现出较强的线性相关性,基于该相关性,建立了数学关系表达式。与实测数据的对比分析表明,若用水面蒸发强度代替潜水蒸发,相对误差达-17.79%,这将不可避免地影响到潜水蒸发计算结果的精度;而通过二者相关关系建立的折算系数法,可将相对误差减小至-1.94%,有效提高了潜水蒸发计算结果的可靠度。
蒸发;土壤;质地;相关关系;潜水埋深;裸土
0 引 言
潜水蒸发是陆面蒸发、水文循环的重要组成部分,是浅层地下水的主要消耗项之一,同时也是土壤盐碱化的主要驱动因素之一[1-4]。开展潜水蒸发相关方面的研究,不仅可以深入理解蒸发在水文循环中的作用、提高地下水资源评价结果的可靠度,也有助于揭示土壤盐碱化形成机制。在将潜水蒸发应用于上述研究领域时,地下水水位埋深为0时的潜水蒸发量(0)是不可缺少的重要指标[5-7],该值的大小直接影响到潜水蒸发计算结果的精度。通常认为0近似等于大气蒸发强度,可用水面蒸发强度代替[6, 8-9]。实际上潜水蒸发是指潜水在土壤吸力作用下,向包气带土壤中输送水分,并通过土壤蒸发或(和)植物蒸腾进入大气的过程,水面蒸发是指水面的水分从液态转化为气态逸出水面的过程[10-14],二者蒸发过程存在差异。存在差异的主要原因是土壤质地[11, 15-16],土壤质地是影响土壤导水能力的重要因素,即使在相同的外部条件下,不同土壤质地的土壤水分运移过程也存在差异[17-19],并且对于不同的土壤质地来说,由于孔隙尺度以及连通性等特性不同,在太阳辐射等自然条件下土壤和水的响应程度也有差别,此时土壤含水率和土壤温度会因不同的响应程度发生变化,进而影响潜水蒸发速率和整个蒸发过程[20-22]。可见,潜水蒸发和水面蒸发的影响因素和对外界的响应程度有所不同,因此,忽略这些差异,直接用水面蒸发强度代替0必然会产生误差,影响计算结果的精度。
当前虽有学者认为不能用水面蒸发强度代替0,如张永明等[23-24]认为当潜水埋深为0时潜水蒸发等于水面蒸发与实际情况不完全一致;尚松浩等[13]认为可在两者间增加1个系数来改进;邢旭光等[25-27]对不同土壤质地0和水面蒸发强度进行比较,发现不同土壤质地的计算结果存在不同程度的差异。这些研究文献仅指出了二者之间存在差异,并未构建二者之间的定量关系表达式,为此,本文以不同土壤质地为例,通过自制室外柱试验装置,以裸土为例,探讨0与水面蒸发的定量关系,以期进一步提高潜水蒸发量计算结果的可靠度。
1 材料与方法
1.1 试验装置
为对比不同土壤质地条件下二者之间的定量关系,本文自制了一套试验装置(图1),装置主体为直径分别为60、25 mm的同心环,高均为42 mm,底部密封,顶部开口,外环填充40 mm高的试样;内环侧壁布有均匀的小孔,并用过滤网包裹,内环装水,保持内环水面高度与外环试样高度齐平,且内环上部密封。
该试验操作的关键问题之一为如何合理控制潜水水位埋深为0,因为随着蒸发的进行,必然引起试样中的水位下降。为尽量减小补水所产生的误差,并保证蒸发的同时水位埋深始终为0,研制了潜水蒸发的自动补水装置。将50 mL规格试管进行改装(试管的量程应略大于相邻2次读数间隔时间内的蒸发量),上部密封,为防止水附着在试管内壁,试管底部侧边开1个30°左右的斜口,装满水后竖直倒扣在内环水面上,在大气压作用下试管口与水面接触,用蝴蝶夹固定在铁架台上。根据连通器原理,若试样中水位下降,则内环中的水及时补充,而试管中的水在重力的作用下,及时补充到内环中,从而使砂样中的水位埋深保持为0,当试验中的水即将用完时对水进行补充。
图1 潜水埋深为0的蒸发试验装置示意图
1.2 试验方案
