焦磷酸盐在慢性肾脏病血管钙化中的研究进展
2019-12-16马宁刘玲
马宁 刘玲
[摘要]心血管疾病(CVD)是慢性肾脏病(CKD)患者最常见的并发症,且CVD又是CKD患者主要的死亡原因之一,而血管钙化是CVD发生的独立危险因素。CKD血管钙化是以心血管结构中磷酸钙以羟基磷灰石晶体的形式沉积为特征的病理学改变,其可导致管壁增厚和异位钙化。无机磷酸盐(PI)的转运是调节PI稳态和钙化过程的主要因素,PI受甲状旁腺激素和1,25-二羟基维生素D的调节。焦磷酸盐(PPI)是一种体内外强有力的抑制磷酸钙沉积的内源性抑制剂,血管钙化抑制剂的合成是细胞抑制血管钙化的主要机制。本文就PI的稳态、转运,PPI的代谢及PPI与CKD患者血管钙化的关系等作一综述,以期为这些患者开辟新的治疗选择。
[关键词]焦磷酸盐;磷酸盐;血管钙化;慢性肾脏病
[中图分类号] R692 [文献标识码] A [文章编号] 1674-4721(2019)10(b)-0022-04
[Abstract] Cardial vessel disease (CVD) is the most common complication of patients with chronic kidney disease (CKD), CVD is one of the leading causes of death in patients with CKD, while vascular calcification is an independent risk factor for CVD. Vascular calcification in CKD is a pathological change characterized by the deposition of calcium phosphate in the form of hydroxyapatite crystals in the cardiovascular structure, which can lead to tube wall thickening and ectopic calcification. Inorganic phosphate (PI) transport is a major factor regulating PI homeostasis and calcification, and PI is regulated by parathyroid hormone and 1, 25-dihydroxyvitamin D. Pyrophosphate (PPI) is an intrinsic inhibitor of calcium phosphate deposition in vitro and in vivo. The synthesis of vascular calcification inhibitors is the main mechanism by which cells inhibit vascular calcification. This article reviews the homeostasis and transport of PI, the metabolism of PPI, and the relationship between vascular calcification in PPI and CKD patients, in order to open up new treatment options for these patients.
[Key words] Pyrophosphate; Phosphate; Vascular calcification; Chronic kidney disease
研究表明,慢性腎脏病(chronic kidney disease,CKD)患者心血管疾病(cardial vessel disease,CVD)发生率高于同龄一般人群5~8倍,CKD并发CVD病死率高,终末期肾衰竭患者死于CVD约占43.6%[1]。据报道透析患者合并明显的冠状动脉疾病者占40%~70%,因此考虑CKD患者比一般人更易发生血管钙化[2]。CKD患者血管钙化机制是磷酸钙主要以羟基磷灰石晶体的形式沉积于心血管结构中,进而导致血管增厚和异位钙化,其钙化主要发生在血管的内侧层[内侧硬化症(Monckeberg′s)][3-4]。而成骨基因的表达、羟基磷灰石的形成、血管钙化的出现与高水平的无机磷酸盐(inorganic phosphate,PI)有关[5]。有研究发现,CKD患者焦磷酸盐(pyrophosphate,PPI)水平降低、碱性磷酸酶活性升高与CKD患者发生血管钙化有关,PPI的应用可以为这些患者开辟新的治疗方案[6]。本文就PI的稳态、转运,PPI的代谢及PPI与CKD患者血管钙化的关系等作一综述。
1 PPI与PI的关系
