非常规储层孔隙结构表征技术及进展
2019-10-08师永民徐大卫李拉毛才旦
汪 贺 ,师永民 ,徐大卫 ,陈 旋 ,李拉毛才旦
(1.北京大学地球与空间科学学院,北京100871;2.北京大学石油与天然气研究中心,北京100871;3.密苏里科技大学石油工程学院,密苏里州65401;4.中国石油吐哈油田分公司勘探开发研究院,新疆哈密839000;5.中国石油青海油田分公司采气一厂,青海格尔木816000)
随着非常规油气资源的勘探与开发,储层储集空间粒级逐渐向更小级别发展,非常规储层成为当前油气资源开发的重中之重。非常规储层物性较差,一般孔隙度小于10%,渗透率小于0.1 mD,孔喉直径一般小于1 μm,主体孔隙为微纳米孔,孔喉结构复杂[1]。储层岩石的孔隙结构对储层物性、油气储集能力以及油气开发影响重大,因此对孔隙结构的研究是目前非常规油气开发研究的重点[2]。
非常规储层主体孔隙为微纳米级别,且类型多样。针对非常规储层孔隙结构类型的划分,许多学者从孔隙大小和产状2方面进行了研究,国际理论化学与应用化学学会将孔径分为微孔(孔径小于2 nm)、中孔(孔径为2~50 nm)和大孔(孔径大于50 nm)[3]。LOUCKS在 2012 年提出的孔径分类方案,将孔隙分为大孔(孔径大于4 mm)、中孔(孔径为62.5 μm~4 mm)、微孔(孔径为1~62.5 μm)、纳米孔(孔径为1 nm~1 μm)和埃米孔(孔径小于1 nm)共5类[4]。不同类型非常规储层孔径分布各不相同,致密油储层的孔径一般为500~900 nm,致密砂岩气储层的孔径为40~700 nm,致密灰岩油储层的孔径为40~500 nm,页岩油储层的孔径为30~400 nm,页岩气储层的孔径大多为5~200 nm[5]。常规储层孔隙结构表征技术难以满足非常规储层孔隙结构表征需要,亟待完善更高精度的储层表征技术。
目前对非常规储层孔隙结构的研究,主要包括孔喉大小、形态、分布、连通性和油气赋存状态等方面。对于孔喉大小和形态的研究,邹才能等利用场发射扫描电镜技术分别对海相页岩、陆相泥页岩和致密砂岩等非常规储层的孔喉形态进行研究[1-2];焦堃等利用原子力显微镜技术对泥页岩纳米孔隙的形貌进行观察[6-7];陈尚斌等利用氮气吸附等数值测定实验技术对四川盆地龙马溪组页岩储层纳米孔隙特征进行定量表征[8-9]。对于储层孔喉数量和连通性的研究,SOK等多位学者利用微纳米CT等三维重构技术对碳酸盐岩、页岩和致密砂岩储层进行数值模拟表征[10-12]。对于油气赋存状态,XI等应用环境扫描电镜技术对储层样品的含油性进行观测[13]。
各种表征技术在原理、精度和适用对象上具有较大差异,且每种技术只适用于针对特定孔径范围内部分孔隙结构特点的研究,具有一定局限性,在应用时易出现表征技术和表征对象不匹配的问题;单一表征技术无法准确全面地针对储层的整个孔隙空间结构特征进行研究[14]。为此,笔者在前人研究的基础上,结合非常规储层孔隙结构特点,首先根据不同表征技术的原理,将现有常用孔隙结构表征技术从定性和定量2个方面进行划分,再将定性表征技术从二维图像扫描技术和三维重构模拟技术2个方面进行细分,针对孔隙结构定量表征技术从不同孔隙结构尺度下的定量表征技术和目前研究热点的全孔径联合表征技术2个方面展开讨论。根据每种表征技术的原理,对其精度、特点和适用性进行总结,并探讨目前研究中仍需解决的问题和未来可能的发展方向,以期完善非常规储层的表征技术体系。
1 孔隙结构定性表征