本试验重在探讨潜水埋深为0时潜水蒸发与水面蒸发的关系,为便于对比分析试验结果,在合肥工业大学校内试验场地取了土样和砂样,烘干、过2m筛后,选取了粗砂、细砂、壤土、砂土4种均质试验材料。根据《土壤物理学》中的美国农部土壤质地划分标准[28],壤土和砂土的颗粒组成分别为砂粒60%、粉粒40%和砂粒90%、粉粒10%,不同方案之间的区别主要是质地不同。为了降低测量尺度对测定结果精度的影响,水面蒸发的测量装置与土样完全相同,即填充土样部分全部充满水。所有试验环境均在自然条件下进行,温度为室外环境温度。
基于本试验设计的试验装置,考虑到各试验材料的毛细上升高度,本文潜水水位埋深为0指的是表面没有积水但湿润的状态。试验过程中,每天08:00读取试管读数,根据试验条件,试管中减少的水量是由于蒸发引起的,故试管中减少的水量即为相邻2个观测时段内蒸发的水量,再根据式(1)折算成相应的潜水蒸发量和水面蒸发量。
1.3 潜水蒸发计算方法
1.3.1 潜水埋深为0处潜水蒸发量
1)替代法
采用实测水面蒸发量代替潜水埋深为0处的潜水蒸发量。
2)系数法
通过回归方程分析,二者间的关系可拟合为
0=αE(2)
式中0为潜水埋深为0时的裸土潜水蒸发量,mm/d;E为相同条件下的水面蒸发量,mm/d;为拟合系数,与土壤质地等影响因素有关。
1.3.2 不同潜水埋深处潜水蒸发量
用阿维里扬诺夫公式(式(3))计算潜水埋深0.4 m处的潜水蒸发量为
式中为潜水蒸发量,mm/d;为监测时间段内地下水的平均埋藏深度,mm;max为潜水蒸发极限埋深,mm;为与土壤质地、气候有关的蒸发指数,一般为1~3。
2 结果与分析
2.1 日蒸发量对比分析
为进一步验证测定数据的有效性,基于试验装置,自2016—2019年共重复开展了3次该试验方案下的试验,3次数据的趋势相同(受篇幅限制,未列出),表明了测量数据的有效性及合理性。因3次试验的观测日期和气象条件不完全相同,不宜取平均值进行分析,且通过后续研究发现折算系数主要与土壤质地和有无植被有关,因此仅选取其中最具代表性的1组试验数据进行结果分析。根据试验观测数据得到潜水埋深为0时每个观测时间段的潜水日蒸发量和水面日蒸发量以及气温变化情况,如图2所示。
图2 日蒸发量过程线
对比分析图2中的日蒸发量变化过程线可以看出,观测前期(12月24日—2月25日)正好属于冬季,气温偏低,且气温变幅较小,而冬季蒸发主要受气温因素控制[15, 29-30],各试样的日蒸发量变化幅度也相对较小。观测后期(2月25日—4月29日)逐渐进入春季,气温开始逐渐升高,此时日蒸发量也表现出增大的趋势。其中,在2月27日—3月2日及3月23日时出现温度较高但蒸发量偏低的情况,主要是由于这几天天气为小到中雨,空气湿度较大。试验期间蒸发量的观测数据与理论分析趋势一致,也间接表明了数据的有效性。
试验期间0和水面蒸发量的变化趋势基本一致,气温越高,蒸发量越大。但不同观测时段不同试样的0与水面蒸发量并不完全相等,大体趋势是砂土和壤土的0均明显高于水面蒸发量,细砂的0总体上略高于水面蒸发量,而粗砂的0则呈现出略低于水面蒸发量的现象,且随着气温的升高,二者之间的差异性越明显。以3月30日的观测值为例,气温、日照、风速等外界环境相同条件下,细砂、粗砂、壤土、砂土的0值分别为9.10、7.86、9.81、10.36 mm,水面蒸发量为8.39 mm,分别相差0.71、−0.53、1.42、1.97 mm,差值分别占潜水蒸发量的7.80%、−6.74%、14.48%、19.02%。由此可见,相同外界环境条件下,不同质地试样0与水面蒸发量之间的差异较明显,且随着气温升高,差异性越显著。
2.2 E0与水面蒸发量之间的定量关系分析
为进一步定量研究0与水面蒸发量的关系,绘制了0与水面蒸发量的散点图(图3)。
注:R2是决定系数。所有模型P<0.05。
