APP下载

纳米颗粒对CO2泡沫体系稳定性的影响

2019-10-08曲海莹刘双星刘柬葳

油气地质与采收率 2019年5期
关键词:液膜驱油活性剂

曲海莹 ,刘 琦 ,彭 勃 ,罗 聃 ,刘双星 ,刘柬葳

(1.中国石油大学(北京)非常规油气科学技术研究院,北京102249;2.温室气体封存与石油开采利用北京市重点实验室,北京102249;3.中国石油大学(北京)新能源与材料学院,北京102249)

自20世纪70年代起,CO2驱油技术在北美得到 广泛应用。近几年,美国50%以上的采收率来自CO2驱。但是CO2气体密度小、黏度低,在地层中易发生气窜和指进等现象,于是采用CO2泡沫驱油技术改善气液流度比,提高波及效率[1-3]。泡沫由液体薄膜包裹的气泡构成,是气体在液体中的分散体系,可以有效控制CO2流度,在提高原油采收率等工业生产和温室气体减排中有诸多应用[4-6]。目前中国大部分油田已进入三次采油阶段,一般采用CO2泡沫驱油技术开发高含水、非均质性强、存在大孔道和裂缝的油藏。该技术的关键是泡沫体系的稳定性,其中纳米颗粒的稳定性机理、纳米颗粒所起作用及纳米颗粒的选择等问题是探究CO2泡沫体系稳定性的重点。早在1903年,RAMSDEN首先研究了产生固体颗粒可保持稳定的乳液的性质,发现蛋白质和非蛋白质胶体溶液的表面会产生固体颗粒及高黏度物质,而这种颗粒及物质可以降低气/液界面的表面张力,使乳液持久稳定[7];随后PICKER⁃ING进一步发现,产生固体颗粒可保持稳定乳液的液膜能够阻止乳液中的油滴聚结[8],即该颗粒可以稳定存在于油/水界面。1921年,BRIGGS发现SiO2颗粒能够使水包油型乳液保持稳定,炭黑颗粒可以使油包水型乳液保持稳定[9]。1992年,JOHANSSON探究了颗粒稳泡的影响因素,即表面活性剂的类型、大小和浓度[10]。进入21世纪后,随着纳米技术的快速发展及广泛应用,BINKS等以纳米级SiO2为研究对象,发现疏水性强弱是颗粒稳泡的关键因素[11]。2005年,ELIAS等尝试利用磁性纳米颗粒稳泡,探究了外加磁场的强度对磁性颗粒所稳定的泡沫膜和泡沫的影响[12]。2018年,YEKEEN等对纳米颗粒的化学组成、水相盐度、油相成分、温度和压力等关键参数对纳米粒子稳泡的影响进行了总结[13],指出:通常情况下,纳米颗粒改善CO2泡沫稳定性的顺序为 SiO2>Al2O3>TiO2>CuO,但在特定条件下,纳米颗粒也可能表现出更高的稳泡性;溶液中NaCl和CaCl2等电解质浓度及离子价态由于影响纳米颗粒间库仑力和范德华力的平衡,颗粒聚集的位置亦会发生改变。对此不同学者研究结果不同,未得到一致结论。地层中的原油储量也会对泡沫稳定性造成一定影响,当储层残余油饱和度大于等于15%时,泡沫的传播能力和性能将被大幅削弱[14];轻质油比重质油更易消泡,短链烃比长链烃更易破坏泡沫结构,低黏度和低密度油的存在可形成更稳定的泡沫。此外,温度和压力亦会影响纳米颗粒稳泡效果:当温度升高时,界面黏弹模量降低,界面张力增加,纳米颗粒稳泡性减弱,驱油效率降低;压力增大,CO2与盐水之间的表面张力降低,促进泡沫生成,但纳米颗粒稳泡性减弱。对纳米颗粒稳泡的作用机理、性能评价及驱油效果将进行进一步阐述。

1 纳米颗粒稳泡机理

泡沫是一种气相与液相共存的热力学不稳定、动力学稳定的分散体系。每一个气泡的弯曲液面所产生的附加压力与促使气、液相混合的表面能构成了泡沫体系的额外能量。这种额外能量导致泡沫体系的总能量高于同组分同体积的溶液体系与气体体系能量的总和,因此泡沫体系热力学不稳定。动力学角度的泡沫是稳定的,原因有以下2点:①气泡液面弯曲所产生的附加压力导致气泡内部压力比外部高,但该差值在普拉图边界处被抵消,使得单个气泡在一定区域内受力平衡。②液膜存在表面张力梯度,液体沿低表面张力向高表面张力的方向运移,导致物料不均衡;而马兰格尼效应的存在让液膜质量互补,使得泡沫体系能够维持物料平衡、抵抗一定量的外力扰动,从而维持泡沫整体形貌。