PPI是以胞外三磷酸腺苷(adenosine triphosphate,ATP)为原料,由胞外ATP水解而成的核苷酸焦磷酸酶/磷酸二酯酶合成的,该家族的两种酶(NPP1和NPP3)参与了PPI代谢,NPP1可将ATP水解产生PPI,NPP3可将PPI水解成PI进而促进血管钙化的形成。研究表明,非特异性碱性磷酸酶(non-specific alkaline phosphatase,NAP)可将PPI水解成PI[7]。
2 PI稳态失衡及转运失衡与CKD患者血管钙化的关系
2.1 PI稳态失衡与CKD患者血管钙化的关系
研究表明,PI是CKD患者发生CVD的主要危险因素,故其在CKD患者血管钙化中起重要作用,PI的稳定是防止血管钙化的重要因素。血管平滑肌细胞对PI很敏感,会因PI的变化而导致促进钙化的过程,其中一些作用过程包括细胞外基质钙化、诱导细胞凋亡、囊泡释放以及成骨和软骨基因的表达[5]。
2.1.1 PI稳态失衡致血管钙化作用通路 ①PI能上调与Runt相关的转录因子2(runt-related transcription factor 2,Runx2)、骨桥蛋白和碱性磷酸酶(alkaline phosphatase,ALP)等成骨和软骨生成基因的表达,而下调促进平滑肌细胞分化的基因SM22α的表达[8-9];②PI可能通过减少基因及其参与抗凋亡途径的受体而促进促凋亡途径的激活[10];③高浓度的PI可促进基质金属蛋白酶MMP-2、MMP-9和弹性蛋白降解酶[11-12]。高浓度的钙离子(Ca2+)与现有的PI形式(H2PO4-,HPO42-,PO43-)相互作用,形成羟基磷灰石晶体[Ca10(PO4)6(OH)2],该晶体是血管中磷酸钙晶体的主要形式[13]。由于Ca2+和PI的相互调节作用,更加凸显出Ca2+的重要意义[14-15],虽然钙沉积以与磷酸盐相同的速率增加,但最近的研究表明[16],即使在正常的PI浓度下,高水平的血浆Ca2+也能诱发磷酸钙沉积,从而改变了血管钙化的总体面貌,因此为研究开辟了新的途径。
2.1.2影响PI稳态的重要因素 正常情况下PI水平通过两种主要激素的作用而保持稳定,即甲状旁腺激素(parathyroid hormone,PTH)和1,25-羟基维生素D。PTH和维生素D(vitamin D,VitD)有相反的作用,PTH降低了PI在肾脏的再吸收,而VitD则增加了这种再吸收,并促进了肠道的吸收,体内吸收的PI量必须等于肾脏排出的PI,才能保持PI稳定[17-18]。另外,成纤维细胞生长因子23(fibroblast growth factor 23,FGF-23)和酶Klotho也参与PI稳态的调节,在正常情况下,体内吸收的磷酸盐量必须等于肾脏排出的磷酸盐,才能保持中性PI状态从而防止CKD患者发生血管钙化[19]。
2.2 PI转运失衡与CKD患者血管钙化的关系
2.2.1 PI转运物质 PI的转运主要依赖磷酸盐转运体家族将磷酸盐转运至细胞内从而维持细胞内外磷酸盐的稳态,该家族是依赖钠的磷酸盐共转运体,也被称为Napi,这些转运体是具有10~12个跨膜区的糖基化蛋白,目前为止研究较多的有三型:Napi-Ⅰ、Napi-Ⅱ、Napi-Ⅲ,Napi-Ⅰ、Napi-Ⅱ主要分布在肾脏和肠上皮中,而Napi-Ⅲ则广泛存在于肾脏、肝脏、脑等器官中[20]。Napi-Ⅱ由3个亚型组成:Napi-Ⅱa、Napi-Ⅱb和Napi-Ⅱc,它们在磷平衡中起主要作用,如Napi-Ⅱa和Napi-Ⅱc位于肾上皮细胞内,其控制着对磷酸盐的吸收;Napi-Ⅱb存在于脑桥中,参与PI的吸收[21]。有研究发现的磷酸转运体-NapiⅢ型或SLC20家族,主要在血管平滑肌细胞、肾脏、脑、心脏、肝、肺和成骨细胞中表达,它们最初为逆转录病毒受体被发现,并起初被称为Glvr-1和Ram-1[22]。到目前为止,该家族中有两种亚型,即PIT-1和PIT-2,这两种亚型可能在分化为成骨/软骨生成表型和矿化过程中起着重要作用[23]。据推测,Napi-Ⅲ型在CKD患者血管平滑肌细胞发生钙化过程中起主要作用。
2.2.2 PI转运失衡与血管钙化 PTH、FGF-23和Klotho通过激活和内化肾内的Napi导致PI的排泄增加,使血清PI降低。由于肾功能衰竭,CKD患者的PI的吸收和排泄受到损害,导致血清PI明显升高,随着疾病的进展,为了维持PI在正常范围内,FGF-23和PTH上调,当负荷过重失代偿时上述系統无法维持磷酸盐的动态平衡,从而导致高磷血症,最终致血管钙化[24]。
3 PPI与CKD血管钙化
3.1 PPI稳态调节因素
组织非特异性碱性磷酸酶(tissue-nonspecific alkaline phosphatase,TNAP)是目前与血管钙化有关酶中研究较广泛的一种酶,其对PPI的水解作用是导致PPI量减少的主要原因。研究表明,在CKD透析患者过程中由于磷酸和氢离子的清除,因负反馈作用使得TNAP活性增加[25-26]。此外,Lomashvili等[27-28]研究发现,TNAP在尿毒症大鼠主动脉中的表达及活性均显著增加,焦磷酸盐水解增加;使用尿毒症大鼠血清孵育正常大鼠主动脉环,TNAP的活性及PPI水解均增加,血管钙化加重。另一种增加细胞外PPI水平的机制是通过假定的转运体“进行性强直”蛋白释放细胞内的成分[29]。尽管确切的机制尚未完全了解,但“进行性强直”蛋白亦可以调节细胞外PPI的动态平衡。