目前非常规储层孔隙结构定性表征技术基于二维平面图像观察扫描和三维空间储层孔隙结构重构模拟2个方面,实现了对孔喉的形态、大小、分布、连通性、油水赋存状态和岩石润湿性的初步表征,并逐步提高表征精度,细化表征功能。
1.1 二维图像扫描技术
基于图像观察的孔隙结构二维观测技术主要包括光学显微镜技术、扫描电镜技术、场发射扫描电镜技术、环境扫描电镜技术以及原子力显微镜技术,主要针对岩石骨架与孔隙的接触关系、孔喉半径分布以及孔隙中油水赋存状态等进行研究。
1.1.1 扫描电镜技术
光学显微镜技术可以对薄片的储层孔隙结构进行观察,但分辨率较低,主要适用于中孔和大孔的研究,并不能满足非常规储层微纳米孔隙的观察。扫描电镜技术的出现大大提高了分辨率,将测量精度提升至6 nm左右。扫描电镜利用高能电子束与样品表面的相互作用,得到二次电子、背散射电子等一系列不同类型信号变化的信息,主要用于孔隙表面形貌的观察,目前已成为储层孔隙结构定性表征的常用方法[15],结合元素能谱分析技术可对矿物成分进行识别,同时还可以通过面孔率求取孔喉平均半径[16]。扫描电镜矿物定量评价技术是在扫描电镜和能谱分析基础上建立的一套矿物定量分析系统,可较为快速准确地对矿物进行分析鉴定,满足了储层孔隙结构定量表征的需求。随着储层研究对表征技术分辨率要求的进一步提升,场发射扫描电镜技术与环境扫描电镜技术在普通扫描电镜技术基础上进一步提高了分辨率,可达到0.5~2 nm,更适用于致密砂岩储层的结构表征[17]。相比于普通扫描电镜技术在样品处理时需洗油镀导电膜,环境扫描电镜技术可以对自然状态下含水含油的样品进行观察,分析原始状态下的孔隙结构及油水赋存状态,并可结合能谱资料对流体性质进行研究,对样品含油性及动态变化进行观测[13],使储层油水赋存状态更加直观。
目前环境扫描电镜技术已成为储层含油性检测的主要手段。对三塘湖盆地某区条湖组未洗油样品在环境扫描电镜下进行观察,细致刻画样品的孔隙结构及流体赋存状态。该样品为晶屑玻屑凝灰岩,于镜下可观察到大量纳米级凝灰质粒间微孔(图1a)、微米级长石粒内溶孔发育(图1b,1c)。研究区条湖组火山岩储层的储集空间以粒间微孔和溶蚀孔隙为主。为确定孔隙中的流体性质,结合能谱资料进行分析,对图1b孔隙中流体区域进行能谱测试,研究区域元素主要组成为碳、氧和少量的硫(图2),判断该处流体为剩余油,主要赋存于直径约为50 μm的溶蚀孔中。
图1 三塘湖盆地某区条湖组环境扫描电镜分析结果Fig.1 Environmental scanning electron microscopy(ESEM)analysis results of Tiaohu Formation in a certain area of Santanghu Basin
图2 三塘湖盆地某区条湖组能谱分析结果Fig.2 Energy spectrum analysis results of Tiaohu Formation in a certain area of Santanghu Basin
1.1.2 原子力显微镜技术
随着对非常规油气研究的不断深入,页岩油气的勘探开发对更高精度研究设备的需求促使图像表征技术不断创新,原子力显微镜技术的出现使分辨率在扫描电镜技术的基础上进一步提升至0.1 nm。原子力显微镜技术是一种扫描探针技术,早期多用于生物领域的研究,可通过对力敏感元件测量样品之间的相互作用进行检测,得到样品表面的形貌结构特征。该技术通过对微弱力十分敏感的悬梁臂一端固定,用另一端的胶体探针接近样品发生相互作用,其斥力使悬梁臂发生微小形变。借助光学杠杆原理将悬梁臂的小位移转化为探针位移,从而获得样品表面形貌结构信息以及粗糙度信息[18]。