当泡沫受到外界作用力影响,无法通过以上的自身修复能力达到稳定状态时,便会发生破灭、聚并和歧化等现象。大、小气泡间的压差使得气泡发生歧化反应,小气泡中的气体分子在压差作用下向大气泡移动,最终导致小气泡越来越小至消失,大气泡越来越大至破灭。因此需要添加一定量的稳泡剂以稳定泡沫形态,阻止气泡破灭和聚并。

纳米颗粒具有固体颗粒较好的耐温性,且尺度小于地层中的孔喉,在多孔介质中不受岩石储层压力的影响,自由运移,可在一定条件下作为唯一的稳泡物质,是高温高压储层中的理想稳泡剂[15-17]。纳米颗粒因表面官能团不同分为疏水型和亲水型,其稳泡机理如下:以常用的SiO2纳米颗粒为例,对于疏水型带正电荷的SiO2纳米颗粒,加入阴离子表面活性剂(如十二烷基硫酸钠(SDS)[18]、α-烯基磺酸钠(AOS)等)后,由于静电引力,表面活性剂分子被吸附于纳米颗粒上;对于亲水型带有负电荷的SiO2纳米颗粒,与阳离子表面活性剂(如十二烷基三甲基溴化铵(DTAB)、十六烷基三甲基溴化铵(CTAB)[19]等)复配后,阳离子基团朝内,疏水基团朝外,颗粒润湿性反转,具有疏水性质。在合适的浓度下,两类纳米颗粒聚集并强烈地吸附在气/液界面上,形成三维网络结构,增加液膜厚度,减小气泡间接触面积,增强泡沫的机械强度,阻止气泡的破灭、聚并和歧化,达到稳泡的效果[20-21]。从局部来看,某一区域纳米颗粒浓度高,能增加该区域的泡沫黏度[22],延长液膜的排液时间[23-24],延缓内部泡沫破裂速度[25-26](图 1)。

图1 泡沫间隙的液膜排液情况Fig.1 Liquid drainage among bubbles

纳米颗粒结构层平衡和稳定流体界面的机理至少包含4个方面:脱附能理论、最大毛管压力理论、颗粒之间的静电斥力以及范德华力等[22,27]。

1.1 脱附能、最大毛管压力和颗粒与水相的接触角的关系

脱附能是描述纳米颗粒在界面膜上吸附情况的重要参数,其值越大表明液膜越稳定[27]。脱附能的表达式为:

由(1)式可知,在一定范围内,颗粒与水相接触角越大,脱附能越高,液膜越稳定。而最大毛管压力理论与脱附能不同,它考虑的是位于界面之间的颗粒作用,其表达式为:

从(2)式发现颗粒与水相的接触角和最大毛管压力成反比。

脱附能理论和最大毛管压力理论都表明颗粒与水相的接触角是选择合适纳米颗粒的关键[28],即在选择合适的纳米颗粒前,应先测量其与水相的接触角。对于亲水型颗粒而言,颗粒与水相的接触角为60°~80°时最佳[29-30]。

1.2 静电斥力和范德华力

根据 Derjaguin-Landau-Verwey-Overbeek(DL⁃VO)理论,纳米颗粒能否稳定存在于气/液界面膜上由颗粒间的静电斥力和范德华力控制。当有电解质存在时,纳米颗粒之间的静电斥力变得小于范德华力,会导致颗粒聚集[13]。若纳米颗粒表面吸附的表面活性剂分子过量,静电斥力变得大于范德华力,会导致颗粒从界面膜上脱附,重新分散到溶液中[31]。

2 纳米颗粒对CO2泡沫性能的影响

纳米颗粒可与表面活性剂分子协同稳泡,但是过量会导致消泡,影响泡沫性能,机理如图2所示。纳米颗粒吸附表面活性剂分子,降低油/水界面张力。但是当颗粒的质量分数增加到一定程度后,溶液体系的表面张力会随之增高。开始阶段泡沫液膜中以表面活性剂为主,纳米颗粒主要支撑液膜的稳定性;随着纳米颗粒的增加,液膜中主体为颗粒,更多的表面活性剂分子被吸附,从而降低溶液中自由的表面活性剂分子的浓度,导致体系的表面张力逐渐增加,泡沫稳定性变差,体积减小[32]。不过,近期也有研究认为,纳米颗粒是在泡沫形成后再吸附到泡沫表面的,因此纳米颗粒对泡沫体系(需要的额外能量)的影响不体现在泡沫生成上,主要体现在促使颗粒分散上。

图2 纳米颗粒稳泡与消泡机理示意Fig.2 Schematic of nanoparticle foam stabilization and defoaming mechanism

综上所述,纳米颗粒能与表面活性剂分子产生协同稳泡作用,延长液膜的排液时间,延缓内部泡沫破裂速度,改善CO2泡沫体系在驱油中稳定性较差等不足。但过量的纳米颗粒会产生消泡现象,导致其不利于驱油。因此,纳米颗粒与表面活性剂复配体系的筛选与评价,是纳米颗粒稳泡技术的关键。

