APP下载

可可毛色二孢相关病害的发生规律及防治概况

2019-10-08谢红辉王丽萍吴耿寰

农业研究与应用 2019年3期
关键词:发病规律综合防治

谢红辉 王丽萍 吴耿寰

摘 要:可可毛色二孢(Lasiodiplodia theobromae (Pat.) Griffon & Maubl.)是一种全球性的土传病原真菌,其寄主广泛,可引起多种植物病害,病害症状多样化。可可毛色二孢是一种弱寄生菌,引发的病害多与气候环境、伤口、植株生长势和品种有关,病菌生长对于光照的需求与否存在较大争议。综合利用生物防治、物理防治和化学防治是病害防治的重要途径。

关键词:可可毛色二孢 发病规律 综合防治

Abstract:Lasiodiplodia theobromae (Pat.) Griffon & Maubl., a global soil-borne pathogenic fungi with a wide range of hosts,can cause many plant diseases with different symptoms. These diseases are related to climate, wounds, plant growth vigor and variety, but not sure whether related to light. Comprehensive utilization of biological control, physical control and chemical control is an important way for disease control.

Key words:Lasiodiplodia theobromae;occurrence regularity;integrated control

可可毛色二孢(Lasiodiplodia theobromae (Pat.) Griffon & Maubl.)是子囊菌门(Ascomycota)盘菌亚门(Pezizomycotina)座囊菌纲(Dothideomycetes)葡萄座腔菌目(Botryospaerials)葡萄座腔菌科(Botryospheriaceae)葡萄座腔菌属(Botryosphaeria)葡萄座腔菌(Botryosphaeria rhodina)的无性态,它最先由Saccardo于1890年从厄瓜多尔的腐烂的可可豆上分离并描述[1]。L. theobromae是一种在热带和亚热带地区广泛存在的具有多型性、多寄主的土传病原真菌[2],可寄生于热带和亚热带地区的500多种植物[3],并能引起包括大田作物、蔬菜、水果和林木在内的280多种植物的田间和贮藏病害,且在不同的寄主上引起的症状不相同[4]。L. theobromae引起的病害症状主要有梢枯、枝枯、根腐、果腐、叶斑、溃疡、流胶、变色、坏死和鬼帚病等类型[3]。了解L. theobromae的生物学特性及其所致病害的发生规律和防治措施对于开展病害综合治理具有重要意义。

1 生物学特性研究

有关光照,温度,pH值,碳源、氮源和维生素等对L. theobromae菌丝生长、分生孢子器和分生孢子形成等的影响的研究有很多。L. theobromae生长的温度范围为20~45 ℃,低于15 ℃不能生长[5],最适温度为28~30 ℃;可生长pH值为2.5~11.7,以pH5.5 最适宜,其中,pH 3~4有利于病原菌分生孢子产生;能有效利用蔗糖、葡萄糖、可溶性淀粉等14种供试碳源,但以葡萄糖最好;能利用DL-丙氨酸、硝酸钠、DL-甲硫氨酸等10种供试氮源,但以DL-丙氨酸最适合。菌丝体的致死温度为52℃。分生孢子的致死温度为53℃。在连续光照的燕麦培养基(OMA)上,该菌产孢较快较多。分生孢子在水滴中的萌发率为90.8 %,而在1 %葡萄糖和蔗糖溶液中均为96 %左右[6]。同样的萌发条件下,未成熟的L. theobromae孢子萌发率比成熟孢子的萌发率高约3个百分点[7]。

关于L. theobromae菌丝生长和产孢是否需要光照,有许多学者做了相关研究,但众说纷纭。有研究表明连续光照有利于L. theobromae分生孢子器和分生孢子的产生[8]。Kausar等[9]研究表明,L. theobromae在PDA培養基上生长速度快,相比连续黑暗24 h、12 h光照加12 h黑暗,连续光照24 h更有利于菌丝生长。也有很多研究认为光照对L. theobromae的菌丝生长、分生孢子器和分生孢子的形成没有影响[10]。研究发现光照和黑暗对桑毛色二孢根腐病菌L. theobromae的菌丝生长和分生孢子萌发没有显著影响,但持续光照有利于L. theobromae分生孢子器和分生孢子的产生[11]。 L. theobromae对光照的需求特性可能与其寄主来源有关。