由图3可知,不同质地试样0值与水面蒸发量线性关系的判定系数均大于0.97,其中,细砂的判定系数达到了0.99,相关性显著;且线性拟合系数均不等于1,细砂、粗砂、壤土、砂土的线性拟合系数分别为1.04、0.94、1.14、1.19,拟合系数不为1。因0值与水面蒸发量之间的关系是线性的,方程的拟合系数即为折算系数,也就是说,细砂、粗砂、壤土、砂土的0值与水面蒸发的折算系数分别为1.04、0.94、1.14、1.19。若仍用水面蒸发量代替埋深为0时的潜水蒸发量0,不可避免地影响到潜水蒸发计算结果的精度。
2.3 模型验证
以五道沟试验场的壤土和砂土为例,选取2018年1月五道沟气象观测场的实测数据进行分析,用阿维里扬诺夫公式(式(3))计算潜水埋深0.4 m处的潜水蒸发量,计算结果如表1所示。为便于对分析计算结果的科学表述,本文将直接用水面蒸发量代替0值计算潜水蒸发量的方法称为替代法;将用折算系数与水面蒸发量的乘积计算潜水蒸发量的方法称为0系数法。
由表1可以看出,利用不同的方法计算得到的0值代入到阿维里扬诺夫公式中计算潜水蒸发量的精度有一定的差异。当潜水埋深为0.4 m时,用替代法和0系数法计算出的壤土潜水蒸发量与实测值的差值分别为−1.93 mm、0.42 mm,相对误差分别为−10.30%、2.25%;用替代法计算出的砂土潜水蒸发量与实测值小5.11 mm,相对误差为−17.79%,而用0系数法计算出的砂土潜水蒸发量仅小于实测值0.56 mm,相对误差为−1.94%,0系数法的计算误差相对较小。由此可见,计算不同深度处潜水蒸发强度时,直接用水面蒸发量代替0必然会引起较大的误差;而根据0系数法计算的潜水蒸发强度值误差更小,更接近于实测值,提高了潜水蒸发计算结果的可靠度。
表1 不同计算方式下潜水蒸发量计算结果
注:潜水埋深为0.4 m。
Note: Groundwater table is 0.4 m.
综合试验结果可以看出,由于潜水蒸发和水面蒸发过程的差异性,不同土壤质地的0与相同条件下的水面蒸发量并不相等。太阳辐射是蒸发的主要来源,太阳辐射强度和时长会引起地表温度的变化,进而影响水的物理特性和土水势等方面,最终表现在水分运动的方向和速率上,因此气温越高时土壤质地的0值与水面蒸发量差异性越明显,但二者表现出极强的线性相关性。
土壤质地是影响土壤导水能力和土壤水分运动的主要因素,虽本次试验均在相同的室外自然环境下进行,但不同质地试样蒸发对外界的响应能力不同。在环境温度较高、太阳辐射较强时,温度升高,加快土壤水分运移过程和液态水、气态水的相互转化过程,此时水汽逸散加剧,加快了整个潜水蒸发和水面蒸发过程,但因为不同土壤质地和水的比辐射率不同,因此热辐射能力有所差异。
一般来说,壤土和砂土因颜色较深,表面粗糙度较大,能吸收和储存到的太阳辐射能较多,可迅速地形成上部土壤温度大于下部土壤温度的温度梯度,而细砂、粗砂和水的颜色较浅,表面相对光滑,所能吸收转化的太阳辐射能相对较少,砂土的颗粒组成又相对均匀,因此壤土和砂土的0值均明显高于水面蒸发量,砂土的0值又高于壤土。细砂、粗砂和水的颜色虽都较浅,但细砂的比热容比水的比热容小,升温较快,同时细砂的含水孔隙和表面粗糙度较大,因此与大气直接交换的空间较大,土壤水分运移速率和水汽逸散速率较快,最终细砂的0值略大于水面蒸发量。粗砂的比热容虽也较小,但因其机械组成的相对不均匀性,其土壤水分运移和水汽逸散过程存在一定的滞后性,因此粗砂的0值略低于水面蒸发量。而在阴雨及雾霾等天气,太阳辐射和温度对蒸发的影响减弱,此时空气中的相对湿度增加,对整个潜水蒸发和水面蒸发过程产生了一定的抑制作用,水汽逸散减弱,蒸发量明显减小。但也因质地的不同,空气中的相对湿度对蒸发的抑制程度有所差异,因此在阴雨等太阳辐射较弱的外界条件下,不同土壤质地的0值与水面蒸发量也不等。
由上述分析可知,不同土壤质地的0与相同条件下的水面蒸发量并不相等。受太阳辐射、气温、土壤质地等综合因素的影响,相同条件下粗砂的0值小于水面蒸发量,其他土壤质地的0值均大于水面蒸发量,确定的不同土壤质地的0值与水面蒸发量的定量关系与机理分析结果相一致。
