APP下载

函数定义域与思维品质

2019-05-27李艳宝

读与写·上旬刊 2019年4期
关键词:深刻性奇偶性定义域

李艳宝

中图分类号:G633.6 文献标识码:B 文章编号:1672-1578(2019)10-0153-02

思维品质是指个体思维活动特殊性的外部表现。它包括思维的严密性、思维的灵活性、思维的深刻性、思维的批判性和思维的敏捷性等品质。函数作为高中数学的主线,贯穿于整个高中数学的始终。函数的定义域是构成函数的三大要素之一,函数的定义域(或变量的允许值范围)似乎是非常简单的,然而在解决问题中不加以注意,常常会使人误入歧途。在解函数题中强调定义域对解题结论的作用与影响,对提高学生的数学思维品质是十分有益的。

如果在做题时,没有在定义域的两个区间上分别考虑函数的单调性,就说明学生对函数单调性的概念一知半解,没有理解,在做练习或作业时,只是对题型,套公式,而不去领会解题方法的实质,也说明学生的思维缺乏深刻性。

综上所述,在求解函数函数关系式、最值(值域)、单调性、奇偶性等问题中,若能精细地检查思维过程,思辨函数定义域有无改变(指对定义域为R来说),对解题结果有无影响,就能提高学生质疑辨析能力,有利于培养学生的思维品质,从而不断提高学生思維能力,进而有利于培养学生思维的创造性。

猜你喜欢

深刻性奇偶性定义域
如何求抽象函数的定义域
函数的图象、单调性和奇偶性
函数的单调性和奇偶性
永远的定义域
抽象函数定义域的四种类型
渗透分类思想,培养学生数学思维的深刻性
利用问题导学,培养学生数学思维的深刻性
归纳复合函数定义域的求法