2 L. theobromae相关病害的发生规律

L. theobromae被认为是一种弱寄生菌,经常被描述为伤口寄生或者第2病原菌[12]。肉桂枝枯病与肉桂泡盾盲蝽(Pseudodoniella chinensis)和可可毛色二孢(L. theobromae)有关。泡盾盲蝽携带有L. theobromae菌,在吸食肉桂枝条的汁液时会造成许多细微的伤口,从而使肉桂枝条容易感染L. theobromae菌,造成皮层坏死,引发极严重的枝枯病[13]。王智立和谢鸿业[14]从枯萎的番石榴(Psidium guajava L.)靠接苗的接合部、干枯的果柄和新梢等部位分离出大量的L. theobromae,从而认定这些部位为病菌的侵入点。L. theobromae定殖马占相思(Acacia mangium)后不一定立即表现症状,但高温和干旱条件有利于病害发生[15]。Mbenoun等[16]指出由L. theobromae引起的椰子梢枯病在干旱季节发生非常严重。Botryosphaeria各个种的毒力和症状因寄主和地理位置不同而有差异[17]。L. theobromae引起芒果衰退和死亡因品种和树龄而有差异,某些品种在特定的树龄下有一定抗病力,而不同品种不同树龄病害发生率的不同可能归因于自然忍受力[18]。L. theobromae侵染桑树根部引起根腐病,发病率和严重度与桑树树龄、根结线虫为害及桑树品种有关,即树龄越大,病害发生越严重;根结线虫(主要是南方根结线虫)为害根部造成的伤口为病原菌的侵染提供便利;不同桑树品种间的抗病性差异明显[11]。

3 L. theobromae相关病害的防治

3.1 生物防治

关于L. theobromae相关病害生物防治的报道已经有很多。Florence和Sharma[19]报道了枯草芽孢杆菌(Bacillus subtilis)能有效抑制L. theobromae的菌丝生长,最大抑菌带宽度达18 mm。此外,B. subtilis还能抑制L. theobromae 的孢子萌发[20]。有报道提出芽孢杆菌产生抗生素,该抗生素作为表面活性剂,能破坏菌丝细胞膜的选择渗透性[21]。离体培养时,B. subtilis最能有效阻止L. theobromae病菌侵染种子和幼苗[22]。有研究认为B. subtilis和B. cereus对L. theobromae的拮抗作用是暂时的[23]。

Ikotun和Adekunle[24]发现2株对 L. theobromae有拮抗效果的放线菌,并且其拮抗效果要优于B. subtilis和B. cereus,大田防治试验表明该放线菌能有效防治木薯根部和茎杆腐烂病害。卞光凯等[25]从南方红豆杉根际土壤中分离到一个弗吉尼亚链霉菌(Streptomyces virginiae)菌株,该菌株对L. theobromae具有高度拮抗能力,其发酵液稀释300倍后仍有较强的抑制作用(抑制率为41.64 %)。Trejo等[26]从土壤中分离出一个放线菌菌株YCED9,它能够产生3种抗真菌的抗生素和2种水解酶。Houssam[27]报道抗生物链球菌Az-z710能够产生对青霉菌、白色链珠菌等多种病原真菌具有显著拮抗作用的mycangimycin类抗生素。