目前,原子力显微镜技术在页岩的孔隙特征表征方面应用较多[7,19-20],主要用于页岩储层中孔径为2~50 nm孔隙的观察[7],以及进行页岩储气能力的研究。一般来说,对于测试表面粗糙程度较低的页岩样品,其比表面积较小,气体吸附能力较差;表面粗糙程度较高的页岩样品的比表面积较大,可以提供较多的气体吸附空间[7,20]。此外,目前原子力显微镜技术也多用于储层润湿性的研究,AFM探针可直接用于测量储层岩石表面油水膜的厚度以及材料与液膜之间的作用力[21-22],可对固体表面的粗糙度进行表征,从而用于研究固体表面润湿性的改变[23]。
原子力显微镜技术具有诸多优点。例如其在应用时不需对材料进行预处理,且可在对样品无损伤的条件下,直接对纳米级孔隙的表面形貌和孔喉进行成像;原子力显微镜技术还可以提供储层表面的三维图像,对储层孔隙进行全方位表征。但该技术的主要缺点为成像范围较局限、成像速度较慢,且测量结果受探头的影响较大[24]。
1.2 三维重构技术
随着非常规储层表征要求的不断提高,储层表征技术从二维平面表征逐渐向三维空间表征发展。激光扫描共聚焦显微镜技术和CT扫描技术等依次出现,可以对储层孔隙结构及空间关系进行表征。
1.2.1 激光扫描共聚焦显微镜技术
激光扫描共聚焦显微镜技术结合激光扫描技术、共轭聚焦技术、显微镜技术以及计算机图像处理技术,通过激光对样品进行快速连续分层扫描,利用三维重建技术,将分层扫描成果进行立体结构分析插值,从而进行三维立体成像。激光扫描共聚焦显微镜技术对制样要求低,穿透力强,分辨率可达0.1 μm,可在对样品无损伤条件下较为清晰直观地表征储层的孔喉结构与空间关系,从而分析储层的孔隙结构性质[25-27];且可利用烃类的荧光特性,较为清晰地观测储层中的油气赋存状态以及油气分布的孔隙结构特征[26]。姚泾利等利用激光扫描共聚焦显微镜技术对鄂尔多斯延长组致密砂岩进行孔隙结构和有机质分布研究[25]。苏奥等提出利用激光扫描共聚焦显微镜技术建立岩石薄片的三维模型,进而求取三维平均孔喉直径和孔隙度的方法,该技术对于非均质性较强的非常规储层更为适用[26]。此外,激光扫描共聚焦显微镜技术在古生物化石和流体包裹体研究等方面也有着广泛应用。
1.2.2 微纳米CT扫描技术
CT扫描技术自20世纪60年代诞生以来,从医学领域不断扩展,近年来也用于储层的微观表征,可实现对储层中孔隙和流体的直接观察。不同于激光共聚焦显微镜技术的分层扫描重建,CT扫描技术主要通过X射线直接对物体进行三维扫描可视化成像。根据分辨率的不同,CT扫描技术可分为宏观CT扫描技术、微米CT扫描技术和纳米CT扫描技术。微米CT扫描技术和纳米CT扫描技术多用于微纳米孔隙形貌、大小、连通性以及空间分布的观察,主要用于非常规储层结构研究;其中,纳米CT扫描技术目前的测量精度可达到50 nm。微纳米CT扫描技术可在不损坏样品的情况下,更快速、准确、直观地表征孔隙喉道在三维空间中的形态分布,对孔隙的数量、大小以及连通性进行定量表征,并对任意断层进行虚拟成像。
