断-砂复合输导体系及优势输导通道表征方法与应用
2019-10-08于海涛孙同文姜文亚刘海涛闫百泉
于海涛,孙 雨,孙同文,姜文亚,刘海涛,闫百泉
(1.东北石油大学地球科学学院,黑龙江大庆163318;2.广东石油化工学院石油工程学院,广东茂名525000;3.中国石油大港油田分公司,天津300280;4.中国石油勘探开发研究院,北京100083)
随着复合输导体系研究的深入,以往单一输导体系的刻画或区域性的有利区预测已不能满足油田实际勘探生产的需求。砂岩输导层往往不会作为单一的输导通道大面积分布,一般均会受到输导断层的影响;而输导断层作为输导通道时,也须考虑砂岩输导层的影响。只有明确砂岩输导层与输导断层之间的配置关系,输导体系的研究才会具备现实的指导意义。关于复合输导体系的研究,前人取得了一定的进展[1-5],然而在以往的研究中,已注意到由于断层结构的复杂性及砂岩的非均质性,各部位的输导能力是不同的,断面脊和构造脊具有相对较强的输导能力,但这部分研究尚未应用于复合输导体系表征。复合输导体系关键要素需具备良好的配置关系,才可协同构建优势输导通道。为此,笔者提出将输导断层、砂岩输导层、油源断层断面脊及构造脊四相耦合,实现断-砂复合输导体系及优势输导通道的表征,以期指导油田勘探生产实践。
1 断-砂复合输导体系输导油气机理
1.1 断层输导体系
在油气成藏过程中,断层既可以输导油气,也可以为油气聚集提供遮挡条件。输导断层指油气成藏期活动的断层,在正常生、储、盖组合条件下输导断层向上输导油气,在此过程中伴随着横穿断层面向两侧储层中充注油气。断层输导主要表现为沿断层面输导和横穿断层面输导2种类型[6-7],前人从控制条件、影响因素等角度入手,进行了大量研究[8-10],取得了丰硕的成果:断层面输导型主要受断层倾角、断层泥质含量、分支断层、流体充注方式等影响[10-16];横穿断层面输导型指流体穿过断层向两侧储层分流,受断层与储层砂体排替压力差控制[17](图1a)。断层封闭主要存在对接封闭、泥岩涂抹封闭及胶结作用封闭3种机理[18]。断层侧向输导油气取决于断层充填物的输导能力,其输导性能的关键在于排替压力。断层岩的排替压力小于储层的排替压力,即断储排替压力差小于0时,断层起侧向输导作用;且断储排替压力差值越小,断层的输导能力越强,所能支撑的油气柱高度越低[19]。
1.2 砂岩输导体系
砂岩输导体系输导油气时,以游离相为主,输导通道主要为砂岩连通孔喉和裂缝[17,20-21],是在动力和阻力共同作用下完成的[22-24]。在静水条件下,浮力是主要动力,阻力是岩石最小的喉道半径和最大的孔隙半径所产生的毛细管压力差。因此,砂岩输导层会优先沿着最大孔隙和最大喉道输导油气。
在物理模拟[25-26]和数值模拟[27-31]的验证下,前人总结出油气进入砂岩输导层后的输导过程:首先油气逐渐汇集于底部,在静水条件下,当油气聚集的体积足够大时,开始上浮至输导层顶部[32-33]。当输导层具备一定向上的倾角,且在盖层限制作用下,油气聚集达到一定的高度(长度),产生的浮力大于毛细管压力及其他阻力,将继续沿上倾方向运移,直至遇到圈闭形成聚集;如果输导层呈上凸状态,则油气在上凸位置聚集,当油气聚集到一定程度(最低界面低于上凸构造的边界),油气继续向输导层上倾方向运移(图1b)。
从宏观角度来看,砂体的类型、垂向演化及平面分布的差异性是影响砂岩输导性能的主控因素。开发地质中常用孔隙度和渗透率来定量评价储层物性,孔隙度表征砂岩容纳油气的能力,而渗透率表征含油气砂岩的运移能力,为油气实际发生运移之后测得的数据,因此,在砂岩输导性能评价中,渗透率更适用于评价砂岩输导性能。
1.3 断面脊
在以往的研究中发现,油源断层主要通过有利部位(如凸面脊)向上输导油气,而非大面积向上输导[34-36]。断层内部结构的复杂性和特殊性,使断层面往往呈现凹凸不平的形态,对输导油气具有重要影响[26]。断层是沿着有限通道空间输导油气的,重点在阻力最小的路径上,即最大流体势降低方向[6]。凸面发育部分为断面脊,是沿断层垂向输导油气的优势通道,对油气成藏具有重要作用(图1c)。