3.2 PPI的减少与血管钙化
研究表明,磷酸钙沉积是一个不需要任何细胞活动的被动过程,合成血管钙化抑制剂是预防血管钙化的重要措施[25]。PPI已被证实在体内外均为一种有效的抑制钙化的内源性抑制剂[30]。Lomashvili等[31]研究通过测定CKD透析患者血液透析前后的PPI,结果表明,透析后血液中PPI较透析前明显下降,透析后细胞外PPI不仅被清除,而且红细胞内PPI也发生了变化,这些数据表明PPI代谢在透析患者血管钙化过程中起重要作用。其他与PPI代谢有关的分子,如ATP和PPI本身,在透析后表现出下降的趋势,发现在血液透析过程中PI的清除最终导致ALP活性的提高,考虑PI在ALP代谢过程中起负反馈作用。
4小结
血管钙化是一个复杂的病理过程,是CKD患者心血管事件和死亡的独立危险因素,有效治疗血管钙化是CKD治疗的重要组成部分。PI水平在CKD患者中明显升高,这种升高主要与PTH和FGF-23水平增加以及血浆VitD和Klotho酶水平降低有关。此外,透析期间血浆胞外PPI水平随着ALP活性的增加而降低,ALP是导致胞外PPI降解的主要酶,虽然磷平衡的改变在钙磷晶体的形成过程中起着关键作用,但PPI抑制作用的丧失亦增强了血管钙化的过程。因此,应共同研究磷和PPI的稳态才能为CKD血管钙化的治疗开辟更好的治疗方案。
[參考文献]
[1]王骄,殷跃辉.慢性肾脏病与心血管疾病的关系[J]重庆医学,2011,40(20):2067-2070.
[2]林开平,余毅.慢性肾脏病血管钙化研究进展[J].世界临床药物,2011,32(2):116-120.
[3]Bover J,Górriz JL,Urena-Torres P,et al.Detection of cardiovascular calcifications:is it a useful tool for nephrologists?[J].Nefrología,2016,36(6):587-596.
[4]Bover J,Urena-Torres P,Górriz JL,et al.Cardiovascular calcifications in chronic kidney disease:potential therapeutic implications[J].Nefrología,2016,36(6):597-608.
[5]Shanahan CM,Crouthamel MH,Kapustin A,et al.Arterial calcification in chronic kidney disease:key roles for calcium and phosphate[J].Circ Res,2011,109(7):697-711.
[6]Andersen K,Kesper MS,Marschner JA,et al.Intestinal dysbiosis,barrier dysfunction,and bacterial translocation account for CKD-related systemic inflammation[J].J Am Soc Nephrol,2017,28(1):76-83.
[7]Villa-Bellosta R,Wang X,Millán JL,et al.Extracellular pyrophosphate metabolism and calcification in vascular smooth muscle[J].Am J Physiol Heart Circ Physiol,2011,30(1):61-68.
[8]Steitz SA,Speer MY,Curinga G,et al.Smooth muscle cell phenotypic transition associated with calcification:upregulation of Cbfa1 and downregulation of smooth muscle lineage markers[J].Circ Res,2001,89(4):1147-1154.
[9]Mathew S,Tustison KS,Sugatani T,et al.The mechanism of phosphorus as a cardiovascular risk factor in CKD[J].J Am Soc Nephrol,2008,19(6):1092-1105.
[10]Son BK,Kozaki K,Iijima K,et al.Statins protect human aortic smooth muscle cells from inorganic phosphate-induced calcification by restoring Gas6-Axl survival pathway[J].Circ Res,2006,98(8):1024-1031.
