不同韵律储层下聚合物驱对剩余油分布的影响
——以渤海G油田反九点面积注采井网为例
2019-10-08王欣然周凤军宋洪亮徐豪飞
王欣然,刘 斌,周凤军,宋洪亮,徐豪飞
(1.中海石油(中国)有限公司天津分公司渤海石油研究院,天津300459;2.广东石油化工学院石油工程学院,广东茂名525000)
剩余油挖潜是海上油田开发的重点研究工作,受开发投资、平台寿命的限制,海上油田的开采年限普遍低于同等储量规模的陆上油田[1],因此在开发前期实现高产和稳产至关重要。由于海上油田普遍采用大井距多层合采,储层韵律及其非均质性会造成严重的层间干扰,导致油田开发初期含水率上升较快[2-5],通过调剖、卡堵水、分层调配等措施能够一定程度上缓解纵向驱替不均衡的问题[6-8],但措施有效期较短,提高油田采收率作用有限。在中含水期开展早期聚合物驱,能够从平面和纵向上总体扩大波及体积和提高驱油效率,从而改善油田初期开发效果[9-13],以获得较高的采油速度。渤海G油田通过实施早期聚合物驱,取得了较好的控水增油效果,但聚合物驱后储层水淹规律和剩余油分布变得更为复杂。由于海上油田聚合物驱矿场应用较少,前人主要研究了水驱条件下,储层韵律性对剩余油分布的影响[14-16],而对聚合物驱条件下剩余油分布研究较少,且研究方法多以数值模拟和一维单向室内驱替实验为主[17-19];且相比于陆上油田普遍进入高含水期后实施聚合物驱,海上油田早期聚合物驱条件下剩余油研究可参考实例较少。为此,笔者根据渤海G油田油藏属性,开展三维非均质模型驱油实验,研究反九点井网开发模式下,储层韵律性对水驱和聚合物驱剩余油分布的影响,以指导油田调整及挖潜研究工作。
1 油田概况
渤海G油田为受辽西1号断层控制的半背斜构造,整体北西高南东低,主要为湖相三角洲前缘沉积,正韵律、反韵律及复合韵律储层均有分布,总体上具有中、高孔隙度和渗透率的物性特征,横向上分布稳定,但非均质性较强,渗透率级差约为3.2~4.6,埋深为1 700 m处的温度约为65℃,地饱压差为1.8~3.1 MPa,地层水属于NaHCO3型,总矿化度为3 320~5 200 mg/L,地下原油黏度为10.0~26.0 mPa·s。该油田采用反九点面积注采井网开发,投产初期采用注水开发,进入中含水期后,开发方式由水驱转为聚合物驱,目前已进入高含水期挖潜调整阶段。
2 实验器材与方法
2.1 实验器材
实验装置由恒温箱、岩心夹持器、Teledyne Isco高压高精度柱塞泵、压力传感器、六通阀、手摇泵、中间容器和油水分离器等组成。
驱替模型为三维非均质模型(图1),参照渤海G油田储层物性(表1),规格为30.0 cm×30.0 cm×6.0 cm,并在模型中均匀插入若干微电极。
图1 实验装置及流程Fig.1 Experimental devices and processes
表1 三维非均质模型基础参数Table1 Basic data of three-dimension heterogeneous model
实验用油是真空泵油与煤油按体积比为2∶1配制,实验温度65℃条件下黏度为18.0 mPa·s,与渤海G油田地下原油黏度接近。
实验驱替用水根据渤海G油田实际注入水离子成分复配而成,总矿化度为3 900 mg/L。
实验用聚合物为渤海G油田实际生产使用聚合物,聚合物溶液质量浓度为1 500 mg/L。
2.2 实验方案
方案1 正韵律模型水驱至含水率为98%。方案2 反韵律模型水驱至含水率为98%。
方案3 复合韵律模型水驱至含水率为98%。