1.4 构造脊
油气进入砂岩输导层后,受浮力作用首先向上运移至输导层顶面,然后向构造高部位运移,以构造脊(正向构造同一岩层面上最高点的连线)最为有利(图1d)。构造脊轴线及两侧是油气运移的主线与汇流区,也是良好的聚集场所,具有很大的汇聚优势。构造脊向凹陷的倾没端及邻凹两侧均邻近生油中心,烃源岩排出油气之后,率先进入构造脊范围。在油气从低部位有效烃源岩向构造脊运移的过程中,构造脊向凹陷的倾没端及邻凹两侧的油气皆向构造脊轴线汇聚[37-38]。
图1 断-砂复合输导体系输导油气机理Fig.1 Mechanism of hydrocarbon transport in fault-sandstone composite transport system
2 断-砂复合输导体系精细刻画方法
2.1 断层输导体系刻画方法
基于断层三维空间形态,采取断层泥比率法,综合利用录井和地层压力等资料,对断层输导体系进行定量评价。断层泥比率(SGR)为断层上一点的地层厚度与该套地层泥质含量乘积的累加之和再除以断距[39]。
通过计算断层面的SGR和断层可承受最大过断层面压差(AFPD),可以建立断层泥质含量与断层封闭能力的定量关系。以AFPD作为纵坐标,以对应深度的一系列断层面的SGR作为横坐标,将每个圈闭的SGR-AFPD投点到同一坐标系中,即得到表征断层侧向封闭能力的SGR-AFPD关系图,进而可以拟合出代表不同SGR断层最大封闭能力的断层封闭失败包络线。根据断层封闭失败包络线可以确定断层封闭临界SGR下限值,得出AFPD随SGR变化的函数关系式:
根据油水密度差可以推算出SGR与断层面某点可支撑的最大烃柱高度的关系式:
利用(2)式即可对其他断层进行封闭能力预测[39]。
2.2 砂岩输导体系刻画方法
基于沉积结构,采取逾渗阈值法,综合利用动、静态资料确定各井砂体之间的连通性;然后拟合砂体连通性与砂地比之间的相关关系,建立砂体连通性与砂地比之间的数学概率模型,从而实现量化表征地层的连通特征。
根据研究区的沉积及构造演化特征,识别出区域性盖层或隔夹层并进行标定,确定其平面分布范围,以此为依据划分输导层。利用动、静态生产资料,结合连井砂体对比,确定各井之间的砂体连通性。随着生产的推进,连通各井的产液量随时间的变化趋势应近似一致。因此将同一井网内产液量(产水量与产油量之和)随时间变化趋势一致的井认为是连通的井,以此判断井间的连通性。文献[40]认为存在一个砂地比特征门限值,低于该门限值时砂体之间基本不连通,该砂地比门限值即为逾渗阈值。随着砂地比的增大,砂体逐渐连通,当砂地比高于一定的门限值时,砂体几乎完全连通,该砂地比则称为完全连通系数。文献[41]对东营凹陷牛庄洼陷南部斜坡沙河街组各输导层进行了连通性分析,将逾渗阈值与完全连通系数分别确定为0.2和0.5。文献[42]对东营凹陷南斜坡东段王家岗油田沙河街组二段进行研究,将这2个参数分别确定为0.15和0.62。
通过上述方法确定同一井网内各井砂体的连通性,统计各地层单元的砂岩输导性与砂地比的相关关系。将砂地比从0至100%划分为20个区间,间隔为5%,统计各区间内连通砂体的样本数占总样本数的百分比,得到20个区间点砂地比与砂体连通概率的对应关系,建立砂体连通概率模型:
利用砂体连通概率模型计算各井的地层连通概率,进而可绘制出砂体连通概率平面等值线图[41]。
文献[43]提出输导体系输导油气时会留下痕迹,而录井资料记录了油气在储层中的分布及运移情况。将饱含油与富含油确定为A类油气显示,指示输导油气的主要通道;油浸为B类油气显示,指示输导油气的重要通道;油斑与油迹为C类油气显示,指示输导油气的通道;荧光为D类油气显示,指示输导油气的可能通道。因此在地质研究基础上,根据现今油气藏分布特征及地质录井显示级别确定油气运移路径,依据此方法可以对根据砂体连通概率定量刻画的输导范围进行验证。