[11]Bouvet C,Moreau S,Blanchette J,et al.Sequential activation of matrix metalloproteinase 9 and transforming growth factor beta in arterial elastocalcinosis[J].Arterioscler Thromb Vasc Biol,2008,28(5):856-862.
[12]Basalyga DM,Simionescu DT,Xiong W,et al.Elastin degradation and calcification in an abdominal aorta injury model:role of matrix metalloproteinases[J].Circulation,2004,110(22):3480-3487.
[13]Villa-Bellosta R.Vascular calcification revisited:a new perspective for phosphate transport[J].Curr Cardiol Rev,2015,12(5):22-25.
[14]Kovesdy CP,Kuchmak O,Lu JL,et al.Outcomes associated with serum calcium level in men with non-dialysis-dependent chronic kidney disease[J].Clin J Am Soc Nephrol,2016,5(3):468-476.
[15]Moe SM.Calcium as a cardiovascular toxin in CKD-MBD[J].Bone,2017,100(15):94-99.
[16]Villa-Bellosta R,Sorribas V.Calcium phosphate deposition with normal phosphate concentration.-Role of pyrophosphate-[J].Circ J,2011,75(11):2705-2710.
[17]Palmer SC,Gardner S,Tonelli M,et al.Phosphate-binding agents in adults with CKD:a network Meta-analysis of randomized trials[J].Am J Kidney Dis,2016,68(5):691-702.
[18]Toapanta Gaibor NG,Nava Pérez NC,Martínez Echevers Y,et al.PTH levels and not serum phosphorus levels are a predictor of the progression of kidney disease in elderly patients with advanced chronic kidney disease[J].Nefrología,2017,37(2):149-157.
[19]Salanova Villanueva L,Sánchez González C,Sánchez Tomero JA,et al.Bone mineral disorder in chronic kidney disease:Klotho and FGF23; cardiovascular implications[J].Nefrología,2016,36(4):368-375.
[20]Werner A,Dehmelt L,Nalbant P.Na+-dependent phosphate cotransporters:the NaPi protein families[J].J Exp Biol,1998, 201(Pt 23):3135-3142.
[21]Villa-Bellosta R,Sorribas V.Compensatory regulation of the sodium/phosphate cotransporters NaPi-Ⅱc(SCL34A3)and Pit-2 (SLC20A2) during Pi deprivation and acidosis[J].Pflugers Arch,2010,459(3):499-508.
[22]Li X,Yang HY,Giachelli CM.Role of the sodium-dependent phosphate cotransporter,Pit-1,in vascular smooth muscle cell calcification[J].Circ Res,2006,98(7):905-912.
[23]Kavanaugh MP,Kabat D.Identification and characterization of a widely expressed phosphate transporter retrovirus receptor family[J].Kidney Int,1996,49(8):959-963.
[24]Ritter CS,Slatopolsky E.Phosphate toxicity in CKD:the killer among us[J].Clin J Am Soc Nephrol,2016,11(6):1088-1100.
[25]Villa-Bellosta R,Wang X,Millán JL,et al.Extracellular pyrophosphate metabolism and calcification in vascular smooth muscle[J].Am J Physiol Heart Circ Physiol,2011,301(13):61-68.
[26]Villa-Bellosta R,Rivera-Torres J,Osorio FG,et al.Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment[J].Circulation,2013,127(22):2442-2451.
[27]Lomashvili KA,Garg P,Narisawa S,et al.Upregulation of alkaline phosphatase and pyrophosphate hydrolysis poten- tial mechanism for uremic vascular calcification[J].Kidney Int,2008,73(9):1024-1030.
[28]劉梦苑,吴立玲,王瑾瑜.焦磷酸盐与血管钙化[J].生理科学进展,2016,47(6):413-417.
[29]Ho AM,Johnson MD,Kingsley DM.Role of the mouse ank gene in control of tissue calcification and arthritis[J].Science,2000,289(5477):265-270.
[30]Villa-Bellosta R,Sorribas V.Prevention of vascular calcification by polyphosphates and nucleotides role of ATP[J].Circ J,2013,77(8):2145-2151.
[31]Lomashvili KA,Khawandi W,O′Neill WC.Reduced plasma pyrophosphate levels in hemodialysis patients[J].J Am Soc Nephrol,2005,16(8):2495-2500.
(收稿日期:2019-03-04 本文编辑:任秀兰)