在离体培养和活体接种时,哈茨木霉(Trichoderma harzianum)、绿色木霉(Trichoderma viride)、绿色粘帚霉(Gliocladium virens)和黑色葡萄穗霉(Stachybotrys atra)均能在L. theobromae侵染葫芦幼苗前后表现出显著地抑制效果。其中,在活体接种时G. virens最能有效抑制病菌感染种子和根部;显微镜观察显示T. harzianum和T. viride直接寄生和缠绕L. theobromae的菌丝,导致菌丝膨胀、变形、缩短或细胞变圆;2株木霉与L. theobromae对峙培养后,发现L. theobromae细胞质颗粒化和菌丝细胞壁缺损[28]。Aigbe和Ikotun研究了自土壤中分离的长枝木霉(T. longibrachiatum)、圆弧青霉(Penicillium cyclopium)、黑曲霉(Aspergillus niger)、黄曲霉(A. flavus)、溜曲霉(A. tamari)、腊叶芽枝霉(Cladosporium harbarum)、粉红粘帚霉(G. roseum)和半裸镰孢菌(Fusarium semitectum)等8种拮抗微生物在PDA培养基上与L. theobromae对峙培养时,对L. theobromae的拮抗作用。结果发现,以T. longibrachyatum的拮抗效果最好,T. longibrachyatum、A. niger、C. harbarum和G. roseum 能对L. theobromae产生永久性地拮抗作用,而其余拮抗微生物的拮抗作用是暂时的。Aigbe和Ikotun分析以上拮抗微生物的作用机制可能是产生有毒物质和对L. theobromae进行重寄生[23]。利用荧光假单胞菌、枯草芽孢杆菌和植物源性脂氧合酶挥发性化合物己醛搭配处理芒果,可以诱导提高果实的苯丙氨酸解氨酶、多酚氧化酶、超氧物歧化酶和过氧化氢酶活性,从而降低芒果蒂腐病的发病率[29]。在温室条件下,利用荧光假单胞菌、枯草芽孢杆菌和深绿木霉滤液混合物处理夜来香植株,可以显著提高植株病程相关蛋白酶、几丁质酶、β-1,3-葡聚糖酶、过氧化物酶、多酚氧化酶、苯丙氨酸解氨酶等的活性,从而降低夜来香花梗枯萎病发病率达85 %以上,且能显著提高产量[30]。利用桉树、橡胶树和竹子生产木炭时的副产物—焦木质酸可以显著抑制可可毛色二孢的生长[31]。

Kumar等[32]从假黄皮(Clausena excavata Burm. f.)的叶片中分离出一种新的γ-内酯香豆素,该物质对L. theobromae的拮抗作用要高于化学抗菌剂。Barros等[33]研究了海油树(Coccoloba mollis L.)的蒽醌衍生物和根、叶的乙醇提取物对L. theobromae和镰孢菌(Fusarium spp.)的抗菌作用,结果发现提取物和蒽醌衍生物均能有效抑制参试菌株的生长,其效果优于化学杀菌剂。

3.2 物理防治

将受感染的植物组织进行热处理能有效控制植物病害的发生。把香蕉种子浸没在75 ℃的热水中10 min,能有效除去种子上的L. theobromae菌,将香蕉果实于50 ℃热水中浸泡20 min,能显著减轻香蕉冠腐病的发生。处理7 d后,冠腐病的发生率降低50 %,14 d后降低33 %[34]。热水处理不能杀死休眠孢子,但能有效抑制菌丝生长和分生孢子萌发。夏季晒土2个星期能有效降低L. theobromae的种群密度和分生孢子的活力[5]。