方案4 正韵律模型水驱至含水率为60%,实施聚合物驱,注入聚合物溶液0.3 PV后水驱至含水率为98%。
方案5 反韵律模型水驱至含水率为60%,实施聚合物驱,注入聚合物溶液0.3 PV后水驱至含水率为98%。
方案6 复合韵律模型水驱至含水率为60%,实施聚合物驱,注入聚合物溶液0.3 PV后水驱至含水率为98%。
2.3 实验步骤
实验步骤包括:①按模型设计要求充填三维非均质模型。②模型抽真空饱和水,记录累积吸入水量,即岩心孔隙体积,65℃下恒温4 h以上。③饱和油至束缚水饱和度,记录累积排出水量,计算平均残余油饱和度,老化24 h。④注水井以恒定速度进行水驱、聚合物驱,记录驱替过程中的压力变化、累积产油量及产水量,出口端含水率达到98%时停止驱替,重复步骤②—④,至所有实验方案全部完成。
3 实验结果与分析
3.1 正韵律储层剩余油分布
从正韵律模型水驱结束后剩余油分布(图2a)可以看出,受重力分异与渗透率级差共同作用,正韵律储层底部水淹严重,纵向上低渗透层和中渗透层存在大量的残余油,尤其顶部低渗透层动用程度较低。平面上剩余油主要分布在与注入井对应最远的角井附近,边井附近剩余油富集程度低于角井,其原因为角井与注入井的注采距离大于边井,且对井组单元的产量贡献也小于边井,故注入水对边井的波及程度大于角井。
图2 正韵律模型不同开发方式含油饱和度对比Fig.2 Comparison of oil saturation under different development methods of finning-upward sequence model
模型水驱进入高含水期后,即含水率超过60%开始进行早期聚合物驱,由驱替结束后剩余油分布(图2b)可以看出,聚合物优先进入水窜现象较为严重的高渗透层,而高渗透层中的剪切速率较小,聚合物溶液表现为高黏度的特征,增加高渗透率通道的渗流阻力,迫使聚合物溶液进入到原来相对吸水较差的中、低渗透层,从而削弱了纵向上重力分异作用,使正韵律模型纵向上驱替更加均匀;另一方面由于聚合物在高渗透层的孔隙喉道渗流过程中出现剪切增稠的现象[20],在剪切力和拉伸力的共同作用下,会有更多的剩余油在与聚合物的接触下发生流动,从而提高微观驱油效率,使储层的剩余油饱和度降低。
基于上述研究,认为高渗透层以提高驱油效率为主,中、低渗透层扩大波及体积和提高驱油效率的效果均较明显,尤其是低渗透层。剩余油主要富集在反九点面积井网储层顶部低渗透层的边、角井区域,对正韵律储层挖潜,可考虑在反九点面积井网边、角井之间靠近角井区域部署水平井调整井,从而有效挖潜储层顶部剩余油。
3.2 反韵律储层剩余油分布
从反韵律模型水驱结束后剩余油分布(图3a)可以看出,层间的剩余油差异程度明显小于正韵律模型,而反韵律与正韵律模型的平均渗透率以及渗透率级差均一致,这说明驱油效果差异主要是重力分异作用不同引起的,重力分异是由水平渗流速度及垂直渗流速度相对差异引起的,由达西公式得到,水驱油时水平方向渗流速度为:
在水、油重力差作用下的垂直渗流速度为:
若水平方向渗透率与垂直方向渗透率相同,(2)式两端分别除以(1)式两端得:
当垂直方向渗透率与水平方向渗透率相同时,则为垂直渗流速度与水平渗流速度的比值,可以看出,重力准数越大,重力分异作用越强。反韵律模型自上而下垂直方向渗透率逐渐减小。与平均渗透率相同的正韵律模型相比,其垂直方向渗流阻力逐渐增加,垂直方向渗流速度小于正韵律模型,因此其重力准数较小,重力分异作用较弱,采油井见水时油水前缘转折点推进的距离更长,使模型纵向驱替程度更加均匀。受注采对应关系影响,反九点面积井网剩余油富集在靠近角井区域。