3 CO2泡沫体系稳定性评价

3.1 表面活性剂单一体系与纳米颗粒复配体系性能对比

SiO2纳米颗粒是常用的稳泡剂。单独的亲水型SiO2纳米颗粒(表面仅含羟基)不能发泡稳泡,只能在个别较低浓度的表面活性剂溶液(如AOS)中起到一定的稳泡作用,但效果不理想。用硅氧烷类物质对SiO2纳米颗粒进行表面改性,除去颗粒表面的羟基,使其具有一定的疏水性质。疏水型SiO2纳米颗粒可以部分取代表面活性剂,大幅提高泡沫的稳定性[25,33]。由单一表面活性剂体系与纳米颗粒/表面活性剂复配体系稳泡性能对比(表1)可见:不加纳米颗粒时,单一表面活性剂体系的析液半衰期为1.5~20 min,泡沫半衰期为7.5 h或42 h;加入纳米颗粒后,纳米颗粒/表面活性剂复配体系的析液半衰期为25.3~49.5 min,泡沫半衰期最高达71.4 h,是单一表面活性剂体系的2.5~17倍。由此可见纳米颗粒/表面活性剂复配体系能大幅提高半衰期,增强泡沫稳定性,二者起到协同稳泡作用。

表1 单一表面活性剂体系与纳米颗粒/表面活性剂复配体系稳泡性能对比Table1 Foam stability comparison between single surfactant system and combined systems of nanoparticle and surfactant

3.2 不同复配体系性能对比

不同种类的纳米颗粒与表面活性剂复配会产生不同的协同作用。除了常规的SiO2纳米颗粒外,还考虑采用其他类型的纳米颗粒作为稳泡剂,如Al2O3,TiO2和CuO等金属/非金属氧化物及粉煤灰(TTFA)[37-38]等混合物,并对其稳泡性做进一步研究。对比结果(表2)表明,在常温、常压等相同条件下,纳米颗粒改善泡沫稳定性的顺序为SiO2>Al2O3>TiO2>CuO。但也有特例,如当NaCl等盐分存在或浓度不同时,纳米颗粒改善泡沫稳定性的顺序也会发生相应变化。

表2 不同种类纳米颗粒与表面活性剂复配体系稳泡性能对比Table2 Foam stability comparison of combined systems of different kinds of nanoparticle and surfactant

4 驱油效果评价

纳米颗粒能使CO2泡沫体系稳定,从而提高原油采收率。经表面改性的纳米颗粒与表面活性剂复配可提高原油采收率7%~10%,最高可达30%以上(表3)。其原因是:①纳米颗粒形成的刚性骨架增强了泡沫的稳定性[46]。这些稳定的泡沫使地层吸水剖面得以调整,使后续驱替液进入剩余油饱和度较高的部位,扩大波及体积。②原油的乳化作用增强,使整个驱替过程出现泡沫和乳状液共存的现象[47]。③稳定的泡沫在经过地层孔道时,对孔道内壁施加的侧向压力可挤压、携带出更多的剩余油[48]。

表3 经表面改性的纳米颗粒与表面活性剂复配的驱油效果Table3 Oil displacement results of combination of surface modified nanoparticle and surfactant

5 结论

纳米颗粒(特别是SiO2纳米颗粒)具有耐温性能较好的特性,附着在气/液界面,形成空间网络结构,可在一定条件下增强泡沫稳定性,有助于泡沫驱封堵调剖,提高原油采收率。

纳米颗粒用于CO2泡沫体系是近年来发展起来的技术,在颗粒尺寸的筛选、疏水性能改造、起泡剂筛选以及与表面活性剂的协同稳泡效果等方面有待进一步研究。

泡沫的生成、稳定性、传播和剩余油在多孔介质中的流动机理尚不明确;泡沫性能的控制参数、机理和模型的研究还不完善,以致纳米颗粒稳泡技术尚未在油田现场实施。但不可否认的是,纳米颗粒稳泡技术在非均质低渗透油藏中驱油潜力巨大,利用粉煤灰作稳泡剂也是值得研究的重要课题。

虽然纳米颗粒在气泡表面及液相中的稳泡机理还有待进一步研究,复配体系的驱油效果有待进一步评价,但是纳米颗粒CO2泡沫驱油技术能够为三次采油进程提供实验思路和技术方法并获得经济效益。

符号解释

ΔGad——脱附能,J;a——颗粒的半径,10-6m;γow——界面张力,mN/m;θ——颗粒与水相的接触角,(°);pcmax——最大毛管压力,mPa;p——理论堆积参数;γAW/OW——气/水界面张力,mN/m。

猜你喜欢

液膜驱油活性剂
考虑轴弯曲的水润滑轴承液膜建模方法
高空高速气流下平板液膜流动与破裂规律
液膜破裂对PCCS降膜的影响*
液体火箭发动机液膜冷却研究综述
注气驱油技术发展应用及海上油田启示
AOS-AA表面活性剂的制备及在浮选法脱墨中的应用
CO2驱油与埋存对低碳经济的意义
适用于高盐度和致密岩层驱油的表面活性剂
化学降解表面活性剂的开发
来源于微生物的生物表面活性剂