2.3 断面脊刻画方法
基于将断层假想成一个面的前提下,采取断层面埋深等值线法,利用地震资料,实现断面脊的精细刻画。具体做法如下:确定沿断层走向地层在断层面上的埋深变化规律,将埋深等值线整体趋势向上凸的位置识别为断层面的“鞍部”,为相对高势区,对应凹面断层单元,对油气起发散作用;将埋深等值线向下凹的位置识别为断层面的“脊部”,为相对低势区,对油气起汇聚作用[17]。
2.4 构造脊刻画方法
基于古地貌恢复结果,采取地层埋深等值线法,综合利用研究区测井、录井资料,结合地震剖面,对油气成藏期发育的构造脊进行识别。具体做法如下:恢复油气成藏期的古地貌,确定地层埋深的变化规律,将埋深等值线整体趋势向上凹的位置识别作为地层的“槽部”,为相对高势区,对油气起发散作用;将埋深等值线整体趋势向下凹的位置识别作为地层的“脊部”,为相对低势区,对油气起汇聚作用。基于相应地层的沉积体系或砂体分布规律,探究构造脊处的砂体发育特征。
3 断-砂复合输导体系四相耦合方法
油气输导体系是否起作用,首先要考虑输导体系与烃源岩的配置关系,只有输导体系各要素与烃源岩的配置关系良好,才可以起到输导油气的作用;反之,如果输导体系未能与烃源岩有效沟通,即使输导性能再好,也不具有输导油气的作用。砂岩输导层是将同一层系的输导断层、断面脊和构造脊串联在一起的关键因素,而垂向输导断层是将各层输导体系串联在一起的关键因素。
3.1 输导断层与砂岩输导层的耦合
垂向输导油气的断层只有与砂岩输导层的配置关系良好,油气才能进入砂岩输导层继续输导;砂岩输导层输导油气时,遇到封闭断层则输导中止,遇到输导断层渗漏点,则继续向构造高部位输导。此外,条带砂体与断层之间的夹角对输导油气也具有一定的影响,主要存在近平行和近垂直2种组合模式,其他组合模式均以不同角度介于二者之间。文献[44]按照地层倾向、砂体走向及断层走向、倾向的不同,总结出6种组合模式,文献[45]在此基础上深化了油气在其中的运移特征,发现不同组合模式下油气沿砂岩输导层的运移特征存在差异。
3.2 砂岩输导层与构造脊的耦合
构造脊发育处本身并不是沉积物卸载的主要场所,沉积物若在构造脊位置处汇集至一定规模,一般都会受到局部沟槽等微构造控制。因此,只有当构造脊与砂岩输导层配置关系良好时,才能成为输导油气的优势通道。
3.3 构造脊与断层的耦合
构造脊轴线及近轴两侧的构造弯曲度最大,受到的张应力最大,导致断层发育,有利于形成断层(或断层-岩性)圈闭带,该圈闭带可以最早且最多地获取油气而成为有利富油带[37-38]。当断层走向与构造脊方向一致,且断层可以作为输导油气的遮挡条件时,输导效率更高[17,46]。
3.4 油源断层断面脊与砂岩输导层的耦合
只有当油源断层断面脊与砂岩输导层的配置关系良好时,油源断层输导的油气才可以进入砂岩输导层进行侧向输导;反之,如果油源断层断面脊不能与砂岩输导层有效配置,油源断层输导的油气仅可以在断层中继续输导或在合适的位置聚集成藏。
4 实例应用及验证
选取渤海湾盆地歧口凹陷歧南斜坡区为例,应用断-砂复合输导体系四相耦合方法对研究区断-砂复合输导体系进行精细刻画,并根据表征结果与各井油气显示情况之间的关系,分析该方法用于定量评价断-砂复合输导体系的可行性。
4.1 研究区概况
歧南斜坡区位于歧口凹陷南大港断层以南,呈NE向展布,勘探面积约为1 000 km2。钻井揭示研究区地层自下而上发育古生界,中生界(中下三叠统、中下侏罗统和部分白垩系)和新生界古近系(沙三段、沙二段、沙一段和东营组)、新近系(馆陶组和明化镇组)及第四系(平原组)。其中,中生界、沙三段、沙二段、沙一段和新近系为主要勘探目的层。受持续不断的区域张扭性构造应力场控制,研究区断层相对发育,多为正断层,规模不一,走向以NE或近EW向为主,呈平行排列,断层之间表现为侧接转换的特点。歧南斜坡区发育若干条大型断层,不仅可以作为油源断层,也可以在输导油气过程中起到垂向调节或遮挡作用。