图3 反韵律模型不同开发方式含油饱和度对比Fig.3 Comparison of oil saturation under different development methods of coarsening-upward sequence model
当反韵律模型开发方式转变为早期聚合物驱时,从驱替结束后剩余油分布(图3b)可以看出,一方面由于聚合物能够改善吸水剖面,与重力分异作用产生协同效应,使顶部高渗透层的剩余油饱和度大幅减少,同时也能加强中、低渗透层的驱替程度;另一方面,反韵律模型聚合物驱时,由于在纵向驱替更加均匀,接近于活塞式驱油,故驱替相的整体渗流速度低于正韵律模型,黏弹效应减弱,从而减少了聚合物分子在储层中的滞留[21],提高聚合物溶液的有效利用率,尤其在高渗透层表现得更为明显。驱替结束后,中、高渗透层仅在角井附近剩余油富集,整体聚合物驱效果优于正韵律模型。
对于反韵律模型,由于重力分异起到正向作用,无论水驱还是聚合物驱,纵向上驱替程度均更加均匀。剩余油主要富集在反九点面积井网的角井区域附近,可在角井附近非主流线区域部署定向调整井来挖潜剩余油。
3.3 复合韵律储层剩余油分布
从复合韵律模型水驱结束后剩余油分布(图4a)可看出,对于组成复合韵律的正韵律或反韵律储层来说,其剩余油分布特征与单一正韵律或单一反韵律相似。其中反韵律部分的渗透率级差大于单一反韵律模型,具有更强的非均质性,故低渗透层的水驱效果略差于单一反韵律模型;正韵律部分的渗透率级差小于单一正韵律模型,非均质性程度较低,因此底部中渗透层的驱替效果略好于单一正韵律模型。
开发方式转变为早期注聚合物驱,剩余油分布(图4b)中聚合物驱以改善顶、底部的高、中渗透层的驱油效果为主,而低渗透层同时受反韵律提高驱油效率和正韵律部分提高波及体积的叠加效应,为剩余油富集的主要层位,但其驱替程度高于单一韵律储层。聚合物驱结束后,复合韵律储层剩余油主要富集在各层角井附近,因此其挖潜策略与反韵律储层类似,应以在角井附近非主流线区域部署定向调整井为主。
3.4 驱替动态特征分析
图4 复合韵律模型不同开发方式含油饱和度对比Fig.4 Comparison of oil saturation under different development methods of superposition sequence model
图5 不同驱替方式注入量与采油速度的关系Fig.5 Relationship between pore volume and recovery rate
从水驱时注入量和采油速度关系(图5a)可以看出,由于各模型的驱替速度相同,因此注入量的大小可以等效为驱替时间的长短,反韵律模型稳产时间最长,复合韵律模型次之,正韵律模型稳产时间最短。不同韵律模型见水后,采油速度均呈大幅下降,当注入量超过0.6 PV时,采油速度均下降至初期采油速度的20%以下。
通过实施早期聚合物驱,采油速度开始回升(图5b),正韵律模型水驱情况下最先达到中含水期,因此实施聚合物驱时间最早,同时由于其剩余油富集程度较高,故聚合物驱后提高采油速度效果最为明显,注入量达到0.6 PV时,采油速速度相比水驱平均提高了3.4倍;复合韵律模型纵向上驱替最均匀,故聚合物驱后未出现采油速度明显上升的现象,而是表现为抑制了采油速度下降趋势,注入量达到0.6 PV时,采油速度相比水驱平均提高了2.1倍;反韵律模型水驱阶段稳产时间最长,因此实施聚合物驱的时间最晚,但聚合物驱后采油速度回升趋势较明显,在相同的注入量下,采油速度相比水驱平均提高了2.3倍。由此说明对于不同的韵律性,早期聚合物驱对于开发前期采油速度均有较为明显的效果。