微纳米CT扫描技术在非常规储层结构研究领域应用广泛,众多学者应用该技术分别对不同类型非常规储层进行微观孔隙结构表征和非均质性研究[28-30]。此外,基于CT扫描技术的三维重构技术优化也是目前研究的重点。郑剑锋等对微纳米CT扫描数据的三维重构技术和孔喉结构提取方法进行了研究[30-32],通过CT扫描技术建立准确的三维数字岩心模型是对储层孔隙结构进行表征的基础,对扫描得到的岩心二维灰度图像基于实测孔隙度等参数选取合理阈值,进行二值化处理[12],并对二值化图像进行体积元分析,重建形成孔隙和基质的三维模型。孔隙网络模型的提取和孔喉结构参数的定量计算也是基于微纳米CT扫描技术进行储层结构表征的关键部分,最大球算法目前应用较为广泛[32-35]。最大球算法通过在三维数字岩心的孔隙中选点作为球心,向四周扩展为孔隙空间中的最大球体,周围可重叠相邻的较小球体,形成一个充满整个孔隙空间的最大球多簇;若1个球体属于2个最大球多簇,这个公共的最大球则被认为是喉道(图3)。通过该方法对三维数字岩心模型进行分割校正,则可区分孔隙、喉道及其连通关系,进而对孔隙结构网络模型进行较为准确的提取,对孔隙的大小、形状因子和孔喉比等参数进行定量表征。
图3 最大球多簇中的孔隙和喉道示意(据文献[36]修改)Fig.3 Illustration of pores and throats in multitufts of the largest sphere(Modified according to reference[36])
除了最大球算法,郑剑锋等利用e-core软件,通过双相燃烧法确定孔隙和基质相态的中轴及与边界的距离[30],基于最大距离嵌入球体代表孔隙、最小距离嵌入圆柱体代表喉道,进行孔喉提取,建立网络模型,并进行孔喉半径和连通关系等参数计算。
2 孔隙结构定量表征
基础的非常规储层孔隙结构定量表征技术大多针对特定尺度内的储层孔喉进行定量评价,以通过实验进行数值测定为主。为实现全孔径范围内的孔隙结构表征,全孔径联合表征技术已成为目前研究的热点。
2.1 不同孔隙结构尺度下的定量表征技术
目前用于非常规储层孔隙结构定量研究的表征技术主要基于间接数值的测定,有压汞技术、核磁共振技术和气体吸附技术等,不同表征技术的主要研究内容与表征尺度各不相同。
2.1.1 压汞及核磁共振技术
压汞技术可分为常规压汞技术和恒速压汞技术,多用于储层孔喉特征和渗流能力的表征。常规压汞技术是在一定的压力下,记录进汞量,测定岩石孔隙结构的技术[37];其孔径测试范围较广,但对半径小于50 nm的孔喉以及成岩作用较强的次生孔隙结构的测量则存在误差[38]。恒速压汞技术在非常规储层研究中的应用较多,可根据注汞压力的变化对孔隙和喉道进行区分,从而定量反映孔隙喉道的大小、数量及配置关系等储层结构特征[39],但一般无法测量直径小于0.12 μm的孔喉[38]。
核磁共振技术目前在非常规储层研究方面的应用主要有核磁谱研究以及切片成像[40-42]。核磁共振技术通过测量孔隙中含氢流体的弛豫特征,得到弛豫时间T2分布图谱,从而精确地反映非常规储层孔隙的大小、分布、连通性以及流体的赋存特征[11,43]。核磁共振技术的应用可以大规模地针对致密油储层的孔隙结构进行解释评价[44]。岩心核磁共振图像还可用于直观地反映储层孔隙和流体的分布特征以及裂缝走向等信息[45],但其测量结果易受测试环境、流体性质等多种因素影响[46-47]。
2.1.2 气体吸附技术