3 结 论
本文基于构建的裸土潜水蒸发和水面蒸发的试验模型,开展了潜水埋深为0时的蒸发试验研究,试验结果表明,相同条件下,裸土区不同土壤质地的潜水蒸发量(0)与水面蒸发量不相等,0与水面蒸发量之间呈现较强的线性相关性,二者之间存在一个折算系数,裸土条件下,该系数与土壤质地有关。一般地,在合肥类似气候条件的地区,粗砂的折算系数为0.94,细砂、壤土和砂土的折算系数分别为1.04、1.14和1.19,即粗砂的0值小于水面蒸发量,细砂、壤土和砂土的0值均大于水面蒸发量,且砂土的差值最大。明确了二者之间的相关关系,不仅可以通过水面蒸发数据简便获得0,还可以提高潜水蒸发计算结果的精度。
现阶段,本文仅围绕裸土区构建了不同土壤质地的0与水面蒸发二者之间的定量关系,但折算系数与土壤质地、有无植被等影响因素有关。因此在有植被覆盖条件下二者之间的定量关系研究,还有待于进一步探讨。此外,受试验条件和试验时间限制,试验不可能穷尽所有可能的气象条件和影响因素,需要通过建立潜水蒸发模型深入研究不同因素对计算结果可靠度的影响,这些均是下一步研究的重点内容。
[1] Fan J, Oestergaard K T, Guyot A. Estimating groundwater recharge and evapotranspiration from water table fluctuations under three vegetation covers in a coastal sandy aquifer of subtropical Australia[J]. Journal of Hydrology, 2014, 519: 1120-1129.
[2] 於嘉闻,贾瑞亮,周金龙. 新疆潜水蒸发试验研究进展[J]. 地下水,2016,38(1):16-18.
Yu Jiawen, Jia Ruiliang, Zhou Jinlong. Summary of evaporation from phreatic water in Xinjiang[J]. Ground water, 2016, 38(1): 16-18. (in Chinese with English abstract)
[3] 贾瑞亮,周金龙,周殷竹,等. 干旱区高盐度潜水蒸发条件下土壤积盐规律分析[J]. 水利学报,2016,47(2):150-157.
Jia Ruiliang, Zhou Jinlong, Zhou Yinzhu, et al. Analysis on law of soil salt accumulation under condition of high salinity phreatic water evaporation in arid areas[J]. Journal of Hydraulic Engineering, 2016, 47(2): 150-157. (in Chinese with English abstract)
[4] 贾瑞亮,周金龙,高业新,等. 干旱区高盐度潜水蒸发规律初步分析[J]. 水科学进展,2015,26(1):44-50.
Jia Ruiliang, Zhou Jinlong, Gao Yexin, et al. Preliminary analysis on evaporation rules of high-salinity phreatic water in arid area[J]. Advances in Water Science, 2015, 26(1): 44-50. (in Chinese with English abstract)
[5] 阿维里扬诺夫. 防治灌溉土地盐渍化的水平排水设施[M]. 北京:中国工业出版社,1985:56-61.