3.3 化学防治

许多学者研究了化学药剂对L. theobromae的防治作用。Mittal[35]指出RH 2161(一种化学药剂)对L. theobromae所引起的林木种子病害有显著效果。代森锰锌(Dithane M-45)和氯化甲氧基乙基汞(Emisan 6)能有效杀灭花生种子上的病菌[36]。Sharma等[37]研究了15種杀菌剂对L. theobromae的抑制作用,结果发现Bavastin和Tecto控制桉树田间根茎溃疡病的发生效果显著。Shelar 等[38]通过离体培养评估了7种杀菌剂对L. theobromae的抑制作用,结果发现不论是在液体培养基还是固体培养基上,苯菌灵(0.1 %)、克菌丹(0.2 %)、多菌灵(0.1 %)和甲基托布津(0.25 %)均能有效抑制L. theobromae生长。利用克菌丹1.125 g、五氯硝基苯0.375 g和萎锈灵0.25 g混合处理花生种子能显著降低种子的带菌率,抑制病害发生和提高产量,但不能根除病菌[39]。刑嘉琪[40]研究了4种防霉剂对我国藤材主导霉菌的抑制作用,结果发现防霉剂DDAC对L. theobromae的抑制效果最好。Mahmood等[41]研究认为,20 ppm和100 ppm的甲基托布津和苯菌灵能有效抑制L. theobromae菌丝生长。许多研究结果显示多菌灵和甲基托布津对L. theobeomae有很好的抑制效果。400 ppm和450 ppm的多菌灵和甲基托布津能完全抑制L. theobeomae的生长。多菌灵和甲基托布津均属于苯并咪唑类药剂,而苯并咪唑类的药剂即使在低浓度下也能很好地抑制L. theobeomae[42]。Khanzada等[5]报道了浓度为1 ppm的多菌灵和甲基托布津能有效抑制L. theobeomae菌丝生长,多菌灵在大田的防治效果明显优于甲基托布津和其他药剂。Shahbaz等[43]则表明浓度为50 ppm和100 ppm的甲基托布津、多菌灵和(甲基托布津+乙霉威)能完全抑制L. theobeomae的生长。50 ppm的多菌灵和甲基托布津、100 ppm的疫霜灵、苯菌灵、甲霜锰锌和萎锈灵等能完全抑制L. theobeomae的生长。将多菌灵、甲基托布津、疫霜灵和苯菌灵以3 g/kg的浓度拌种,能提高葫芦种子萌发率,降低病菌感染率[28]。

4 总结

本文介绍了L. theobeomae侵染所致部分病害的发生规律和防治技术,但由于L. theobeomae的寄主植物范围广,引发的病害症状多种多样,因此生产上应针对不同的寄主和病害类型采取行之有效的防治措施,同时注意防治技术的多元化,多种措施并举,实行综合防治。

参考文献

[1]     Crous P W and Palm M E. Reassessment of the anamorph genera Botryodiplodia, Dothiorella and Fusicoccum. Sydowia[J]. 1999, 51 (2): 167-175.

[2]     Punithalingam E. Botryodiplodia theobromae. CMI descriptions of pathogenic fungi and bacteria[M].No. 519. Kew, Surrey, England: Commonwealth Mycologiacal Institute, 1976.

[3]      rbez-Torres J R, Leavitt G M, Guerrero J C, et al. Identification and pathogenicity of Lasiodiplodia theobromae and Diplodia seriata, the causal agents of bot canker disease of grapevines in Mexico[J]. Plant Disease, 2008, 92 (4): 519-529.

[4]     Rodrigues R. Caracterizao morfológica e patológica de Lasiodiplodia theobromae (Pat.) Griffon & Maubl., agente causal daspodrides de tronco e raízes da videira. Dissertation (Mestrado em Agricultura Tropical e Subtropical)[M]. Instituto Agronmico de Campinas, 2003: 53.

[5]     Khanzada M. A, Abdul Q R and Saleem S. Effect of medium, temperature, light and inorganic fertilizers on in vitro growth and sporulation of Lasiodiplodia theobromae  isolated  from  mango[J].  Pakistan Journal of Botany, 2006, 38 (3): 885-889.

[6]     史國英,胡春锦,罗掉爱,等.毛葡萄穗轴褐腐病病原菌鉴定及生物学特性[J].植物病理学报,2010,40 (3):242-249.

[7]     赵桂华,宋桢.橡胶木兰变菌(Lasiodiplodia theobromae)孢子发芽的研究[J].云南林业科技,1991(3):57-58.

[8]     付文,伍建榕,马桂平,等.麻疯树枝枯病病原鉴定及生物学特性测定[J].中国农学通报,2011,27 (6):6-11.

[9]     Kausar P, Sobia C and Rashida P. Physiological studies on Lasiodiplodia theobromae and Fusarium solani, the cause of Shesham decline[J]. Mycopathology, 2009, 7 (1): 35-38.