从水驱时采出程度与含水率关系(图6a)可以看出,正韵律模型无水采油期最短,采收率最低为34.5%;反韵律模型的无水采油期最长,采收率最高为48.3%;复合韵律模型采收率介于正韵律与反韵律模型之间,为45.7%。当开发阶段达到高含水率阶段末期,即含水率达到80%时,正韵律模型采出程度为28.2%,反韵律模型采出程度为44.1%,复合韵律模型采出程度为37.2%。
从聚合物驱时采出程度与含水率关系(图6b)可以看出,水驱转为聚合物驱后,不同韵律储层模型均出现了含水率下降漏斗或抑制含水率上升趋势。相比于水驱条件下,正韵律储层模型由于水驱程度较低,因此聚合物驱后提高采收率达22.2%,而反韵律和复合韵律模型因水驱程度较高,采收率分别提高了18.5%和18.1%,提高程度低于正韵律模型。对比高含水率阶段末期的采出程度,聚合物驱含水率达到80%时,正韵律模型采出程度为50.1%,反韵律模型采出程度为61.7%,复合韵律模型采出程度为53.0%,分别是水驱高含水率末期的1.78,1.40和1.42倍。说明对不同韵律储层聚合物驱均能起到较好的控水增油效果。
图6 不同驱替方式采出程度与含水率的关系Fig.6 Relationship between recovery degree and water cut
4 应用实例
渤海G油田目前已进入聚合物驱中、高含水率阶段,根据上述研究认为,油田挖潜应以储层韵律性控制的剩余油分布差异作为主要考虑因素。以油田典型聚合物驱井组为例,GZ1井为反九点井组中心注聚井,该井组所在Ⅰ油组以正韵律储层为主,通过水淹层测井解释,采油井GZ2(边井)Ⅰ油组底部为中到强水淹,而采油井GZ3(角井)Ⅰ油组底部为弱到中水淹。分析实验研究结果,认为正韵律储层进入聚合物驱高含水率期后,反九点井组角井附近顶部仍有剩余油富集,因此开展调整井研究方案,于Ⅰ油组顶部距离GZ3井100 m处非主流线方向,部署了1口调整井GY1H进行挖潜试验。GY1H井投产后初期产油量为86 m3/d(图7),为周边生产井产能的2~3倍,且生产1 a后含水率仍在15%以内,取得了较好的挖潜效果。
图7 调整井GY1H井生产曲线Fig.7 Production curve of adjustment well GY1H
5 结论
三维非均质模型驱替实验结果表明,通过中、高含水率期实施注聚合物驱,能够有效提高中、高含水率阶段的采油速度和最终采收率,从而改善海上油田中前期开发效果;对于正韵律储层,聚合物驱剩余油主要富集在反九点井网顶部低渗透层的边、角井区域,挖潜方式应以在角井附近非主流线区域部署水平井调整井为主;而对于反韵律和复合韵律储层,聚合物驱剩余油主要富集在反九点井网的角井区域附近,挖潜方式应以在角井附近非主流线区域部署定向调整井为主。该实验针对不同韵律储层实施不同的调整策略,取得更好的挖潜效果,能够对同类油田开发调整起到有效的借鉴作用。
符号解释
VH——水平方向渗流速度,cm/s;KH——水平方向渗透率,mD;μ——通过模型的流体黏度,mPa·s;Δp——流体通过模型前后的压差,10-1MPa;L——模型长度,cm;VZ——垂直方向渗流速度,cm/s;KZ——垂直方向渗透率,mD;g——重力加速度,m/s2;ρw——水相密度,g/cm3;ρo——油相密度,g/cm3;Δρ——水油相密度差,g/cm3;Ng——重力准数,其物理意义为驱替过程中重力梯度与驱替压力梯度之比。