歧口凹陷具有水体开阔、有机质充沛、沉积沉降速率大等特点。2次最大水进期发育的沙三段和沙一段暗色泥岩是研究区最重要的烃源岩。储集砂体类型以辫状河三角洲平原分流河道、辫状河三角洲前缘水下分流河道及河口坝砂体为主,物性较好。油气藏分布受生油凹陷控制,类型多样,以拱升背斜油气藏、逆牵引背斜油气藏、挤压背斜油气藏和断块油气藏等构造油气藏为主,还发育粒屑灰岩油气藏和地层岩性油气藏[47-50]。
歧南斜坡区可识别出2套主要的盖层。其中一套为东二段盖层,厚度约为100~200 m,以泥质岩沉积为主,为区域性盖层,厚度相对较大,几乎全区分布;另一套为沙河街组顶部的泥岩盖层,厚度相对较小,分布范围局限。歧南斜坡区主要受来自埕宁隆起和孔店-羊三木凸起物源体系的影响,在埕宁隆起物源体系的影响下主要发育辫状河三角洲沉积体系,沉积物从高斜坡搬运至低斜坡,自埕宁隆起至歧南次凹方向依次发育辫状河三角洲平原、辫状河三角洲前缘和水下扇沉积,砂体分布范围较广;歧南斜坡区距离物源区较近,水体能量相对较强,砂岩厚度及砂地比相应较大。在孔店-羊三木凸起物源体系的影响下,主要发育局部的扇三角洲前缘及碎屑岩滩坝沉积,砂岩厚度及砂地比相对较小。
4.2 单一输导体系评价
歧南斜坡区已钻探油藏烃柱高度的统计结果(表1)表明,80%以上的油藏烃柱高度大于40 m,因此将断层封堵烃柱高度为40 m所对应的SGR值(为25%)作为断层强封闭的临界值,即当SGR值大于25%时,断层为强封闭;SGR值为20%~25%时,断层为弱封闭;SGR值小于20%时,断层为渗漏状态。依据断层封堵烃柱高度与SGR的定量关系以及断层封闭能力划分标准,确定研究区主力含油层位的断层输导能力及平面分布。
表1 歧南斜坡区断-圈控制要素及油藏烃柱高度统计结果Table1 Statistics of fault-trap elements and hydrocarbon column height of Qinan Slope
分析结果表明,歧南斜坡区仅有南大港断层、张北断层和赵北断层等规模相对较大的断层为油气成藏期活动的断层,可以起到垂向输导油气的作用(图2)。
图2 歧南斜坡区断层输导体系及断面脊评价Fig.2 Evaluation map of fault transport system and fault plane ridge in Qinan Slope
歧南斜坡区以东二段区域盖层为界限,可以划分为上输导层和下输导层。采用连通概率法对研究区砂岩输导层进行定量评价,绘制砂体连通概率平面等值线图[19-31],统计各地层单元的砂体连通性与砂地比的相关关系,确定歧南斜坡区逾渗阈值和完全连通系数分别为0.15和0.8;即当砂地比小于0.15时,砂体基本不连通;当砂地比大于0.8时,砂体完全连通。建立砂体连通概率模型,计算研究区各井不同地层的连通概率,绘制砂体连通概率平面等值线图,从而实现定量评价研究区砂岩输导体系的输导性能,刻画油气在砂岩输导体系中的有效运移路径[19-31](图 3)。
在明化镇组沉积末期之后,研究区断层活动微弱,其断距及断层面本身形态的变化较小,即油气关键成藏期(明化镇组沉积末期)断层面形貌与现今断层面形貌基本一致,可以根据现今的断层面特征来刻画油气关键成藏期的断层面特征。南大港断层在沙一段沉积时期可识别出a,b,c,d和e共5处断面脊发育部位(图2),为断层输导油气的优势通道;其他规模相对较小的断层在油气成藏期不活动,不能起到垂向调节油气的作用。
图3 歧南斜坡区砂岩输导体系评价Fig.3 Evaluation of sandstone transport system in Qinan Slope
基于歧南斜坡区古地貌恢复结果,识别出4处近EW向的构造脊和2处近NS向的构造脊(图4)。
图4 歧南斜坡区构造脊评价Fig.4 Evaluation of tectonic ridge system in Qinan Slope