[6] 罗玉峰,毛怡雷,彭世彰,等. 作物生长条件下的阿维里扬诺夫潜水蒸发公式改进[J]. 农业工程学报,2013,29(4):102-109.
Luo Yufeng, Mao Yilei, Peng Shizhang, et al. Modified Aver’yanov’s phreatic evaporation equations under crop growing[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of CSAE), 2013,29(4): 102-109. (in Chinese with English abstract)
[7] 叶水庭,施鑫源,苗晓芳. 用潜水蒸发经验公式计算给水度问题的分析[J]. 水文地质工程地质,1982(4):45-48.
[8] 王小赞,孔凡哲. 有作物条件下的潜水蒸发计算方法[J]. 人民黄河,2014,36(2):40-42.
Wang Xiaozan, Kong Fanzhe. Calculation method for groundwater evaporation under crop growth[J]. Yellow River, 2014, 36(2): 40-42. (in Chinese with English abstract)
[9] 付秋萍,张江辉,王全九. 常用潜水蒸发经验公式在新疆地区适用性研究[J]. 干旱地区农业研究,2008,26(3):182-188.
Fu Qiuping, Zhang Jianghui, Wang Quanjiu. Adaptability study on empirical formulae of frequent phreatic evaporation in Xinjiang[J]. Agricultural Research in the Arid Areas, 2008, 26(3): 182-188. (in Chinese with English abstract)
[10] 苗春燕,陈军锋,郑秀清,等. 冻融作用下潜水蒸发研究进展及内涵[J]. 人民珠江,2017,38(1):1-4.
Miao Chunyan, Chen Junfeng, Zheng Xiuqing, et al. Research progress and connotation of phreatic water evaporation affected by freezing and thawing[J]. Pearl River, 2017, 38(1): 1-4. (in Chinese with English abstract)
[11] 束龙仓,荆艳东,黄修东,等. 改进的无作物潜水蒸发经验公式[J]. 吉林大学学报:地球科学版,2012,42(6):1859-1865.
Shu Longcang, Jing Yandong, Huang Xiudong, et al. On the development of improved empirical formulas for calculating the phreatic water evaporation for bare land[J]. Journal of Jilin University: Earth Science Edition, 2012, 42(6): 1859-1865. (in Chinese with English abstract)
[12] 王振龙,章启兵,李瑞. 淮北平原区水文实验研究[M]. 合肥:中国科学技术大学出版社,2011:67-93.
[13] 尚松浩,毛晓敏. 潜水蒸发研究进展[J]. 水利水电科技进展,2010,30(4):85-89.
Shang Songhao, Mao Xiaomin. Research progress on evaporation from phreatic water[J]. Advances in Science and Technology of Water Resources, 2010, 30(4): 85-89. (in Chinese with English abstract)
[14] Peixinho J, Lefèvre G, Coudert F, et al. Water evaporation in silica colloidal deposits[J]. Journal of Colloid and Interface Science, 2013, 408: 206-211.
[15] Teng J, Zhang X, Zhang S, et al. An analytical model for evaporation from unsaturated soil[J]. Computers and Geotechnics, 2019, 108: 107-116.
[16] 罗玉峰,李思,彭世彰,等. 灌区潜水蒸发有效性评价[J]. 水利水电科技进展,2014,34(4):5-9.
Luo Yufeng, Li Si, Peng Shizhang, et al. Assessment of effectiveness of groundwater evapotranspiration in an irrigation district[J]. Advances in Science and Technology of Water Resources, 2014, 34(4): 5-9. (in Chinese with English abstract)
[17] 郝振纯,陈玺,王加虎,等. 淮北平原裸土潜水蒸发趋势及其影响因素分析[J]. 农业工程学报,2011,27(6):73-78.