气体吸附技术目前多应用于非常规储层尤其是页岩储层纳米级孔隙的研究,利用吸附-脱附曲线对孔隙类型、孔径分布、比表面积及孔体积等参数进行研究,包括氮气吸附技术和二氧化碳吸附技术;氮气吸附技术更为常用,测量范围约为1~200 nm[48]。氮气吸附技术基于孔隙表面对气体的吸附作用和毛细管凝聚原理,放置岩样于液氮温度下,一部分氮气在岩样孔隙表面被冷凝吸附,氮气吸附层厚度随着相对压力的逐渐升高而不断增厚,当相对压力与孔径相应压力匹配时发生毛细管凝聚现象,可获得不同压力下样品对氮气的吸附量以及吸附-脱附等温线,从而对孔隙分布、体积和比表面积进行计算。
页岩排烃过程和分子动力学的研究成果表明,纳米级孔隙对页岩储层的物理化学性质及甲烷气体的吸附和流动性具有显著影响[49]。对于非常规气藏,纳米级孔隙的结构特征至关重要。利用氮气吸附实验,可以对页岩气储层纳米级孔隙的大小、分布、形态等孔隙结构特征进行分析,进而对其吸附能力及油气成藏意义进行探究[50-53]。利用氮气吸附技术可以根据实验曲线的形态类型对实验样品的比表面积和孔径分布等孔隙结构特征进行判断[54-55]。但氮气吸附技术不适用于高温高压条件下测量,对于比表面积较小的岩石样品存在较大的测量误差,通常认为氮气吸附技术在测量孔径超过100 nm孔隙时不够准确[56]。
2.2 全孔径联合表征技术
目前用于非常规储层孔隙结构表征的技术共有十余种,其中高压压汞、恒速压汞、核磁共振以及气体吸附等技术可以对孔隙结构进行定量研究,但各种表征技术的测试范围不同,适用的孔隙尺度也存在差异(图4)。单一的技术难以全面认识非常规储层的孔隙结构,为了全面反映非常规储层的孔径分布,全孔径联合表征技术是未来非常规储层孔隙结构研究的重要发展方向。
目前,中外学者针对非常规储层全孔径分布特征,联合多种技术进行了多次实验研究,主要技术如下:①将气体吸附技术与压汞技术相结合,测定页岩全孔径分布特征。田华等针对不同表征技术的优势范围,通过二氧化碳吸附、氮气吸附和高压压汞实验分别得到川东南地区龙马溪组页岩和北美页岩储层微孔(孔径小于2 nm)、中孔(孔径为2~50 nm)和大孔(孔径大于50 nm)的孔隙分布特征,从而研究孔隙结构对页岩含气性的控制作用[57-59]。②结合核磁共振技术和恒速压汞技术对致密砂岩的完整孔喉结构进行研究。XIAO等将核磁共振技术得到的全孔隙分布减去恒速压汞技术得到的喉道分布,可得到全孔径的孔隙分布,对孔喉连通性进行综合评价[60]。③运用核磁共振技术与高压压汞技术对比分析全孔径孔隙特征。WANG等运用核磁共振技术与压汞技术对比,引入横向弛豫时间与孔喉半径的转换系数,对核磁共振进行T2谱与孔径分布的转换,得到核磁共振孔隙分布,进而对比高压压汞技术分析全孔径孔隙特征[61-63]。④结合核磁共振、高压压汞以及氮气吸附等技术,测定非常规储层的完整孔径分布[64]。在核磁转换孔径分布与高压压汞技术的基础上,郭思祺等加入氮气吸附实验结果进行叠合,以检验核磁转换的精度[65]。由图5可知:转换后的核磁共振T2谱曲线与高压压汞技术获得的孔径分布以及氮气吸附技术得到的结果基本一致,孔径分布范围和峰值区间基本重合,说明转换后的核磁共振T2谱曲线可以有效地反映非常规储层孔径分布特征。HINAI等将高压压汞技术、氮气吸附技术以及核磁共振技术得到的纳米至微米级孔隙分布结合起来,可以克服单一技术的局限性,完全覆盖页岩气的孔隙度范围,并利用聚焦离子束扫描电镜技术等定性表征技术对孔隙结构解释进行验证[64]。
图4 非常规储层孔隙结构表征技术(据文献[14]修改)Fig.4 Unconventional reservoir pore structure characterization techniques(Modified according to reference[14])