4.3 断-砂复合输导体系四相耦合
研究区断层走向多呈NEE向或近EW向,而砂体呈NS向展布。砂体展布与断层走向近于垂直,属于砂体走向平行于地层、倾向垂直于(顺向)断层走向型组合模式,有利于发生油气的先侧向后垂向输导。
基于油气田开发地质学研究思路,当砂体连通概率大于0时,根据渗透率分布特征对砂岩输导体系内部的输导性能进行级次划分。图5所示为歧南斜坡区断-砂复合输导体系的输导路径,即输导断层、油源断层断面脊、砂岩输导层、构造脊或高渗透砂岩发育带四相耦合,共同组成复合输导体系的优势通道。油源对比结果表明,研究区沙一段及其上部地层的油气主要来自于沙一段下亚段烃源岩。综合分析油气成藏期、油源对比结果及断层分布特征认为,油源断层为沙一段烃源岩生成的油气向上输导的主要通道。研究区主要发育2种类型的复合输导体系,一种为南大港断层(油源断层)断面脊-砂岩输导层-输导断层-构造脊,另一种为砂岩输导层-构造脊-断层。其中,南大港断层(油源断层)断面脊-砂岩输导层-输导断层-构造脊表现为受沙一段有效烃源岩分布范围及砂岩输导体系分布特征的控制,南大港等断层仅有局部部位可作为沙一段烃源岩生成油气的垂向运移通道,图2中a和b处断面脊位于有效烃源岩范围之外,e处断面脊未能与砂岩输导体系有效结合,仅有c和d处断面脊位于有效烃源岩范围之内,且与砂岩输导体系配置关系良好,可作为油气在油源断层中运移的优势通道。首先由南大港断层的c和d处断面脊向上输导油气,进入砂岩输导层后,汇集至砂岩输导层顶部;然后自斜坡低部位向高部位输导,遇断层封闭段运移中断,部分油气聚集成藏,另一部分沿断层面侧向散开,在断层渗漏段继续向斜坡高部位输导,遇高渗透砂体或构造脊处向扣村方向发生侧向分流,在有效圈闭内聚集成藏。例如在图4构造脊C发育位置,构造脊与砂岩输导体系的配置关系良好,侧向输导距离较长;在构造脊E和F发育位置,油气未经长距离输导即聚集成藏;在构造脊A,B和D处虽未发现成规模的油气藏,但钻井发现大量高级别的油气显示。砂岩输导层-构造脊-断层表现为:局部砂岩输导层直接接触有效烃源岩,经砂岩输导体系侧向输导至构造脊位置,断层走向与构造脊方向一致且作为遮挡条件时,输导效率较高[44]。依据沙一段下亚段研究区各井油气显示情况对断-砂复合输导体系的刻画结果进行验证,吻合程度较高,表明表征结果是可信的。
4 结论
图5 歧南斜坡区油气在断-砂复合输导体系中的运移路径Fig.5 Migration pathways of hydrocarbon in fault-sand composite transport system in Qinan Slope
油气在断层输导体系中的运移为不均一的过程,与砂岩输导体系配置良好的断面脊是油气运移的优势路径。油气在砂岩输导体系中的运移也不是均一的,与砂岩输导体系配置良好的构造脊是油气运移的有利指向。断-砂复合输导体系是歧口凹陷歧南斜坡区最重要的输导类型,断-砂复合输导体系四相耦合表征方法从油气运移角度对油气藏的分布进行预测。研究区沙一段上部的油气主要来自断层的垂向调节及垂向调节之后的侧向输导,而不是由砂岩输导层直接接触烃源岩发生的侧向输导,因此研究区沙一段上部地层的油气分布在很大程度上受其下部地层输导体系分布范围及油气成藏期垂向输导断层分布的影响。通过有效刻画油气输导体系的分布,对研究区下步油气勘探具有指导意义。
符号解释
SGR——断层泥比率,%;AFPD——断层可承受最大过断层面压差,MPa;d——变量参数,其值为0~200;c——与深度相关的参数,当埋深小于3 000 m时,取值为0.5;埋深为3 000~3 500 m时,取值为0.25;埋深超过3 500 m时,取值为0;H——断层面某点可支撑的最大烃柱高度,m;ρw——地下水密度,g/cm3;ρo——储层中烃类的密度,g/cm3;g——重力加速度,m/s2;P——砂体连通概率;h——砂地比;c0——逾渗阈值;b——连通指数,为完全连通系数与逾渗阈值的差值。