[10]   Adeniyi D, Orisajo S B, Fademi O A, et al. Physiological studies of fungi complexes associated with cashew diseases[J]. ARPN Journal of Agricultural and Biological Science, 2011, 6 (4): 34-38.

[11]   谢红辉,韦继光,黄穗萍,等.一种新发现的桑树根腐病的发生规律及光照对病原菌生长的影响[J].蚕业科学,2016,42 (1):45-52.

[12]   Porter D M and Phipps P M. Diplodia collar rot[M].  In: Compendium  of Peanut Disease. Kokalis-Burelle N, Porter D M, Rodríguez-Kabána R, Smith D H and Subrahmanyam P, eds. American Phytopathological Society, St. Paul, MN. 1997: 16-17.

[13]   文新,宋力,黎启枪,等.肉桂枝枯病病原研究[J].微生物学报,1995,35 (3):181-185.

[14]   王智立,谢鸿业.由Botryosphaeria rhodina引起的番石榴茎溃疡病及其病原性测定[J].植物病理学会刊,2006,15 (4):219-230.

[15]   梁子超.马占相思可可球二孢菌溃疡病[J].广东林业科技,1990(5):7-8.

[16]    Mbenoun M, Mono Z E H, Samuels G, et al. Dieback due to Lasiodiplodia theobromae, a new constraint to cocoa production in Cameroon[J]. Plant Pathology, 2008, 57: 381.

[17]    rbez-Torres J R, Leavitt G M, Voegel T M, et al. Inditification and distribition of Botryosphaeria spp. Associated with grapevine cankers in California[J].  Plant Disease, 2006, 90: 1490-1503.

[18]   Khaskheli M I , Jiskani M M, Soomro M H, et al. Prevalence of mango sudden decline death syndrome (msds) on various varieties at the orchards of different age in the vicinity of tando qaiser, hyderabad, Sindh[J]. Pakistan Journal of  Agriculturial, Agril. Engg, Vet. Science, 2011, 27 (2): 160- 167.

[19]   Florence E J M and Sharma J K. Botryodiplodia theobromae associated with blue staining in commercially important timbers of Kerala and its possible biological control[J]. Materialund Organismen, 1990, 25 (3): 193-199.

[20]   Narain A and Mohanty A P. Bacterial antagonists of some phytophatogenic fungi (Abstr.)[J]. Review  of Plant Pathology, 1984, 64: 3287.

[21]   Swinburne T R, Barr T C and Brown A E. Production of antibiotics by Bacillus subtilis and their effect on fungal colonists of apple leaf scars[J]. Transactions of the Brittish Mycological Society, 1975, 65: 211-217.

[22]   Sultana N and Ghaffar A. Effect of fungicides and microbial antagonists in the control of Lasiodiplodia theobromae, the cause of seed rot, seedling and root infection of bottle gourd[J]. Pakistan Journal of Agricultural Research, 2010, 23 (1-2): 46-52.

[23]   Aigbe S O, Ikotun T. In vitro inhibition of growth of Botryodiplodia theobromae by antagonistic microorganisms isolated from agricultural and non-agricultural soils[J]. Journal of Phytopathology and Plant Health, 2011, 1: 40-47.

[24]   Ikotun T and Adekunle F. Inhibiton of growth of some plant pathogenic fungi by some antagonistic organisms isolated from soil (Abstr.)[J]. Review of Plant Pathology, 1990, 70: 1642.

[25]   卞光凱,缪倩,秦盛,等.一株拮抗可可球二孢菌放线菌的分离及鉴定[J].生物技术,2011, 21 (4):51-55.

[26 ]  Trejo S R, Sepulveda I R, Crawford D L. In vitro and in vivo antagonism of Streptomyces violaceusniger YCED9 against fungal  pathogens  of  turf grass[J].  World Journal of Microbiology & Biotechnology, 1998, 14: 865-872.