Hao Zhenchun, Chen Xi, Wang Jiahu, et al. Trend and impact factors of evaporation from shallow phreatic groundwater of bare soil on Huaibei Plain in China[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of CSAE), 2011, 27(6): 73-78. (in Chinese with English abstract)
[18] Balugani E, Lubczynski M W, van der Tol C, et al. Testing three approaches to estimate soil evaporation through a dry soil layer in a semi-arid area[J]. Journal of Hydrology, 2018, 567: 405-419.
[19] 刘悦,鞠琴,舒心怡,等. 裸地土壤蒸发与不同驱动要素之间的响应关系[J]. 华北水利水电大学学报:自然科学版,2018,39(3):50-54.
Liu Yue, Ju Qin, Shu Xinyi, et al. Response relationships between bare land soil evaporation and different drivers[J]. Journal of North China University of Water Resources and Electric Power: Natural Science Edition, 2018, 39(3): 50-54. (in Chinese with English abstract)
[20] An N, Hemmati S, Cui Y, et al. Numerical investigation of water evaporation from Fontainebleau sand in an environmental chamber[J]. Engineering Geology, 2018, 234: 55-64.
[21] Banimahd S A, Zand-Parsa S. Simulation of evaporation, coupled liquid water, water vapor and heat transport through the soil medium[J]. Agricultural Water Management, 2013, 130: 168-177.
[22] 王苏玉. 不同土质土壤水分运移规律研究[J]. 四川环境, 2018,37(2):7-12.
Wang Suyu. Study on the law of soil water movement in different soil texture[J]. Sichuan Environment, 2018, 37(2): 7-12. (in Chinese with English abstract)
[23] 张永明,胡顺军,翟禄新,等. 塔里木盆地裸地潜水蒸发计算模型[J]. 农业工程学报,2009,25(1):27-32.
Zhang Yongming, Hu Shunjun, Zhai Luxin, et al. Models for calculating phreatic evaporation from bare soil in Tarim Basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(1): 27-32. (in Chinese with English abstract)
[24] 胡顺军. 计算裸地潜水蒸发量的反S型曲线模型[J]. 干旱区地理,2016,39(2):233-239.
Hu Shunjun. Inverse “S” model for calculation of phreatic evaporation from bare soil[J]. Arid Land Geography, 2016, 39 (2): 233-239. (in Chinese with English abstract)
[25] 邢旭光,史文娟,王全九. 对常用潜水蒸发经验模型中E0值的探讨[J]. 干旱地区农业研究,2013,31(4):57-60.
Xing Xuguang, Shi Wenjuan, Wang Quanjiu. Discussion on E0value in common groundwater evaporation empirical models[J]. Agricultural Research in the Arid Areas, 2013, 31(4): 57-60. (in Chinese with English abstract)
[26] 付秋萍,张江辉,王全九. E0值对潜水蒸发计算精度影响分析[J]. 干旱区地理,2007,30(6):820-825.
Fu Qiuping, Zhang Jianghui, Wang Quanjiu. Impact of E0value on calculation accuracy of phreatic evaporation empirical formulae[J]. Arid Land Geography, 2007, 30(6): 820-825. (in Chinese with English abstract)
[27] 胡顺军,宋郁东,田长彦,等. 潜水埋深为零时塔里木盆地不同土质潜水蒸发与水面蒸发关系分析[J]. 农业工程学报,2005,21(增刊1):80-83.
Hu Shunjun, Song Yudong, Tian Changyan, et al. Relationship between water surface evaporation and phreatic water evaporation when phreatic water buried depth is zero for different soil in Tarim River basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(Supp 1): 80-83. (in Chinese with English abstract)
[28] 邵明安,王全九,黄明斌. 土壤物理学[M]. 北京: 高等教育出版社,2006.
[29] Yin X, Liu E, Song B, et al. Numerical analysis of coupled liquid water, vapor, stress and heat transport in unsaturated freezing soil[J]. Cold Regions Science and Technology, 2018, 155: 20-28.
[30] Yang K, Wang C. Water storage effect of soil freeze-thaw process and its impacts on soil hydro-thermal regime variations[J]. Agricultural and Forest Meteorology, 2019, 265: 280-294.