图5 转化后的核磁共振技术、压汞技术和氮气吸附技术得到孔径分布(据文献[65]修改)Fig.5 Pore size distributions obtained by converted NMR,nitrogen adsorption and mercury injection(Modified according to reference[65])
3 技术局限性及下步发展方向
非常规储层微观孔隙结构表征技术众多,但其在定性描述和定量分析2方面的表征仍存在许多问题,需进一步探讨。
孔隙结构的定性表征需要更高精度的观测技术和测试手段。目前对于非常规储层纳米孔隙的研究,仍处于扫描定性观察或简单测量的水平,其表征结果仍存在较大误差,观测仪器分辨率的提升和全方位的定量参数测量是下一步孔隙结构表征技术的发展方向。
目前储层结构的图像观测技术仍存在高分辨率与大视域范围难以得兼的问题。光学显微镜技术、扫描电镜技术等可对较大视域范围进行观测,但分辨率较低。高精度技术如环境扫描电镜技术、原子力显微镜技术和微纳米CT扫描技术由于数据量过大,皆存在观察范围小、样品代表性差,且花费时间长、成本高等问题。结合高分辨率与大视域的优势仍是未来储层定性表征技术的重中之重。
对于三维重构技术中孔隙网络建模技术的改进,目前已经可以实现对激光共聚焦显微镜分层扫描图像的插值三维处理,也可以实现基于CT扫描技术的孔喉提取和参数计算。但对于孔喉特征复杂且不规则的非常规储层,图像二值化处理在阈值选择中的人为因素影响较大,目前应用较多的最大球算法仍存在分割误差较大、孔喉定位不准确等问题。孔隙网络建模方法的进一步更新改进是非常规储层表征技术未来的重要发展方向。
孔隙结构定量表征技术的主要发展方向在于全孔径联合表征。全孔径联合表征主要基于不同定量实验结果的机械拼接,在测试数据重叠部分通常会出现矛盾。孔隙结构联合表征仍需在各种测试技术的实验原理和精度的分析对比上进行突破,以寻求能够将各种技术串联在一起的参数量,从而对误差进行校正。
4 结论
针对各种非常规储层微观孔隙结构表征技术的研究结果表明,各种表征技术具有不同的特点。扫描电镜技术和原子力显微镜技术可以通过图像观察对非常规储层的二维平面进行细致刻画,激光共聚焦显微镜技术和微纳米CT技术可以对非常规储层三维孔隙结构及空间关系进行模拟表征,压汞技术、核磁共振技术和气体吸附技术可以通过间接数值测定对非常规储层孔隙结构进行定量分析,综合多种表征技术的全孔径联合表征技术可以相对全面地反映非常规储层的孔径分布。
随着非常规油气的发展,针对非常规储层孔隙结构的研究逐渐深入,研究尺度逐步减小,表征技术向更高精度的方向发展,观察对象从大孔、中孔到微纳米孔,研究范围从二维平面扫描到三维空间模拟,表征区域从特定尺度范围到全孔径,功能上从单一技术到定性、定量结合的多种技术联合表征。非常规储层孔隙结构表征技术的进步,拓宽了储层微观领域的现有认知,促进了非常规储层地质理论的进步,揭示了非常规油气的富集规律,对非常规油气勘探意义重大。
目前已形成针对不同孔隙尺度的表征技术体系,基本满足非常规储层评价需求。但由于不同技术表征范围的差异,目前的储层表征仍存在局部与整体、微观与宏观尺度上的融合问题。因此,结合高精度和大尺度微观孔隙结构表征技术实现更加连续完整的储层表征,以实现对生产实际更准确地指导,是今后非常规储层研究的发展趋势。