[27]  Houssam M A. Production, purification,physico-chemical characteristics and biological activities of antifungi antibiotic produced by Streptomyes antibioticus AZ-Z710[J].  American-Eurasian  Journal of Scientific Research,2010,5(1): 39-49.

[28 ]  Sultana N and Ghaffar A. Effect of fungicides and microbial antagonists in the control of Lasiodiplodia theobromae, the cause of seed rot, seedling and root infection of bottle gourd[J]. Pakistan Journal of Agricultural Research, 2010, 23 (1-2): 46-52.

[29]   Seethapathy P, Gurudevan T, Subramanian K S. et al. Bacterial antagonists and hexanal-induced systemic resistance of mango fruits against Lasiodiplodia theobromae causing stem-end rot[J]. Journal of Plant Interactions, 2016, 11:1, 158-166.

[30]  Durgadevi1 D, Srivignesh S and Sankaralingam A. Effect of consortia bioformulation of rhizobacteria on induction of systemic resistance in tuberose against peduncle blight disease[J].International Journal of Bio-resource and Stress Management, 2018, 9 (40): 510-517.

[31]  Theapparat Y, Chandumpai A, Leelasuphakul W, et al. Pyroligneous Acids from Carbonisation of Wood and Bamboo: Their Components and Antifungal Activity[J]. Journal of Tropical Forest Science, 2015, 27(4): 517-526.

[32]   Kumar R, Saha A and Saha D. A new antifungal coumarin from Clausena excavata[J]. Fitoterapia, 2012, 83: 230-233.

[33]   Barros I B D, Daniel J F D S, Pinto J P, et al. Phytochemical and antifungal activity of anthraquinones and root and leaf extracts of Coccoloba mollis on phytopathogens[J]. Brazilian Archives of Biology and Technology, 2011, 54 (3): 535-541.

[34]   Goos R D, Cox E A and Stotzky G. Botryodiplodia theobromae and its association with Musa species[J]. Mycologia, 1961, 53: 262-277.

[35]   Mittal R K. Studies on the mycoflora and its control on the seeds of some forest trees (Abstr.)[J]. Review of Plant Pathology, 1983, 62: 2669.

[36]   Jayanta S and Raj S K. Effects of fungicides on the seed microflora of groundnut (Arachis hypogaea L.) (Abstr.)[J]. Review of Plant Pathology, 1989, 70: 1616.

[37]   Sharma J K, Mohanan C and Florence E J M. Disease survey in nurseries and plantations of forest tree species grown in Kerala[M]. Kerala Forest Research Institute, India, 1985.

[38]   Shelar S A, Padule D N, Sawant D M, et al. In vitro evaluation of fungicides against Botryodiplodia theobromae Pat., the cause of die-back disease of mango (Mangifera indica L.)[J]. Indian Journal of Plant Protection, 1997, 25: 118-120.

[39]   Phipps P M and Porter D M. Collar rot of peanut caused by Lasiodiplodia theobromae[J]. Plant Disease, 1998, 82: 1205- 1209.

[40]   刑嘉琪.我国藤材主导霉菌的分離及其室内抑制试验[J].木材工业,2005,19 (5):23-25.

[41]   Mahmood A and Gill M A. Quick decline of mango and In vitro response of fungicides against the disease in Pakistan[J]. International Journal of Agricultural Biology, 2002, 4: 39-40.

[42]   Banik A K, Kaiser S I K M and Dhua R S. Evaluation of some systemic and non systemic fungicides against Botryodiplodia theobeomae, the cause of dieback disease of mango[J].  Journal  of  Soil & Crops, 1998, 8: 199-222.

[43]   Shahbaz M, Iqbal Z, Saleem A, et al. Association of Lasiodiplodia theobromae with different decline disorder in mango (Mangifera indica)[J]. Pakistan journal of Botany, 2009, 41: 359-368.

猜你喜欢

发病规律综合防治
设施蔬菜土传病害综合防控技术推广探讨
浅析大豆食心虫病综合防治技术
杨树病虫害综合防治措施
综采工作面水害分析及防治水实践探析
果木沟泥石流灾害形成条件及运动特征研究