Estimation methods of phreatic evaporation for different textures in bare soil area
Liu Peigui1, Xia Yan1, Shang Manting2※
(1.230009,; 2.,230009,)
In order to quantitatively analyze the relationship between the phreatic evaporation and water surface evaporation of different soil textures in bare soil area, soils with different texture and sand samples were taken from the test site in Hefei University of Technology. After pretreatment such as drying and particles sieving, 4 types of homogeneous test materials were selected including coarse sand, fine sand, loam and sand soil. Then, a self-made phreatic evaporation measurement device was made with diameters of 60 and 25 mm and a height of 42 mm. It can easily solve the problem of automatic water replenishment during the evaporation process, so that the groundwater depth can always be 0. Based on the self-designed device, a total of 5 groups of comparative test schemes were constructed, including coarse sand, fine sand, loam, sandy soil and water in bare soil area. Under the same environmental conditions, daily phreatic evaporation of the 4 different soil textures and water surface evaporation were observed for a total of 127 days from December 24, 2018 to April 29, 2019. By analyzing the relationship between phreatic evaporation and water surface evaporation for soils with different textures, linear mathematical equations were established. The results revealed that the change trend of phreatic evaporation and water surface evaporation was basically the same during the experiment. The high air temperature would lead to larger soil evaporation. However, the phreatic evaporation of the 4 different soil textures was not equal to the water surface evaporation, and the difference between them was more significant as the air temperature was increased. The determination coefficients between phreatic evaporation value of different soil textures and the water surface evaporation were all greater than 0.97. Especially for fine sand, the correlation coefficient reached 0.99, which indicated that there was a significant correlation between phreatic evaporation and water surface evaporation (<0.05). And the conversion coefficients were achieved between them according to the linear mathematical equations. Generally, in soil bare areas with similar climatic conditions in Hefei, the conversion coefficient of coarse sand was 0.94, and the coefficients of fine sand, loam and sand are 1.04, 1.14 and 1.19, respectively. The phreatic evaporation value of coarse sand was less than the evaporation of water surface. The phreatic evaporation values of fine sand, loam and sand were greater than water evaporation. Under bare soil conditions, this conversion coefficient was only related to soil texture. In addition, the loam and sandy soil evaporation in the Wudaogou test site of Anhui Province, China was selected to verify the rationality of the conversion coefficient obtained above. The results showed that when the groundwater depth was 0.4 m, the relative error of the loam evaporation calculated by the substitution method and the phreatic evaporation coefficient method were -10.30% and 2.25%, respectively. Moreover, the sand evaporation calculated by the substitution method was 5.11 mm smaller than the measured value with a relative error of -17.79%, while the sand evaporation calculated using the phreatic evaporation coefficient method was only less than the measured value of 0.56 mm, and the relative error was reduced to -1.94%. Therefore, when calculating the phreatic evaporation at different groundwater depths, directly replacing phreatic evaporation with water surface evaporation would inevitably cause larger relative errors. However, the relative error of the calculation result obtained from the phreatic evaporation coefficient method was smaller, and the calculated value was much closer to the measured value. The coefficient method proposed in this paper would significantly improve the reliability and accuracy of the calculation results of phreatic evaporation.
evaporation; soils; texture; relationship; groundwater depth; bare soil
刘佩贵,夏 艳,尚熳廷. 不同质地裸土潜水蒸发估算方法[J]. 农业工程学报,2020,36(1):148-153.doi:10.11975/j.issn.1002-6819.2020.01.017 http://www.tcsae.org
Liu Peigui, Xia Yan, Shang Manting. Estimation methods of phreatic evaporation for different textures in bare soil area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 148-153. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.01.017 http://www.tcsae.org
2019-05-25
2019-10-10
水文水资源与水利工程科学国家重点实验室“一带一路”水与可持续发展科技基金(2018nkms06);国家自然科学基金(51509064)
刘佩贵,副教授,博士,主要从事水资源评价方面研究。Email:liupg2512@163.com
尚熳廷,讲师,博士,主要从事土壤水分运动物理规律模拟方面的研究。Email:hfut_smt@163.com
10.11975/j.issn.1002-6819.2020.01.017
S152.7+3
A
1002-6819(2020)-01-0148-06